

SREENARAYANAGURU OPEN UNIVERSITY

Vision

To increase access of potential learners of all categories to higher education, research and training,
and ensure equity through delivery of high quality processes and outcomes fostering inclusive educa-
tional empowerment for social advancement.

Mission

To be benchmarked as a model for conservation and dissemination of knowledge and skill
on blended and virtual mode in education, training and research for normal, continuing, and
adult learners.

Pathway

Access and Quality define Equity.

SREENARAYANAGURU OPEN UNIVERSITY
The State University for Education, Training and Research in Blended Format, Kerala

Introduction to Python Programming
Course Code: B24DS06DC

Semester - III

Discipline Core Course
Undergraduate Programme

BSc Data Science and Analytics
Self Learning Material

(With Model Question Paper Sets)

Course Code: B24DS06DC
Semester - III

Discipline Core Course
BSc Data Science and Analytics

INTRODUCTION TO
PYTHON PROGRAMMING

Academic Committee

Scrutiny

Design Control

Cover Design

Co-ordination

Development of the Content

Review

Edit

Proofreading
Dr. T. K. Manoj
Dr. Smitha Dharan,
Dr. Satheesh S.
Dr. Vinod Chandra S.S.
Dr. Hari V. S.
Dr. Sharon Susan Jacob
Dr. Ajith Kumar R.
Dr. Smiju I.S.
Dr. Nimitha Aboobaker

Shamin S., Greeshma P.P.,
Sreerekha V.K., Anjtha A.V.,
Dr. Kanitha Divakar, Aswathy V.S.,
Subi Priya Laxmi S.B.N.

Azeem Babu T.A.

Jobin J.

October 2025

© Sreenarayanaguru Open University

Edition

Copyright

Director, MDDC :
Dr. I.G. Shibi
Asst. Director, MDDC :
Dr. Sajeevkumar G.
Coordinator, Development:
Dr. Anfal M.
Coordinator, Distribution:
Dr. Sanitha K.K.

Dr. Krishnakumar K.G., Greeshma P.P,
Lekshmi A.C., Sreerekha V.K.,
Dr. Jennath H. S., Shamin S., Anjitha A.V.,
Aswathy V.S., Dr. Kanitha Divakar,
Subi Priya Laxmi S.B.N.

Dr. Viji Balakrishnan

Dr. Viji Balakrishnan

Dr. Viji Balakrishnan

Scan this QR Code for reading the SLM
on a digital device.

Dear learner,

I extend my heartfelt greetings and profound enthusiasm as I warmly wel-
come you to Sreenarayanaguru Open University. Established in Septem-
ber 2020 as a state-led endeavour to promote higher education through
open and distance learning modes, our institution was shaped by the
guiding principle that access and quality are the cornerstones of equity.
We have firmly resolved to uphold the highest standards of education,
setting the benchmark and charting the course.

The courses offered by the Sreenarayanaguru Open University aim to
strike a quality balance, ensuring students are equipped for both personal
growth and professional excellence. The University embraces the wide-
ly acclaimed "blended format," a practical framework that harmonious-
ly integrates Self-Learning Materials, Classroom Counseling, and Virtual
modes, fostering a dynamic and enriching experience for both learners
and instructors.

The University is committed to providing an engaging and dynamic
educational environment that encourages active learning. The Study and
Learning Material (SLM) is specifically designed to offer you a compre-
hensive and integrated learning experience, fostering a strong interest in
exploring advancements in information technology (IT). The curriculum
has been carefully structured to ensure a logical progression of topics,
allowing you to develop a clear understanding of the evolution of the
discipline. It is thoughtfully curated to equip you with the knowledge and
skills to navigate current trends in IT, while fostering critical thinking and
analytical capabilities.The Self-Learning Material has been meticulously
crafted, incorporating relevant examples to facilitate better comprehen-
sion.

Rest assured, the university's student support services will be at your dis-
posal throughout your academic journey, readily available to address any
concerns or grievances you may encounter. We encourage you to reach
out to us freely regarding any matter about your academic programme. It
is our sincere wish that you achieve the utmost success.

Regards,
Dr. Jagathy Raj V. P.						 01-10-2025

Contents

Block 01	 Python Fundamentals						 1
Unit 1 		 Introduction to Python and Setup 			 2
Unit 2		 Variables, Data Types, and Basic Input/Output			 29
Unit 3 		 Operators and Expressions						 42
Unit 4		 Control Structures							 60

Block 02	 Data Structures in Python						 73
Unit 1		 List and Tuples							 74
Unit 2		 Dictionaries and Sets						 90
Unit 3		 Strings and String Manipulation					 103
Unit 4		 List Comprehensions and Iterators					 116

Block 03	 Functions, Modules, Packages andRegular Expressions		 124
Unit 1 		 Functions								 125
Unit 2		 Built-in Functions and Lambda Functions			 141
Unit 3		 Modules and Packages						 155
Unit 4		 Regular Expression							 171

Block 04	 File Handling and Object-Oriented Programming		 184
Unit 1 		 Introduction to File Handling					 185
Unit 2		 Advanced File Operations						 198
Unit 3		 Basics of Object-Oriented Programming				 222
Unit 4		 Core Concepts of OOP in Python					 238

Block 05	 Exception Handling and Database Programming			 254
Unit 1		 Exception Handling							 255
Unit 2		 Debugging techniques and tools 					 269
Unit 3		 Database Programming in Python					 283
Unit 4		 Applications of Database Programming in Python		 301

Block 06	 Familiarizing NumPy, Matplotlib and Pandas			 318
Unit 1		 Familiarizing NumPy						 319
Unit 2		 Data Analysis with Pandas						 335
Unit 3		 Data Visualization with Matplotlib					 347
Unit 4		 Data Aggregation and Advanced Visualization			 362

Model Question Paper Sets 								 390

Python
Fundamentals1

Unit 1
 Introduction to Python and Setup

Learning Outcomes

Prerequisites

	♦ define Python as a high-level programming language.

	♦ demonstrate the use of Python in interactive mode to execute basic commands.

	♦ navigate and use a Python IDE to write and run Python scripts.

	♦ define what a variable is and apply Python’s rules for naming variables
correctly.

	♦ compare Python's features with other high-level languages to understand its
advantages.

After completing this unit, the learner will able to:

Have you ever wondered how your favourite apps like Instagram, YouTube, or even
your smart assistant work behind the scenes? These applications are built using
programming languages and one of the most popular and beginner-friendly languages
used today is Python. Python is not just used by tech giants like Google and Netflix,
but also by scientists, engineers, and students to build programs that solve real-world
problems. Before diving in, all you need is basic computer skills, such as opening files,
using a web browser, and typing comfortably.

Programming languages can be compared to human languages they help us communicate
instructions to computers. High-level languages like Python are designed to be easy to
understand, with simple words like print and input that resemble English. For
example, a line of Python code can tell a computer: “Print a welcome message on the
screen,” just like writing a sentence. This unit will guide you through using Python
in interactive mode, where you can type a command and see the result instantly like
asking a calculator to solve a math problem in real time.

To make writing and managing code even easier, we use tools called IDEs (Integrated
Development Environments) like IDLE or VS Code that help organize your work,
highlight mistakes, and make coding more efficient. You’ll also learn how to name and

Discussion
1.1.1 Introduction to Program
WhatsApp is an application for communication. A team of people who created the
application includes programmers. They have written the program to do various tasks
using the application. Imagine the different tasks that can be done using WhatsApp.
(Hint: one of the tasks is to send the message). To send a message we need to:

	♦ Open the application

	♦ Select the sender’s contact

	♦ Type message

	♦ Send the message

These four steps form the task to send a message using WhatsApp. To carry out a
task by computer, we need to give instructions to the computer. A program is a set of
instructions that makes a computer usable. The tasks are written using a programming
language. Nowadays, we use many applications on mobile phones, computers, and
many other devices. Have you thought about the way the application functions and it
is made? An application is a program created to perform specific tasks by an end-user.

The set of instructions to carry out a task is called a program. The instructions can be
written by using a programming language. The instructions should be understandable
by the device. Python is one of the programming languages to write instructions. We
are using our mother tongue for communication. It is a means of giving instructions,

Key words

Programming Language, Installation, Python Interactive Mode, Python IDE, Jupyter
Notebook, PyCharm

use variables, which are like labelled containers for storing information. For example,
in a shopping app, a variable called price could store the cost of an item. By the end
of this unit, you’ll be equipped to write basic Python programs and understand how
professional developers use these same tools to build software that you use every day.

3 SGOU - SLM - BSc - Introduction to Python Programming

expressing our feelings, etc. Similarly, programming languages are used to make
computer programs or software applications. A language is made up of alphabets,
words, syntax, and semantics. The syntax is a set of rules to make a valid sentence.
Semantic is a set of rules that determine the meaning of the sentences. A person who has
the skill and knowledge of programming is a programmer.

1.1.2 Python as High-level Language
High-Level Language is a programming language easily understandable by humans.
Python is a high-level language. Other high-level languages include Java, C++, PHP,
Ruby, Perl, etc. The programs written in a high-level language need to be translated
into machine language. Machine Language is a low-level language that machines
understand. Machine code is a sequence of numbers written in binary (0 and 1). The
program that translates high-level language to machine code is called a compiler or an
interpreter. Fig 1.1.1 shows translation of high level language to machine language.

Python was created by Guido Van Rossum and released in 1991. Python is a well-
designed programming language. Python is useful for accomplishing real-world tasks.
Python is an easy to learn, powerful programming language. It has efficient high-level
data structures and a simple but effective approach to object-oriented programming.
Python’s elegant syntax and dynamic typing, together with its interpreted nature, make
it an ideal language for scripting and rapid application development in many areas on
most platforms.

We can use Python for everything from website development and IoT, gaming,
robotics, implementing standalone programs, and many more. Python is used widely
to implement complex Internet services like search engines, cloud storage and tools,

Fig 1.1.1 Translation of high level language to machine language

4 SGOU - SLM - BSc - Introduction to Python Programming

social media, and so on. For example, Google uses Python language to make the search
engine better and more efficient. Google’s main search algorithms are written in C++
and Python. One of the most popular languages used in Machine learning is Python. The
availability of a wide collection of library functions of Python makes the programming
easy and effective.

When Python is installed on a computer, it installs several components such as an
interpreter and supporting library. The Python interpreter is easily extended with new
functions and data types implemented in C or C++ (or other languages callable from
C). Python is also suitable as an extension language for customizable applications. The
set of instructions written in a high-level programming language (For example, Python)
is the source code and the file is called a source file. Python enables programs to be
written compactly and readably. Programs written in Python are typically much shorter
than equivalent C, C++, or Java programs, for several reasons:

	♦ the high-level data types allow you to express complex operations in a single
statement.

	♦ statement grouping is done by indentation instead of beginning and ending
brackets.

	♦ no variable or argument declarations are necessary.

1.1.3 Advantages and Disadvantages of Python Programming
Language
Python is a widely used high-level programming language known for its simplicity,
readability, and versatility. It has gained popularity among beginners and professionals
alike due to its clean syntax and powerful capabilities. Python is used in various domains
such as web development, data analysis, artificial intelligence, machine learning, and
automation, making it one of the most in-demand languages in the tech industry.

However, like any programming language, Python comes with its own set of advantages
and disadvantages. While it offers many features that enhance productivity and ease of
development, it also has certain limitations that may affect performance or suitability for
specific tasks. Understanding both the strengths and weaknesses of Python is essential
for making informed choices in software development.

Advantages of Python Programming Language

1.	 Presence of third-party modules: Python has a rich ecosystem of third-
party modules and libraries that extend its functionality for various tasks.

2.	 Extensive support libraries: Python boasts extensive support libraries like
NumPy for numerical calculations and Pandas for data analytics, making it
suitable for scientific and data-related applications.

3.	 Open source and large active community base: Python is open source,
and it has a large and active community that contributes to its development
and provides support.

5 SGOU - SLM - BSc - Introduction to Python Programming

4.	 Versatile, easy to read, learn, and write: Python is known for its simplicity
and readability, making it an excellent choice for both beginners and
experienced programmers.

5.	 User-friendly data structures: Python offers intuitive and easy-to-use data
structures, simplifying data manipulation and management.

6.	 High-level language: Python is a high-level language that abstracts low-
level details, making it more user-friendly.

7.	 Dynamically typed language: Python is dynamically typed, meaning you
don’t need to declare data types explicitly, making it flexible but still reliable.

8.	 Object-Oriented and Procedural programming language: Python
supports both object-oriented and procedural programming, providing
versatility in coding styles.

9.	 Portable and interactive: Python is portable across operating systems and
interactive, allowing real-time code execution and testing.

10.	Ideal for prototypes: Python’s concise syntax allows developers to prototype
applications quickly with less code.

11.	Highly efficient: Python’s clean design provides enhanced process control,
and it has excellent text processing capabilities, making it efficient for
various applications.

12.	Internet of Things (IoT) opportunities: Python is used in IoT applications
due to its simplicity and versatility.

13.	Interpreted language: Python is interpreted, which allows for easier
debugging and code development.

Disadvantages of Python Programming Language

1.	 Performance: Python is an interpreted language, which means that it can
be slower than compiled languages like C or C++. This can be an issue for
performance-intensive tasks.

2.	 Global Interpreter Lock: The Global Interpreter Lock (GIL) is a mechanism
in Python that prevents multiple threads from executing Python code at once.
This can limit the parallelism and concurrency of some applications.

3.	 Memory consumption: Python can consume a lot of memory, especially
when working with large datasets or running complex algorithms.

4.	 Dynamically typed: Python is a dynamically typed language, which means
that the types of variables can change at runtime. This can make it more
difficult to catch errors and can lead to bugs.

6 SGOU - SLM - BSc - Introduction to Python Programming

5.	 Packaging and versioning: Python has a large number of packages and
libraries, which can sometimes lead to versioning issues and package
conflicts.

6.	 Lack of strictness: Python’s flexibility can sometimes be a double-edged
sword. While it can be great for rapid development and prototyping, it can
also lead to code that is difficult to read and maintain.

7.	 Steep learning curve: While Python is generally considered to be a relatively
easy language to learn, it can still have a steep learning curve for beginners,
especially if they have no prior experience with programming.

1.1.4 Python Installation
Python is a powerful and beginner-friendly programming language used for web
development, data analysis, artificial intelligence, and more. Before writing and running
Python code, the first step is to install Python on your computer. Installing Python sets
up the tools needed to write, test, and run programs in an efficient and interactive way.
Whether you’re using Windows, MacOS, or Linux, Python provides a simple installer
and supports various development environments to get you started quickly. This section
will guide you through downloading Python from the official website, installing it step-
by-step, and verifying the installation so you’re ready to begin coding.

1.1.4.1 Installing Python on Windows
We’ve outlined clear, step-by-step instructions to help you complete the installation
process successfully. Whether you’re a beginner or have some programming experience,
learning how to install Python on Windows is the first step toward harnessing the power
of this versatile language and exploring its wide array of uses. To get Python on your
computer, follow these steps:

 Fig 1.1.2 Python Homepage

7 SGOU - SLM - BSc - Introduction to Python Programming

Step 1: Choose the Python Version to Install
Go to the official Python website at https://www.python.org/downloads/ using a Win-
dows system. Look for a stable release of Python 3 ideally version 3.10.11, as that’s the
one used in this section. From the available options, select the appropriate installer for
your system: either the 64-bit or 32-bit Windows installer (fig 1.1.2). Then, download
the executable file.

Step 2: Downloading the Python Installer
Once you have downloaded the installer, open the .exe file, such as python-3.10.11-
amd64.exe, by double-clicking it to launch the Python installer. Choose the option to
Install the launcher for all users by checking the corresponding checkbox, so that all
users of the computer can access the Python launcher application. Enable users to run
Python from the command line by checking the Add python.exe to PATH checkbox.

Fig 1.1.3 Python Installer

After Clicking the Install Now Button (fig 1.1.3) the setup will start installing Python
on your Windows system. You will see a window like this (fig 1.1.4).

Fig 1.1.4 Python Setup

8 SGOU - SLM - BSc - Introduction to Python Programming

Step 3: Running the Executable Installer
After completing the setup. Python will be installed on your Windows system. You will
see a successful message shown in fig 1.1.5.

Fig 1.1.5 Python successfully installed

Step 4: Verify the Python Installation in Windows
Close the window after successful installation of Python. You can check if the
installation of Python was successful by using either the command line or the Integrated
Development Environment (IDLE), which you may have installed (fig 1.1.6). To
access the command line, click on the Start menu and type “cmd” in the search bar.
Then click on Command Prompt. Then type as:
python --version

Fig 1.1.6 Python version

You can verify the installed Python version by opening the IDLE (Integrated Develop-
ment and Learning Environment) application shown in fig 1.1.7. Simply go to the Start
menu, type “IDLE” in the search bar, and click on the IDLE app, for example, IDLE
(Python 3.10.11 64-bit). If the IDLE window opens successfully, it means Python has
been correctly downloaded and installed on your Windows system.

Fig 1.1.7 Python IDLE

9 SGOU - SLM - BSc - Introduction to Python Programming

1.1.4.2 Installing Python on Linux
Installing Python on a Linux system is a straightforward process that allows users
to harness the full power of this popular programming language in an open-source
environment. Most modern Linux distributions come with Python pre-installed;
however, users may need to install or upgrade to a specific version for development or
compatibility purposes. This guide will walk you through the steps to check the current
Python version, install a new version using package managers like apt, yum, or dnf,
and set up tools like pip and virtual environments to manage your Python projects
efficiently. Whether you’re a beginner or an experienced developer, understanding how
to install and configure Python on Linux is a key step in mastering Python programming.

Simple Steps to Install Python on Linux are as follows:

Step 1: Check if Python is already installed

Open the terminal and type:

python3 --version
 or
python –version

If a version number is shown, Python is already installed.

Step 2: Update Package List

Open your terminal and run:

 sudo apt update

This updates the list of available packages.

Step 3: Install Prerequisites

Install necessary software for building Python:

sudo apt install -y software-properties-common

sudo apt install -y build-essential libssl-dev zlib1g-dev \

libncurses5-dev libncursesw5-dev libreadline-dev libsqlite3-dev \

libgdbm-dev libdb5.3-dev libbz2-dev libexpat1-dev liblzma-dev \

tk-dev libffi-dev wget

Step 4: Download Python Source Code

Go to the official Python website and copy the link for the version you want. Then use
wget to download:

wget https://www.python.org/ftp/python/3.12.2/Python-
3.12.2.tgz

10 SGOU - SLM - BSc - Introduction to Python Programming

Step 5: Extract the Archive (Unpack the downloaded file)

tar -xvf Python-3.12.2.tgz

cd Python-3.12.2

Step 6: Configure and Install (Run the following commands)

./configure --enable-optimizations

make -j$(nproc)

sudo make altinstall

Use make altinstall instead of make install to avoid replacing the system’s default
Python.

Step 7: Verify the Installation

Check the installed version:

python3.12 –version

Python is now installed.

1.1.5 Python Interactive Mode
Python offers an interactive mode that allows users to type and execute code one line at
a time. This mode is useful for beginners to quickly test small pieces of code and see the
results immediately. It behaves like a real-time calculator for programming whatever
you type is instantly executed, and the output is displayed right away.

Python Interactive Mode is a way of using the Python interpreter directly by typing
commands into the Python shell or terminal. It is identified by the >>> prompt, which
indicates that Python is ready to accept a command. You can launch interactive mode
simply by opening a terminal and typing python or python3 depending on your system
setup. Some key features are:

1.	 Immediate Execution: Code is executed line-by-line as you type.

2.	 Quick Testing: Useful for testing small snippets of code or expressions
without writing a full program.

3.	 Interactive Debugging: Helps understand how code works by running
commands interactively.

4.	 Dynamic Typing Display: Results of expressions are displayed automatically.

5.	 Supports Multiline Statements: Indented blocks, loops, and function
definitions can be entered interactively.

How to start Python Interactive Mode?
Step 1: Open a terminal (Command Prompt on Windows, Terminal on macOS/Linux).

11 SGOU - SLM - BSc - Introduction to Python Programming

Step 2: Type python or python3 (depending on your installation) and press Enter.

Step 3: You will see the Python prompt (Fig 1.1.8): >>>

Fig 1.1.8 Python prompt

Step 4: Now, you can enter Python commands (Fig 1.1.9) and see results
immediately (Here is an example for addition of two numbers).

Fig 1.1.9 Sample Example

Step 5: Exiting Interactive Mode
Type exit() or press Ctrl + Z (Windows) / Ctrl + D (Linux/macOS), then press
Enter.
Activity: Perform simple arithmetic operations using Python Interactive Mode.

Python Interactive Mode is a powerful tool for beginners and developers alike to test
code snippets and learn Python by immediate execution. It is an essential feature for
quick experimentation, debugging, and understanding Python commands.

1.1.6 Python IDE
A Python Integrated Development Environment (IDE) is a software application
designed to provide programmers with a comprehensive and convenient environment
for writing, editing, running, and debugging Python code. Unlike a simple text editor,
a Python IDE combines multiple useful features such as syntax highlighting, code
completion, error checking, and debugging tools all within a single interface. The

12 SGOU - SLM - BSc - Introduction to Python Programming

primary purpose of a Python IDE is to improve the productivity and efficiency of
developers by streamlining the process of software development. It helps programmers
by automatically identifying mistakes, suggesting possible code completions, and
allowing them to test their code quickly without switching between multiple tools.
Python IDEs are especially helpful for beginners learning the language as well as
professional developers working on large and complex projects. By providing an
organized workspace where code files, libraries, and related resources can be managed
easily, Python IDEs also simplify project management and collaboration. Overall, a
Python IDE acts as a powerful assistant that supports developers at every stage of the
coding lifecycle, from writing clean code to debugging and maintaining software.

Common Features of Python IDEs
Python Integrated Development Environments (IDEs) come equipped with several
important features that help programmers write and manage code more efficiently.
These features make coding easier, faster, and less error-prone. Some of the most
common features include:

Code Editor: The core part of any IDE is the code editor, where programmers write
their Python scripts. It usually includes syntax highlighting, which displays keywords,
variables, and other code elements in different colors to improve readability. Many
IDEs also offer code completion or autocomplete suggestions that help speed up
coding by predicting what the programmer intends to type next. Additionally, features
like automatic indentation and formatting help maintain proper code structure, which
is important in Python.

1.	 Debugger: Debugging tools allow programmers to find and fix errors in
their code. A debugger lets users step through the program line-by-line,
set breakpoints to pause execution at specific points, and inspect variables
to see their values at runtime. This makes it easier to understand how the
program behaves and identify logical errors or bugs.

2.	 Run and Execute Environment: IDEs provide the ability to run Python
programs directly from the interface. Output from the program, including
errors and print statements, appears within the IDE itself, allowing quick
testing and feedback without switching to a separate command-line window.

3.	 Project Management: For larger projects, IDEs help organize multiple
files and folders within a workspace or project explorer. This makes it
easier to navigate through the code-base, manage dependencies, and work
on different parts of a project efficiently.

4.	 Version Control Integration: Many Python IDEs include built-in support
for version control systems like Git. This allows programmers to track
changes in their code, collaborate with others, and manage different versions
of their projects seamlessly.

5.	 Additional Tools: Other helpful tools in Python IDEs include code linting
(which checks for syntax errors and coding style issues), refactoring support
(to improve code structure without changing behavior), and integration with
testing frameworks for running unit tests.

13 SGOU - SLM - BSc - Introduction to Python Programming

These features collectively provide a rich and supportive environment that helps
programmers write cleaner code, debug efficiently, and manage projects with ease.

1.1.7 Popular Python IDEs
There are many Integrated Development Environments (IDEs) available for Python
programming, each designed to cater to different needs and preferences of developers.
Some IDEs offer a simple and lightweight interface ideal for beginners, while others
provide powerful features suited for professional software development and large
projects. Choosing the right Python IDE can greatly enhance coding efficiency, ease of
debugging, and overall productivity. Below are some of the most popular and widely
used Python IDEs (Table 1.1.1), each with unique strengths that make them favored by
learners, data scientists, and professional developers alike.

Table 1.1.1 Popular Python IDEs

1.1.7.1 Jupyter Notebook
Jupyter Notebook is an open-source, web-based interactive computing environment
that allows users to create and share documents containing live Python code, equations,
visualizations, and narrative text. It is widely used in data science, machine learning,
scientific research, and education because it combines code execution with rich text
elements, making it easy to explain and visualize data workflows. Jupyter Notebook
work in a browser interface where code is written in cells and executed independently.
Users can intersperse code cells with Markdown cells for formatted text, headings,
lists, and images. This flexibility makes Jupyter Notebooks ideal for exploratory
programming, data analysis, and creating reproducible research documents.

Key advantages of Jupyter Notebook include immediate feedback from code execution,
easy visualization of results with libraries like Matplotlib and Seaborn, and the ability
to share notebooks with others through various formats such as HTML and PDF. Due
to these features, Jupyter Notebook have become a popular tool for both teaching and
professional data science work.

IDE Name Description Suitable For

Jupyter Notebook Interactive web-based environment
for code, text, and visualization

Data analysis, teaching, resear-
ch

PyCharm Powerful IDE by JetBrains with
advanced features

Professional developers, large
projects

Spyder Scientific Python Development
Environment, ideal for data science

Data scientists and researchers

Visual Studio Code
(VS Code)

Lightweight, extensible editor with
Python extensions

Beginners and professionals

IDLE Default simple IDE that comes with
Python installation

Beginners and learning pur-
poses

14 SGOU - SLM - BSc - Introduction to Python Programming

Let’s start the journey of learning Python programming by printing a message “hello
world “ program. To write a program using the Python programming language, we
need an IDE. An integrated development environment (IDE) is an application that
provides facilities for software development. IDE consists of an editor to type the
program, a facility to highlight the mistakes identified by the IDE, and other features to
develop an application without spending much time. A number of IDEs are available
for programming in Python. Since we are new to Python programming, let’s start with
Jupyter Notebook Online, a simple environment for Python programming. Jupyter
Notebooks allows:

	♦ creation and execution of Python programs by integrating code and its output
into a single document.

	♦ opening the IDE in a standard web browser.

How to Start?
Step 1: Let’s start Jupyter Notebook Online as shown in fig 1.1.10 by opening the link
https://jupyter.org/try.

Fig 1.1.10 Jupyter Notebook Online

Step 2: Start a new workbook as shown in fig 1.1.11. We can write the program in the
cell provided by the IDE.

Fig 1.1.11 Start a new workbook

15 SGOU - SLM - BSc - Introduction to Python Programming

Fig 1.1.12 shows python IDE, here we can write programs.

Fig 1.1.12 Python IDE

Type print (“Hello World”) as shown in fig 1.1.13 below.

Fig 1.1.13 Type the code

Step 3: Click on the Run button and click on Run Selected Cells or click on
as shown in fig 1.1.14 to execute the program and observe the result.

Fig 1.1.14 Run option in Python IDE

16 SGOU - SLM - BSc - Introduction to Python Programming

The following fig 1.1.15 shows the result will be displayed.

Fig 1.1.15 Result

1.1.7.2 PyCharm
PyCharm is one of the most powerful and widely used Integrated Development
Environments (IDE) for Python development. It is developed by JetBrains and provides
a complete set of tools for professional developers to build, test, debug, and manage
Python applications efficiently. It helps developers write clean, efficient, and error-free
code by providing intelligent code completion, debugging tools, project navigation, and
support for frameworks like Django, Flask, and more. Features of PyCharm is shown
in table 1.1.2.

Table 1.1.2: Features of PyCharm

Creating Your First Project in PyCharm

Step 1: Let’s start PyCharm by opening the link https://www.jetbrains.com/pycharm/
download

Features Description

Smart Code Editor Provides auto-completion, syntax highlighting, and code
suggestions.

Debugger and Testing
Tools Integrated visual debugger and test runner.

Version Control
Integration Supports Git, SVN, Mercurial for version control.

Project Navigation Easily jump to classes, files, functions, or usages.

Refactoring Tools Rename, move, delete, extract methods, and more without
breaking code.

Database Support (Pro) Built-in tools to manage and query databases.

Framework Support (Pro) Includes Django, Flask, Pyramid, and other web
frameworks.

Cross-platform Available for Windows, macOS, and Linux.

17 SGOU - SLM - BSc - Introduction to Python Programming

Step 2: When you first use PyCharm, you’ll be welcomed by its startup screen (figure
1.1.16).

Fig 1.1.16 PyCharm startup screen

Step 3: To create a blank Python project, click on “New project.” PyCharm will now
prompt you to configure the Python project (figure 1.1.17).

Fig 1.1.17 PyCharm configure the Python project

In this example, the project files will reside in my /home/dolica/PyCharmProjects/
first-pycharm-project directory. However, you can choose a location that suits your
needs. For the virtual environment, select Conda. PyCharm automatically makes the
virtual environment’s name match the project name, and this is something we wish to
keep as it makes things less confusing.

The setup page also asks if you want to create a main.py welcome script; for this project,

18 SGOU - SLM - BSc - Introduction to Python Programming

you should keep this option checked. This will have PyCharm create a basic Python file
for you instead of just preparing a blank directory. Once the setup is complete, click
“Create.”

Step 4: After creating your project, you’ll land in the main PyCharm interface (figure
1.1.18).

Fig 1.1.18 The main PyCharm interface

Here’s a quick overview:

	♦ Project Tool Window: This displays the files comprising your Python
project. Right now, there’s only one file, main.py, but more complex projects
will have multiple files and folders.

	♦ Menu: Clicking here opens the PyCharm menu.

	♦ Editor: This is where you write code. The tab bar at the top lets you switch
between different files, though currently, we have only one, main.py.

	♦ Environment: This shows the environment used to run your Python files
for this project, matching the Mamba settings you selected when creating
the project.

	♦ Breakpoint: Breakpoints are handy for pausing program execution,
especially when debugging code to find issues.

	♦ Run & Debug: The run button (play symbol) runs your code and displays
the output in the console. The debug button (bug symbol) runs the program
in debugging mode, pausing at breakpoints.

19 SGOU - SLM - BSc - Introduction to Python Programming

Step 5: Now you should see the PyCharm editor with our main.py file open. You’ll
notice a print_hi command created by PyCharm. You’ll learn more about how these
commands work and how to create your own later. For now, let’s run this file (figure
1.1.19).

Fig 1.1.19 Run option in PyCharm interface

Step 6: This opens the “Run” panel at the bottom of the window, displaying the
output(figure 1.1.20).

Fig 1.1.20 Displaying the output

The text “Process finished with exit code 0” indicates that the program ran without
errors. Our main.py code is designed to display “Hi, PyCharm” and it has executed
correctly.

PyCharm makes Python development faster, easier, and more manageable with its
intelligent tools and automation features. Whether you’re a beginner or professional,
it’s an excellent choice for working on Python projects efficiently.

1.1.7.3 Spyder
Spyder is a specialized Python IDE tailored for scientists, engineers, and data analysts.
It provides a clean and organized environment for writing, running, and debugging
Python code, especially in fields like data science and numerical computing. Spyder
stands for Scientific Python Development Environment, an open-source platform
that integrates essential scientific libraries and tools into a single user interface. It
is designed to support efficient analysis, visualization, and computation tasks using
Python. Spyder interface is shown below (fig 1.1.21).

20 SGOU - SLM - BSc - Introduction to Python Programming

Key Features of Spyder
Spyder offers a rich set of tools specifically designed to support scientific computing
and data analysis using Python. Its intuitive interface combines code editing, interactive
execution, variable tracking, and visualization in a single environment. These features
make Spyder especially useful for researchers, data scientists, and students who need
a streamlined workflow for numerical computations and exploratory programming.
Some of them are:

	♦ Advanced Code Editor: Offers syntax highlighting, indentation, and auto-
completion for faster coding.

	♦ IPython Console Integration: Executes Python commands interactively
with immediate output.

	♦ Variable Explorer: Displays variables, arrays, and data frames in a
spreadsheet-like format.

	♦ Built-in Profiler: Measures code performance to identify and optimize slow
sections.

	♦ Static Code Analysis: Uses tools like Pylint to detect errors and improve
code quality.

	♦ Documentation Viewer: Shows docstrings and function references in real-
time as you type.

	♦ Multiple Panes Interface: Organizes editor, console, explorer, and help
views for multitasking.

Fig 1.1.21 Spyder interface

21 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Seamless Library Support: Compatible with scientific libraries like
NumPy, Pandas, Matplotlib, and SciPy.

	♦ Customizable Layout: Allows users to rearrange and configure panels
according to workflow needs.

	♦ Plugin Support: Extends capabilities by integrating additional tools and
features.

1.1.7.4 Visual Studio Code (VS Code)
Visual Studio Code is a lightweight and highly customizable code editor developed
by Microsoft, popular among developers for its speed, flexibility, and broad language
support. It is widely used for general-purpose programming, web development, and
scripting. VS Code is a free, open-source source code editor that supports development
in various languages like Python, JavaScript, Java, C++, and more. It combines a
powerful editing experience with integrated tools for debugging, version control, and
extensions (fig 1.1.22).

Key Features of VS Code
Visual Studio Code is a versatile and lightweight code editor that provides a powerful
development experience across a wide range of programming languages and platforms.
Its extensive feature set includes smart code editing, built-in debugging, and seamless
integration with version control systems. With a vast extension marketplace and
customizable interface, VS Code adapts easily to the needs of web developers, software
engineers, and data scientists alike.

	♦ Multi-language Support: Provides syntax highlighting, linting, and
IntelliSense for numerous programming languages.

	♦ Integrated Terminal: Allows command-line access directly within the
editor.

	♦ Extension Marketplace: Hosts thousands of plugins to enhance functionality
and support additional tools or languages.

	♦ Built-in Git Integration: Enables commit, push, pull, and branch operations
without leaving the editor.

	♦ Smart Code Completion: Suggests relevant code snippets, methods, and
variables using IntelliSense.

	♦ Real-time Debugging: Offers breakpoints, watch expressions, and call
stacks for detailed analysis.

	♦ Customizable Themes: Lets users change color schemes, icons, and layout
preferences.

	♦ Remote Development Support: Enables editing and running code on
remote servers or inside containers.

	♦ Live Share Collaboration: Allows real-time code sharing and team
collaboration directly within the editor.

22 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Minimal System Requirements: Runs efficiently even on systems with
limited resources.

Fig 1.1.22 VS code interface
1.1.7.5 IDLE
IDLE is the default development environment that comes bundled with Python,
intended for beginners and those who want a simple interface to write and test code.
It is designed to be easy to use and requires no additional installation when Python is
installed. IDLE stands for Integrated Development and Learning Environment, a
lightweight Python IDE built using the Tkinter GUI toolkit. It provides a basic interface
for editing, running, and debugging Python scripts, making it suitable for educational
and learning purposes (fig 1.1.23).

Key Features of IDLE
	♦ Python Shell: Offers an interactive interpreter where users can type and

execute code line by line.

	♦ Simple Code Editor: Includes syntax highlighting, indentation, and basic
code formatting.

	♦ Built-in Debugger: Provides step-through debugging with breakpoints and
variable inspection.

	♦ Cross-Platform Compatibility: Runs on Windows, macOS, and Linux
with a consistent interface.

23 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Auto-Completion: Suggests functions and variable names while typing.

	♦ Integrated Help System: Allows access to Python documentation directly
from the interface.

	♦ Lightweight Installation: Requires minimal system resources and no
configuration.

	♦ Menu-Driven GUI: Features standard menus for file, edit, run, and debug
operations.

	♦ Script Execution Support: Enables running entire Python programs directly
from the editor.

	♦ Educational Focus: Designed with simplicity in mind, making it ideal for
classroom use and self-learning.

Fig 1.1.23 IDLE interface

This unit provided a foundational understanding of Python and how to set up a devel-
opment environment for effective programming. It began with the installation process
of Python on various operating systems, ensuring learners can run Python programs
locally. The unit then introduced Python’s interactive mode, a valuable feature for
quickly testing code and learning through immediate feedback. Finally, it offered an
overview of popular Python IDEs such as Jupyter Notebook, IDLE, PyCharm, Spyder,
and VS Code, highlighting their key features and helping learners choose the most suit-
able tools for their needs. Together, these topics equip beginners with the essential skills
to start writing and experimenting with Python code confidently.

24 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ Python is a high-level, interpreted programming language known for its
simplicity and readability.

	♦ Installing Python is the first step to start writing and executing Python code
on any computer system.

	♦ Python’s interactive mode allows users to run individual lines of code and
view immediate results.

	♦ Interactive mode is useful for quick testing, debugging, and learning basic
Python syntax.

	♦ You can access Python’s interactive shell by simply typing python or
python3 in the terminal or command line.

	♦ The interactive prompt is indicated by the >>> symbol, where code can be
typed and executed directly.

	♦ An Integrated Development Environment (IDE) is a software tool that
helps write, run, and manage code more efficiently.

	♦ Jupyter Notebook is a web-based, open-source environment for interactive
programming and data analysis.

	♦ IDLE is Python’s built-in IDE, offering a simple interface with a code editor
and interactive shell.

	♦ PyCharm is a feature-rich IDE with tools for debugging, project management,
and web development (Professional edition).

	♦ Spyder is ideal for scientific computing and data analysis, offering a variable
explorer and integrated IPython console.

	♦ Visual Studio Code (VS Code) is a lightweight, cross-platform editor with
powerful extensions for Python development.

	♦ IDEs improve productivity by offering features like syntax highlighting,
auto-completion, and debugging support.

	♦ Choosing the right IDE depends on the user’s needs, such as beginner-
friendly use (IDLE), data science (Spyder), or general coding (VS Code,
PyCharm).

25 SGOU - SLM - BSc - Introduction to Python Programming

Objective Type Questions
1.	 What type of language is Python categorized as?

2.	 Who developed the Python programming language?

3.	 In which year was Python first released?

4.	 What is the primary file extension for a Python script?

5.	 What command is used to open the Python interactive shell in the terminal?

6.	 What symbol represents the Python prompt in interactive mode?

7.	 Which built-in tool comes installed with Python for simple editing and
execution?

8.	 What does IDE stand for?

9.	 Which IDE is specifically designed for scientific computing and data
analysis?

10.	What command launches Jupyter Notebook from the command line?

11.	Which Python IDE is developed by JetBrains?

12.	What is the key debugging tool integrated into most IDEs?

13.	Which Python IDE shows variables and data in a spreadsheet-like view?

14.	What is the primary use of Markdown in Jupyter Notebooks?

15.	Which IDE is known for being highly customizable with extensions?

16.	What is the default GUI toolkit used by IDLE?

17.	Which IDE is considered best for collaborative real-time coding using Live
Share?

18.	What Python environment is recommended for beginners due to its
simplicity?

19.	Which command-line option adds Python to system-wide use on Windows
during installation?

20.	Which IDE is accessible entirely through a web browser interface?

21.	What does the “Run” button in most IDEs do?

22.	What is the purpose of the Python interactive mode?

23.	Which tool allows users to mix code, plots, and text in a single document?

24.	Which key feature makes VS Code a cross-platform editor?

25.	Which command-line tool is used to install Python packages?

26 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 High-level interpreted language

2.	 Guido van Rossum

3.	 1991

4.	 .py

5.	 python or python3

6.	 >>>

7.	 IDLE

8.	 Integrated Development Environment

9.	 Spyder

10.	jupyter notebook

11.	PyCharm

12.	Debugger

13.	Spyder

14.	To format text and add explanations

15.	Visual Studio Code (VS Code)

16.	Tkinter

17.	Visual Studio Code (Live Share extension)

18.	IDLE

19.	Add Python to PATH

20.	Jupyter Notebook

21.	Executes the selected code or script

22.	To test and run Python commands one line at a time

23.	Jupyter Notebook

24.	It works on Windows, macOS, and Linux with the same core features

25.	pip

27 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

1.	 Explain why Python is considered a high-level programming language. Give
two examples of features that support this classification.

2.	 Describe the step-by-step process to install Python on a Windows and Linux
operating systems. Include the significance of adding Python to the system
PATH for Windows operating system.

3.	 What is Python interactive mode? Demonstrate with an example how you
can use this mode to perform simple arithmetic operations.

4.	 Compare and contrast the following Python IDEs (Jupyter Notebooks,
PyCharm, Spyder, and VS Code). Highlight their key features and mention
which types of users each IDE is best suited for.

Reference

1.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

2.	 Sweigart, A. (2015). Automate the boring stuff with Python (1st ed.). No
Starch Press.

3.	 VanderPlas, J. (2016). Python data science handbook: Essential tools for
working with data. O’Reilly Media.

4.	 Grinberg, M. (2018). Flask web development: Developing web applications
with Python. O’Reilly Media.

5.	 Pilgrim, M. (2009). Dive into Python 3. Apress.

Suggested Reading

1.	 Python Software Foundation. (n.d.). Python documentation. https://docs.
python.org/3/

2.	 Project Jupyter. (n.d.). Jupyter Notebook documentation. https://jupyter-
notebook.readthedocs.io/en/stable/

3.	 JetBrains. (n.d.). PyCharm: The Python IDE for Professional Developers.
https://www.jetbrains.com/pycharm/

4.	 Spyder IDE. (n.d.). Spyder Documentation. https://docs.spyder-ide.org/

5.	 Microsoft. (n.d.). Visual Studio Code documentation. https://code.
visualstudio.com/docs/languages/python

28 SGOU - SLM - BSc - Introduction to Python Programming

Unit 2
Variables, Data Types, and Basic Input/

Output

Learning Outcomes

Prerequisites

	♦ understand how to declare and use variables in Python.

	♦ differentiate between basic Python data types like int, float, str, and bool.

	♦ use input() and print() functions for user interaction.

	♦ perform type casting to convert between different data types

	♦ follow proper variable naming rules in Python.

After completing this unit, the learner will able to:

Imagine you’re designing a software system for a school to manage student records,
attendance, and exam results. You need a way to store a student’s name, age, subjects,
and scores. This is where variables and data types come into play. Variables act as
labeled storage boxes to hold information, and data types tell the computer what kind
of data is being stored, like whether it’s text (name), numbers (marks), or a combination
of both. Without clearly understanding variables and the right data types, a program
would be unable to correctly process or store data, leading to errors or incorrect out-
puts. Additionally, programs often need to interact with users, like taking inputs for a
student’s details or displaying final grades. This interaction is made possible through
input and output operations in Python. For example, a user might enter a score using
the keyboard, and the program might respond by printing the student’s grade. Master-
ing variables, data types, and input/output operations is essential not just for building
programs that work, but also for making them user-friendly, dynamic, and responsive.
These concepts form the foundation for everything in Python, from simple calculators
to complex data analysis and AI systems.

variable, data type, input, output, typecasting, boolean, dictionary

Key words

Programming is all about working with data, storing it, processing it, and interacting
with users. In Python, the most basic yet essential tools for handling data are variables,
data types, and input/output operations. These three concepts form the foundation of
every Python program, whether it’s a simple calculator or a complex AI model.

A variable in Python is like a container or a label that holds a value. It allows us to
store data in memory so we can use it later in the program. Python is a dynamically
typed language, which means you don’t need to declare the type of a variable when
you create it.

Python figures it out automatically based on the value you assign. This makes the
language easier to learn and use, especially for beginners.

Data types tell the computer what kind of value is being stored in a variable. Python
supports several standard data types such as integers for whole numbers, floats for
decimal numbers, strings for text, and booleans for true/false logic. Choosing the right
data type is important because it determines what operations you can perform on the
data.

Python also allows interaction between the program and the user through input and
output. Using the input() function, we can take data from the user during program
execution. The print() function, on the other hand, allows us to display messages or
results to the screen. Together, these functions make our programs interactive and user-
friendly.

variables, data types, and input/output operations are the core tools that enable a
Python program to handle information. Mastering these concepts is essential for writing
correct, efficient, and meaningful code.

1.2.1 Variable
Imagine you have a bunch of empty boxes, and you want to put different items inside
them. You’d probably label each box so you know what’s in it, right?

In Python, these “boxes” are called variables. They are named spots in the computer’s
memory where you can store different pieces of information. How to Use a Variable
(Putting Stuff in a Box): You give your box a name, then use the = sign to put a value
inside it.

1.2.1.1 Variable Declaration in Python
In Python, declaring a variable simply means assigning a value to a name using the
equals sign =. Python is a dynamically typed language, so you don’t need to mention

Discussion

30 SGOU - SLM - BSc - Introduction to Python Programming

the type of the variable it is automatically understood from the value assigned. Example,

x = 10

This line creates a variable named x and stores the number 10 in it. Python automatically
detects the type based on the value (this is called dynamic typing).

If you want to specify the data type of a variable, this can be done with casting.

x = str(3) # x will be ‘3’

y = int(3) # y will be 3

z = float(3) # z will be 3.0

Variables can store different types of data, such as:

	♦ Numbers (like 10, 3.14)

	♦ Text (like “Hello”)

	♦ Boolean values (True, False)

You can change the value of a variable anytime in your program. You can also assign
values to multiple variables at once:

a, b, c = 1, 2, 3

You can even assign the same value to multiple variables:

x = y = z = 100

1.2.1.2 Rules for Naming Variables in Python
Python has specific rules and best practices for naming variables. These rules help
avoid errors and make the code readable and understandable:

1. Start with a letter or underscore (_)
A variable name must begin with a letter (A–Z, a–z) or an underscore _.

Valid: total, _value Invalid: 1score

2. Followed by letters, digits, or underscores
After the first character, you can use any combination of letters, digits, or underscores.

Valid: marks_1, user_name

3. No special characters or spaces
Variable names cannot contain symbols like @, $, #, or spaces.

Invalid: user-name, total marks

4. Cannot be a Python keyword
Keywords like if, while, for, class, and def cannot be used as variable names.

31 SGOU - SLM - BSc - Introduction to Python Programming

5. Case-sensitive
Python treats uppercase and lowercase letters as different.

For example, Age, age, and AGE are all different variables.

6. Use meaningful names
It is a good habit to use clear and descriptive names that explain the purpose of the
variable.

Good: student_name, item_price

Bad: x, abc (unless used in short loops)

1.2.2 Data types in Python
Data is processed by applications or programs. For example, in the student registration
process, we are using different data such as name, date of birth, address, family monthly
income, etc. Different types of data are used in the registration process. Date of birth is
date type, monthly income is numeric data, a name is a group of letters.

A data type is a classification of data. Data type is a type of data or variable which is
used in programs. Memory location will be allocated according to the type of data. For
example, the memory requirement of storing the values “KKG”,5, and 5.10 will be
different. Python supports different data types as detailed below:

1.2.2.1 Numeric data types
Numeric data types in Python represent the data containing numeric values. Numbers
can be described in various ways, including floating, integers, or complex numbers.

Python has three numeric data types: float, integer, and complex. Float stores decimal
numbers, integers can store whole numbers, and complex is for storing complex
numbers.

Fig 1.2.1 Data types

32 SGOU - SLM - BSc - Introduction to Python Programming

1. Integers (int)
Integers represent both positive and negative whole numbers without any fractional
or decimal components. One of the advantages of integers in Python is that they can
be of unlimited length. Additionally, Python allows you to improve the readability of
large integers by using underscores in place of commas. For example, the number one
million can be written as 1000000 or as 1_000_000.

Integers can be Octal and Hexadecimal also. 0o32 represents an octal number. 0x32
represents Hexadecimal. Note that the first digit is zero followed by the letter o for octal
and x for hexadecimal

Example:
a= 90

b=hex(a)

print(b)

#Output: 0x5a

Run the above program using bin() and oct() functions.

bin represents the binary number and oct represents the octal number

2. Float
The float class in Python is used to represent real numbers that include a decimal point,
commonly referred to as floating-point numbers. These numbers can be either positive
or negative and are typically accurate up to 15 decimal places. The presence of a decimal
point distinguishes a float from an integer.

Python also allows float values to be written in scientific notation, where the letter E
or e is used to indicate that the number should be multiplied by 10 raised to a certain
power. This format is known as exponential notation. For example, the number one
million can be represented as 1000000.0, 1_000_000.0, or 1e6.

Example : 4.5,890.67	

3. Complex numbers

The complex class represents a complex number data type. Complex numbers are
expressed as (real part) + (imaginary part) j, where j denotes the imaginary unit. These
numeric data sets are primarily used in computer graphics and scientific computing.
Complex numbers are used in geometry, scientific calculations, and calculus.

Example: 3+4j

1.2.2.2 Sequence Data Type
In Python, sequence data types refer to ordered collections of elements, which can be
of the same or different data types. These data structures are designed to store multiple
values efficiently and allow users to access, modify, or process elements using indexing

33 SGOU - SLM - BSc - Introduction to Python Programming

and slicing techniques.

Python’s sequence types are broadly categorized into three groups:

	♦ Basic sequence types: list, tuple, and range

	♦ Text sequence type: str (string)

	♦ Binary sequence types: bytes, bytearray, and memoryview

Each of these types serves a specific purpose and supports various operations such as
iteration, indexing, slicing, and membership tests. While some sequences like strings
and tuples are immutable (cannot be changed after creation), others like lists and
bytearrays are mutable (can be changed).

In the following sections, we will focus on three commonly used sequence data types in
Python string, list, and tuple and explore their features along with examples.

1. String data type

A string in Python is a sequence of characters. Characters are letters, numbers, symbols,
etc. Strings are used when you need to process text data like names, addresses, etc.

Example: “Hello World”

“Covid-19”

Data in between the quotes “ ” are string data.

“222345” is not a number, it is a string.

Different types of string representation

a. # single quotes string

Message = ‘Hello World’

b. # double quotes string

Message = “Hello World”

c. # triple quotes for multiline strings. Three single quotes or double quotes can be used.

Message = ‘’’ Programming is fun. Python is a high-level language. Python is used by
Facebook, Google, and other companies ‘’’

When we input the data from the keyboard, the number will be considered as string
only.

2. List

In Python, a list is an ordered and mutable sequence used to group related data items
together. Lists can store elements of any data type, including numbers, strings, or even
other lists. One of the key features of lists is their mutability, which means that you

34 SGOU - SLM - BSc - Introduction to Python Programming

can modify, add, or remove items after the list has been created without changing its
identity. Lists are typically created using square brackets [], with items separated
by commas. They support a wide range of operations, including indexing, slicing,
appending, removing, and iterating through elements. Since lists maintain the order of
insertion, each element is accessible by its index, starting from 0 for the first item.

x = [“apple”, “grapes”, “cherry”]

In this example, x is a list containing three string elements.

3. Tuple
A tuple in Python is also an ordered sequence, much like a list, but with one important
difference: tuples are immutable. This means that once a tuple is created, its elements
cannot be altered, added to, or removed. Due to this property, tuples are often used for
fixed collections of items where data integrity is important. Tuples can store elements
of various types and support indexing and iteration just like lists. They are typically
defined by placing values separated by commas, and are often enclosed in parentheses
(), though the parentheses are optional in many cases.

x = (“apple”, “grapes”, “cherry”)

Here, x is a tuple containing three elements. Unlike lists, any attempt to modify the
tuple after creation will result in an error.

1.2.2.3 Boolean Data Types
The Boolean data type in Python is a built-in type that represents one of two possible
truth values: True or False. These values are particularly important in control flow
operations such as conditionals (if, while) and logical expressions. In Python, any object
can be evaluated in a Boolean context. Values such as non-zero numbers, non-empty
strings, and collections are interpreted as True, while zero, None, empty sequences
(“”, [], {}), and other “empty” types are considered False. You can explicitly create a
Boolean value using the bool() constructor, which converts a given value to either True
or False based on its truthiness. Booleans are actually a subclass of integers in Python,
with True having the value 1 and False having the value 0.

Example:

X= True

Result = False

1.2.2.4 Set Data Type
A set in Python is a built-in data structure that represents an unordered collection
of unique elements. Unlike lists and tuples, sets do not maintain any specific order,
and they automatically eliminate duplicate entries. Sets are mutable, meaning their
contents can be changed after creation by adding or removing elements. However,
Python also provides an immutable version of sets called frozenset, which cannot be
altered once created. A set can contain mixed data types, such as strings, integers, or
even tuples, as long as the elements themselves are hashable. Sets can be created either

35 SGOU - SLM - BSc - Introduction to Python Programming

by using the built-in set() function with an iterable or by enclosing comma-separated
elements within curly braces {}. They support various set operations such as union
(|), intersection (&), and difference (-), which make them particularly useful in tasks
involving membership testing, duplicate removal, and mathematical computations.

Example: x = {“apple”, “grapes”, “cherry”}

1.2.2.5 Dictionary Data Type
A dictionary in Python is an unordered collection of key-value pairs, where each
key is unique and maps to a specific value. Dictionaries are also known as associative
arrays or hash maps in other programming languages. They are used to store data
values like a real-world dictionary, where words (keys) are associated with their
meanings (values). A key in a dictionary must be immutable (such as a string, number,
or tuple), while values can be of any data type and can be duplicated. Dictionaries are
created using curly braces {} with key-value pairs separated by colons :, and each pair
is separated by a comma. Dictionary keys are case-sensitive, meaning “Name” and
“name” would be treated as different keys. To access a value, you refer to its key either
directly using square brackets [] or safely using the get() method, which prevents errors
if the key doesn’t exist. Dictionaries are versatile and widely used for representing
structured data such as JSON objects, configuration files, and datasets.

Example:

x = {“name”: “Rose”, “age”: 16}

1.2.3 Input & Output
This is how your program shows you things and how you can give information to your
program. The date given to the computer to process is called Input and when Computer
Process the input data and provide the result, that result is called Output.

When we need to provide input to python programs, Python provides some statements
called Input statements and when it wants to display some output, it can also be done
by Output statements.

1. Output ()

For Output statements Python uses print () functions, which can be used in a variety of
ways to display programs output.

Example 1: Displaying a Simple Message

print(“Hello, Python learner!”) # Output: Hello, Python learner!

We can use the print() function to print single and multiple variables. We can print
multiple variables by separating them with commas.

Example:

Single variable

s = “Bob”

36 SGOU - SLM - BSc - Introduction to Python Programming

print(s)

Multiple Variables

s = “Alice”

age = 25

city = “New York”

print(s, age, city)

#Output

Bob

Alice 25 New York

2. Input ()

Python uses input () functions to take input from the keyboard. This function takes
value from the keyboard and returns as a string.

name = input(“Enter your name: “)

print(“Hello,”, name, “! Welcome!”)

#Output:

Enter your name: Priya

Hello, Priya ! Welcome!

We are taking multiple inputs from the user in a single line, splitting the values entered
by the user into separate variables for each value using the split() method. Then, it
prints the values with corresponding labels, either two or three, based on the number of
inputs provided by the user.

taking two inputs at a time

x, y = input(“Enter two values: “).split()

print(“Number of boys: “, x)

print(“Number of girls: “, y)

taking three inputs at a time

x, y, z = input(“Enter three values: “).split()

print(“Total number of students: “, x)

print(“Number of boys is : “, y)

print(“Number of girls is : “, z)

37 SGOU - SLM - BSc - Introduction to Python Programming

#Output

Enter two values: 4 11

Number of boys: 4

Number of girls: 11

Enter three values: 8 7 12

Total number of students: 8

Number of boys is : 7

Number of girls is : 12

Activity 1: Run the following program and check the output

mark = input(“Enter a mark”)

print(mark)

print(type(mark))

#Input:

Enter a mark: 67.9

Output:

67.9

<class ‘str’>

To read a number as a float number, Python uses Typecasting to convert one data
type to another.

Example

mark = float(input(“mark”))

print(mark)

print(type(mark))

#Input

67.9

#Output

67.9

<class ‘float’>

The second method of data type casting is mark = float(mark)

38 SGOU - SLM - BSc - Introduction to Python Programming

Example

a =int(input(“enter first number”))

b =int(input(“enter second number”))

c =float(a) + float(b)

print(c)

#Input

enter first number: 10

enter second number: 20

#Output

30.0

Recap

	♦ Variables are named storage for values used in a program.

	♦ Python uses dynamic typing, meaning variable types are inferred
automatically.

	♦ Common data types include int, float, str, bool, list, tuple, set, and dict.

	♦ The input() function collects user data as a string.

	♦ The print() function displays output to the screen.

	♦ Typecasting changes one data type into another (e.g., str to float).

	♦ Lists and tuples store sequences; lists are mutable, tuples are not.

	♦ Sets hold unique, unordered elements; dictionaries store key-value pairs.

	♦ Boolean data types hold values of either True or False.

	♦ split() is used to take multiple inputs at once from a single line.

39 SGOU - SLM - BSc - Introduction to Python Programming

Objective Type Questions

1.	 What keyword is used to take input from the user in Python?

2.	 Which data type is used to store a whole number?

3.	 What function is used to display output in Python?

4.	 What data type is returned by the input() function?

5.	 Which data type can store a sequence of characters?

6.	 What keyword is used to define a variable in Python?

7.	 Which data type has only two possible values: True or False?

8.	 Which data structure in Python is used to store key-value pairs?

9.	 What is the result type of int() + float() in Python?

10.	Which built-in function is used to convert string to float?

Answers to Objective Type Questions

1.	 input

2.	 int

3.	 print

4.	 str

5.	 str

6.	 No keyword (Python uses dynamic typing)

7.	 bool

8.	 dict

9.	 float

10.	float

Assignments

1.	 Define a variable in Python. Write a program that takes your name, age, and
city as input and prints them.

40 SGOU - SLM - BSc - Introduction to Python Programming

Reference

1.	 Lutz, M. (2021). Learning Python (5th ed.). O’Reilly Media.

2.	 Python Software Foundation. (2024). The Python Tutorial. https://docs.
python.org/3/tutorial/

3.	 Beazley, D. M., & Jones, B. K. (2023). Python Cookbook (3rd ed.). O’Reilly
Media.

4.	 Van Rossum, G., & Drake, F. L. (2024). The Python Language Reference
Manual (latest ed.). Python Software Foundation.

5.	 Oliphant, T. E. (2023). A Guide to NumPy (2nd ed.). CreateSpace Independent
Publishing Platform.

2.	 Explain the difference between a list and a tuple with examples.

3.	 Write a Python program that accepts three float numbers from the user and
calculates their average.

4.	 What is typecasting? Give an example where typecasting is necessary in a
program.

5.	 Create a dictionary with three keys: name, grade, and percentage. Print the
values using the dictionary keys.

6.	 Take two inputs in one line and print whether the first number is greater than
the second using Boolean logic.

Suggested Reading

1.	 Sweigart, A. (2023). Automate the Boring Stuff with Python (2nd ed.). No
Starch Press.

2.	 Shaw, Z. A. (2023). Learn Python the Hard Way (4th ed.). Addison-Wesley.

3.	 Slatkin, B. (2023). Effective Python: 90 Specific Ways to Write Better Python
(2nd ed.). Addison-Wesley.

4.	 Matthes, E. (2023). Python Crash Course (3rd ed.). No Starch Press.

5.	 McKinney, W. (2023). Python for Data Analysis (3rd ed.). O’Reilly Media.

41 SGOU - SLM - BSc - Introduction to Python Programming

Unit 3
 Operators and Expressions

Learning Outcomes

Prerequisites

	♦ familiarize different types of operators used in Python programming.

	♦ demonstrate the use of arithmetic, assignment, and comparison operators in
expressions and statements.

	♦ analyze logical and bitwise operations to control the flow and manipulate
binary data.

	♦ distinguish between identity, membership, and equality operators through
practical coding examples.

	♦ apply operator precedence rules to evaluate complex expressions accurately.

After completing this unit, the learner will able to:

Before learning operators and expressions in Python, it is essential to have a basic
understanding of variables, data types, and how to write simple Python programs. Vari-
ables store data, and operators allow us to perform actions on that data. For example,
in a banking application, if a user withdraws money from an account, the program
needs to subtract the withdrawal amount from the account balance. Here, subtraction is
performed using the minus operator. Without operators, we cannot perform any mean-
ingful calculations or logical decisions in programs. Expressions combine variables and
operators to produce a result, like balance = balance - amount. Operators are also cru-
cial in decision-making, such as checking if a user has enough balance in his account
using a comparison operator. In real-life scenarios, in order to log in a system, logical
operators help verify both username and password. Thus, understanding operators and
expressions is fundamental to building functional and interactive Python applications.

Operand, Assignment, Arithmetic, Logical, Comparison, membership, Identity

Key words

1.2.1 Python Operators

When we withdraw money from an ATM, the amount withdrawn will be deducted from
the account. The program will subtract the amount. Subtracting amount is an operation
and the operator used is minus (-).

Operators are special symbols in a programming language that carries out arithmetic,
logic, and other operations. The value or data that the operator operates on is called the
operand.

The following are the few types of operators in Python.

	♦ Arithmetic Operators

	♦ Assignment Operators

	♦ Comparison (Relational) Operators

	♦ Logical Operators

	♦ Increment/Decrement Operator

	♦ Bitwise operators

	♦ Membership and Identity

1.2.1.1 Arithmetic Operators
While making applications or programs, sometimes, we need to do some calculations
such as addition, subtraction, etc. For example, in an ATM application, the amount will
be subtracted when you withdraw money. Arithmetic operators are used to perform
such operations.

Note: Use Python interactive mode to practice all examples in this unit. We can use IDE
also. In Interactive mode, we can type the instructions and get them done one by one as
shown in the figure 1.2.1

Fig 1.2.1 Python Interactive IDE

Activity 1: Type 13+ 5 in the shell and press enter to see the result.

The following are the arithmetic operators.

	♦ Operator: + (plus)

Discussion

43 SGOU - SLM - BSc - Introduction to Python Programming

Purpose: + operator is used to add two objects

Example : 13 + 5 = 18 .

		 A=4

		 B= 4

		 C= A + B

Here C= A + B is an arithmetic expression or statement that uses + as an arithmetic
operator and A, B are operands.

	♦ Operator: - (minus)

Purpose: To subtract one number from the other; if the primary operand is absent it’s
assumed to be zero. For example, use -5 instead of writing 0 – 5

Activity : loan = 500

	 paid = 200

 balance = loan – paid

 print(balance)

	♦ Operator: * (multiply)

Purpose: To multiply two numbers or to replicate a string

Example of multiplication : 20 * 3= 60

Example of string réplication :

‘KKG’ * 3 = ‘KKGKKGKKG’, KKG is a string.

	♦ Operator: / (divide)

Purpose: Divide one number by another number.

12/ 3= 4

11/3 = 3.6666666666666665

	♦ Operator: ** (power)

Purpose: Returns x to the power of y

Example: 3 **2 = 9

	♦ Operator: // (divide and floor)

Purpose: Divide m by n and round the answer down to the nearest integer value.

Note that if one of the values is a float, the result also will be a float.(floats are decimal
numbers)

44 SGOU - SLM - BSc - Introduction to Python Programming

Example:

 	 11 // 3 = 3

 	 -11 // 3 = -4

11.81//1.2 = 9

	♦ Operator: % (modulo)

Purpose: Returns the remainder after division

 10 % 3 gives 1, 21.9%3 =0.8999999999999986

1.2.1.2 Assignment Operator

	♦ Operator: = (assign):

Purpose: To assign and store a value on the right side of the statement to left side
operand

Example: a=50 will assign 50 to the variable name a. a is an operand and 50 is value
assigned.

 	 mark =mark +10

 	 Student_Name = “KKG”

Multiple assignments:

Purpose: To assign different values to more than one variable.

It is possible to assign the same value to multiple variables.

Example: m=n=z=10 (assigns value 10 to m, n and z)

Example: x, y, z = 100, “hello”, 30.5 (assigns 100 to x, “hello” to y, and 30.5 to z)

1.2.1.3 Shortcut Operators

	♦ Operator: += (Add and assign)

Purpose: To perform the addition operation first then do the assignment

Example: mark+=10, equivalent to mark = mark+ 10, suppose the mark is 80, 80 will
be added to 10 and the new mark will be 90.

	♦ Operator: -=, *=, /=, //=, %=, **=

Example: mark*=2, equivalent to mark = mark*2

 salary/=10 is equivalent to salary = salary/10

1.2.1.4 Comparison Operators
While writing programs or applications we will use comparison operators. For example,

45 SGOU - SLM - BSc - Introduction to Python Programming

the ATM application will check the entered amount is less than or equal to(<=) the
available amount. If the result is true, you will get money, otherwise, the machine will
inform you that you do not have a sufficient amount in the account. All comparison
operators will compare the data and return True or False.

	♦ Operator: < (less than)

Purpose: To check whether the value of the left side operand is less than the value of
the right-side operand. x < y

Example: 	 3 < 50 gives True .

		 50 < 3 gives False

 	 3 < 50 < 70 gives True.

		 3<0<70 gives False

	♦ Operator: > (greater than)

Purpose: To check whether x is greater than y

Example: 50 > 3 returns True , 3>50 returns False

	♦ Operator: <= (less than or equal to)

Purpose: To check whether x is less than or equal to y

	 x = 3

	 y = 6

	 x <= y returns True

	♦ Operator: >= (greater than or equal to)

Purpose: To check whether x is greater than or equal to y

	 x = 4

	 y = 3

	 x >= 3 returns True

	♦ Operator: == (equal to)

Note: Two equal symbols together without space

Purpose: Compares if the objects are equal

	 x = 20

	 y = 20

	 x == y returns True

46 SGOU - SLM - BSc - Introduction to Python Programming

x = ‘KKG’; y = KKG; x == y returns True

x = ‘KKG’; y = ‘kkg’; x == y returns False. Note that Python is case sensitive.

	♦ Operator: != (not equal to)

	 m = 20;	 n = = 3; 	 m != 2 returns True

1.2.1.5 Logical Operators
Two or more relations that compare the data can be logically joined together using the
logical operators or and and. For example, an application will check if the username is
correct and the password is correct when you log in.

	♦ Operator: and
Return True or False based on the conditions.

Table 1.2.1

X Y X and Y
True True True
True False False
False True False
False False False

Example :

m = False;

n = True;

m and n return False

Operator: or

Return True or False based on the conditions.

Table 1.2.2

X Y X or Y
True True True
True False True
False True True
False False False

If x is True , it returns True, otherwise it returns evaluation of y

x = True; y = False; x or y returns True.

Note: x & y should be Boolean, otherwise it will return the integer

	♦ Operator: not (boolean NOT)

47 SGOU - SLM - BSc - Introduction to Python Programming

Purpose: The negation of a Boolean is the opposite of its current Boolean value.

Example

Not(True) means False. Note: The first letter of True and False must be a capital letter

x= True

y = not(x)

print(y) returns False

1.2.1.6 Increment/Decrement Operators
If you have prior experience with Python, you might be aware that it doesn’t support
traditional increment (++) and decrement (--) operators, whether in pre or post form.
This design choice is intentional, aimed at promoting simplicity and code readability. In
languages that support these operators, beginners often confuse the differences between
pre-increment/decrement and post-increment/decrement, especially regarding operator
precedence and return values. However, in Python, such operators are not essential. In
this section, we will explore how to implement increment and decrement operations
effectively in Python.

Python Increment Operator (+=)

Python uses the += compound assignment operator to increment a value. This operator
adds the right-hand operand to the left-hand variable and assigns the result back to that
variable. It provides a concise way to update a variable’s value.

Unlike other languages where you might see:

for (int i = 0; i < 5; ++i)

In Python, instead of using i++, which is invalid syntax, you can simply write:

i += 1 # or i = i + 1

Example:

Initialize a variable

x = 5

Increment x by 1

x += 1 # Equivalent to x = x + 1

Print the result

print(“Incremented value:”, x)

Output:

Incremented value: 6

48 SGOU - SLM - BSc - Introduction to Python Programming

Python Decrement Operator (-=)
Python also doesn’t support the -- decrement operator. However, you can decrease a
variable’s value using the -= operator. This operator subtracts the right-hand operand
from the left-hand variable and stores the result back in that variable.

Instead of using i--, which is invalid in Python, you can write:

i -= 1 # or i = i - 1

Example:

Initialize a variable

x = 10

Decrement x by 1

x -= 1 # Equivalent to x = x - 1

Print the result

print(“Decremented value:”, x)

Output:

Decremented value: 9

1.2.1.7 Bitwise Operators
Python provides bitwise operators to manipulate integer data at the binary level. These
operators first convert the given integers into their binary form, apply the operation bit-
by-bit or on corresponding pairs of bits, and then return the result as a decimal value.

Note: Bitwise operators in Python operate exclusively on integer data types.

Operator Description Syntax

& Bitwise AND x & y

`| Bitwise OR x | y

~ Bitwise NOT ~x

^ Bitwise XOR x ^ y

>> Bitwise right shift x >> y

<< Bitwise left shift x << y

Bitwise AND Operator
The Bitwise AND (&) operator in Python takes two integers, compares their binary
forms, and performs AND on each pair of bits. The result bit is 1 only if both bits in the
pair are 1; otherwise, it is 0.

49 SGOU - SLM - BSc - Introduction to Python Programming

Example: Let X = 7 = (111)₂ and Y = 4 = (100)₂. Then, X & Y = (100)₂ = 4.

a = 10

b = 4

print(“a & b =”, a & b)

Output:

a & b = 0

Bitwise OR Operator

The Bitwise OR (|) operator compares each bit of two integers and returns 1 in each
position where at least one of the bits is 1. If both bits are 0, the resulting bit is 0.

Example: X = 7 = (111)₂ and Y = 4 = (100)₂. Then, X | Y = (111)₂ = 7.

a = 10

b = 4

print(“a | b =”, a | b)

Output:

a | b = 14

Bitwise XOR Operator

Bitwise XOR (^), or Exclusive OR, returns 1 if the bits in the compared positions are
different, and 0 if they are the same. It is useful when toggling bits.

Example: X = 7 = (111)₂ and Y = 4 = (100)₂. Then, X ^ Y = (011)₂ = 3.

a = 10

b = 4

print(“a ^ b =”, a ^ b)

Output:

a ^ b = 14

Bitwise NOT Operator

The Bitwise NOT (~) operator is unary and acts on a single operand. It inverts each bit
— turning 1s into 0s and vice versa. In Python, ~x equals -(x + 1) due to how negative
numbers are represented in two’s complement.

Example: X = 5 = (101)₂. Then, ~X results in the binary inverse, which corresponds
to -6.

a = 10

50 SGOU - SLM - BSc - Introduction to Python Programming

b = 4

print(“~a =”, ~a)

Output:

 ~a = -11

Bitwise Shift Operators
These operators move bits to the left or right. A left shift multiplies the number by
powers of two, while a right shift divides the number by powers of two, discarding bits
from one end and filling with zeros or sign bits depending on the number’s sign.

Bitwise Right Shift (>>)
Right shifting a number moves its bits to the right. For positive numbers, zeros are
inserted from the left; for negative numbers, the sign bit is preserved.

Example:

a = 10 # Binary: 0000 1010

b = -10 # Binary: 1111 0110 (in two’s complement)

print(“a >> 1 =”, a >> 1)

print(“b >> 1 =”, b >> 1)

Output:

a >> 1 = 5

b >> 1 = -5

Bitwise Left Shift (<<)
Left shifting a number moves its bits to the left and appends zeros to the right. This
effectively multiplies the number by powers of two.

Example:

a = 5 # Binary: 0000 0101

b = -10 # Binary: 1111 0110

print(“a << 1 =”, a << 1)

print(“b << 1 =”, b << 1)

Output:

 a << 1 = 10

 b << 1 = -20

51 SGOU - SLM - BSc - Introduction to Python Programming

1.2.1.8 Membership and Identity Operators
Python offers a wide variety of operators that can be applied to different data types. At
times, we may need to check whether a particular value exists within a collection like a
list, string, or dictionary. To handle such tasks, Python provides Membership Operators
and Identity Operators. This explanation explores both types of operators and how they
work.

Membership Operators in Python

Membership operators are used to check whether a value is present in a sequence (like
a string, list, tuple, or dictionary). Python provides two membership operators: in and
not in.

a. The in Operator
This operator checks if a specified element is found within a sequence. It returns True
if the element exists, otherwise it returns False.

list1 = [1, 2, 3, 4, 5]

str1 = “Hello World”

dict1 = {1: “Geeks”, 2: “for”, 3: “geeks”}

print(2 in list1) # True

print(‘O’ in str1) # False (case-sensitive)

print(3 in dict1) # True (checks for key, not value)

The not in Operator

This operator returns True if the value is not present in the sequence and False otherwise.

print(2 not in list1) # False

print(‘O’ not in str1) # True

print(3 not in dict1) # False

b. Using operator.contains() Method
As an alternative to in, Python provides the contains() function from the operator
module. This function checks if a value exists in a sequence. It takes two arguments —
the sequence and the element to search for.

import operator

print(operator.contains([1, 2, 3, 4, 5], 2)) # True

print(operator.contains(“Hello World”, ‘O’)) # False

print(operator.contains({1, 2, 3, 4, 5}, 6)) # False

print(operator.contains({1: “Geeks”, 2: “for”, 3: “geeks”}, 3)) # True

52 SGOU - SLM - BSc - Introduction to Python Programming

print(operator.contains((1, 2, 3, 4, 5), 9)) # False

Identity Operators in Python

Identity operators are used to check whether two variables refer to the exact same
object in memory, not just whether their values are equal. Python provides two identity
operators: is and is not.

a. The is Operator
This operator returns True if both operands refer to the same object (i.e., they share the
same memory location).

num1 = 5

num2 = 5

a = [1, 2, 3]

b = [1, 2, 3]

c = a

s1 = “hello world”

s2 = “hello world”

print(num1 is num2) # True (integers with same value may be stored at same location)

print(a is b) # False (same values but different objects)

print(a is c) # True (c is a reference to a)

print(s1 is s2) # True (string interning)

b. The is not Operator

This operator returns True if the variables do not refer to the same object in memory.

print(num1 is not num2) # False

print(a is not b) # True

print(a is not c) # False

print(s1 is not s2) # False

print(s1 is not s1) # False

Difference Between == and is

A common confusion among learners is between the == and is operators. The ==
operator checks if the values of two variables are equal, while is checks whether the
two variables point to the same object in memory.

53 SGOU - SLM - BSc - Introduction to Python Programming

a = [1, 2, 3]

b = [1, 2, 3]

print(a is b) # False (different objects)

print(a == b) # True (equal values)

In this example, although both lists a and b contain the same elements, a is b returns
False because they are two separate objects. However, a == b returns True since the
contents are identical.

Order of Operations

In an expression with more than one operator, the order of execution of operators
depends on the rules of precedence. Expressions in parentheses are executed first.

Python Operator Precedence and Associativity Table

This table presents Python operators in order from highest to lowest precedence, along
with their type, and how expressions involving them are grouped (associativity).

Precedence Operators Purpose Associativity

1 () Group expressions using parentheses Left to right

2 x[index],
x[index:index]

Indexing and slicing of sequences Left to right

3 await x Await expression (used in asynchronous
code)

Not applicable

4 ** Exponentiation (power calculation) Right to left

5 +x, -x, ~x Unary positive, negative, bitwise NOT Right to left

6 *, @, /, //, % Multiplication, matrix multiplication,
division, floor division, modulo

Left to right

7 +, - Addition and subtraction Left to right

8 <<, >> Bitwise shift operators Left to right

9 & Bitwise AND Left to right

10 ^ Bitwise XOR (exclusive OR) Left to right

11 ` Bitwise OR Left to right

Table 1.2.3

54 SGOU - SLM - BSc - Introduction to Python Programming

Example 1:

x = 2

y = 4

z = x + y / 2

print(z) will display 4.0. In this expression + and / are the operators. y/2 will be executed
first and the result will be added to x.

Example 2:

x = 2

y = 4

z = (x+y)/2

print(z) will display 3.0. In this expression + and / are the operators. Expressions in
parentheses are evaluated first. x + y will be executed first and the result will be divided
by 2.

Example 3:

x = 2

y = 4

z = x*5 > y

print(z) will return True

Congratulations! You’ve reached the end of unit 2. Here’s the recap of the objectives
we have covered and practiced.

12 in, not in, is, is
not, <, <=, >,

>=, !=, ==

Comparison, membership, identity
tests

Left to right

13 not x Logical NOT Right to left

14 and Logical AND Left to right

15 or Logical OR Left to right

16 if ... else Conditional expressions Right to left

17 lambda Lambda (anonymous function)
expression

Not applicable

18 := Assignment expression (walrus
operator)

Right to left

55 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ Operators are special symbols that perform operations on values or variables
(operands) in Python.

	♦ Arithmetic operators perform mathematical calculations like addition (+),
subtraction (-), multiplication (*), division (/), exponentiation (**), floor
division (//), and modulo (%).

	♦ The assignment operator (=) assigns the value on the right to the variable on
the left.

	♦ Compound assignment operators like +=, -=, *=, /=, //=, %=, **= combine
an operation with assignment.

	♦ Comparison (relational) operators such as <, >, <=, >=, ==, != are used to
compare values and return True or False.

	♦ Logical operators include and, or, and not, and are used to combine or invert
Boolean expressions.

	♦ Python does not support ++ or -- increment/decrement operators; instead,
use += 1 or -= 1.

	♦ Bitwise operators operate on binary values using &, |, ~, ^, <<, and >>.

	♦ Bitwise AND (&) returns 1 only if both bits are 1; used for masking bits.

	♦ Bitwise OR (|) returns 1 if at least one bit is 1; used for setting bits.

	♦ Bitwise XOR (^) returns 1 if bits are different; useful for toggling bits.

	♦ Bitwise NOT (~) inverts each bit and returns -(x + 1) in Python.

	♦ Membership operators in and not in check if a value exists within a sequence
like list, tuple, string, or dictionary keys.

	♦ Identity operators is and is not check whether two variables refer to the same
object in memory.

	♦ == checks if values are equal, whereas is checks if the objects are identical
(same memory address).

	♦ Operator precedence defines the order in which operations are performed in
an expression; parentheses () have the highest precedence.

	♦ Associativity determines how operators of the same precedence are grouped
(left-to-right or right-to-left).

	♦ Example: In x + y / 2, division happens before addition due to higher
precedence of /.

	♦ In Python interactive mode or IDE, you can test each operator and expression

56 SGOU - SLM - BSc - Introduction to Python Programming

step-by-step for better understanding.

	♦ Python promotes readability by avoiding confusing increment/decrement
syntax and encourages clear use of compound assignment operators.

Objective Type Questions

1.	 Which operator is used for exponentiation in Python?

2.	 What is the result of 11 // 3 in Python?

3.	 Which operator is used to check object identity in Python?

4.	 What is the result of 10 % 3?

5.	 What does the += operator do?

6.	 Which arithmetic operator is used for division in Python?

7.	 What will be the output of True and False?

8.	 Which bitwise operator is represented by ^?

9.	 Which operator is used to check for membership in a sequence?

10.	What is the symbol for assignment operator in Python?

11.	What does not True return?

12.	Which operator is used to compare if two values are equal?

13.	What is the output of 3 < 50 < 70?

14.	What is the precedence level of the ** operator?

15.	Which logical operator returns True if at least one operand is true?

16.	What is the result of a = 5; a += 1? (final value of a)

17.	Which operator is used to shift bits to the right?

18.	What is the output of ~5 in Python?

19.	Which function from the operator module checks for membership?

20.	Which operator is used to assign the same value to multiple variables?

57 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 **

2.	 3

3.	 is

4.	 1

5.	 AddAssign

6.	 /

7.	 False

8.	 XOR

9.	 in

10.	=

11.	False

12.	==

13.	True

14.	4

15.	or

16.	6

17.	>>

18.	-6

19.	contains

20.	=

Assignments

1.	 Explain the different types of arithmetic operators in Python with suitable
examples.

2.	 Describe the role of assignment and shortcut assignment operators in Python.
Provide code examples for each.

58 SGOU - SLM - BSc - Introduction to Python Programming

3.	 What are comparison operators in Python? Explain how they are used to
compare values and return Boolean results with examples.

4.	 Explain the difference between identity operators and equality operators in
Python with examples.

5.	 Discuss the purpose and working of logical operators in Python. How does
Python evaluate conditions using and, or, and not?

6.	 Write a note on bitwise operators in Python. Explain each operator with
binary examples and show their usage in Python code.

59 SGOU - SLM - BSc - Introduction to Python Programming

Unit 4
Control Structures

Learning Outcomes

Prerequisites

	♦ define control structures used in Python.

	♦ list the types of conditional statements and loops in Python.

	♦ recall the syntax of if, if-else, and elif statements.

	♦ identify the keywords used for for and while loops.

	♦ explain the purpose of break and continue statements in loops.

After completing this unit, the learner will able to:

You already know that a computer program runs instructions one after the other. But
what happens when we want the program to make a decision or repeat something many
times? For example, think about daily routines like “If it’s Monday, go to college” or
“Repeat this exercise 10 times.” These everyday decisions and repetitions are just like
what we can do in programming using control structures.

In this topic, we will learn how to use if-else statements to make decisions and loops like
while and for to repeat actions. By linking this to what you already understand about
the sequence of instructions in a program, you’ll now be able to make your Python
code smarter and more flexible. This knowledge will help you solve a wide range of
problems more effectively.

loops, for, while, if-else statements, break and continue

Key words

Discussion
1.4.1 Control Structures
Control structures help the program decide what to do and repeat actions when needed
just like we do in real life. For example, we might say, “If I’m hungry, I’ll eat. In the
same way, control structures in Python guide the computer on when to run certain
blocks of code and how many times.
There are two main types of control structures in Python:

1.	 Conditional Statements- used for making decisions

2.	 Loops - used for repeating actions

1.4.2 Conditional Statements
Conditional statements are used to make decisions in a program based on conditions
(True or False). They help the computer choose between different actions depending
on the situation. For example, if a student scores more than 50 marks, the program can
print “Pass”; otherwise, it can print “Fail”. Python uses keywords like if, if-else, and
elif to write such conditions.

1.4.2.1 if statement
The if statement in Python is used to execute a block of code only when a specified
condition is true. It allows the program to make decisions during execution by checking
whether a given condition holds. If the condition evaluates to true, the statements within
the if block are executed; otherwise, the program skips that block and continues with
the next instructions.
Syntax:

if condition:

 # statements to execute if condition is true

Flowchart:

 Fig. 1.4.1 flowchart of if statement

61 SGOU - SLM - BSc - Introduction to Python Programming

Example

number = 10

if number > 5:

 print(“Number is greater than 5”)

The output of the above program is:

Number is greater than 5

1.4.2.2 if else statements
In an if-else statement, the condition provided in the if part is first evaluated. If the
condition is True, all the statements under the if block are executed. If the condition
is False, the control moves to the else block, and the statements written under else are
executed.

Syntax:

if condition:

 # statements to execute if condition is True

else:

 # statements to execute if condition is False

Flowchart:

 Fig 1.4.2 flowchart of if-else statements

62 SGOU - SLM - BSc - Introduction to Python Programming

Example:

age = 18

if age >= 18:

 print(“Eligible to vote”)

else:

 print(“Not eligible to vote”)

Output:

Eligible to vote

1.4.2.3 Nested if statements
A nested if-else statement refers to an if or if-else statement placed inside another if
or if-else block. It allows the program to make a series of decisions in a hierarchical
manner. This structure can be implemented in two common ways:

1.	 By placing an if statement inside the if block of another if statement.

2.	 By placing an if statement inside the else block of an if-else statement.

Syntax of method 1:

if condition1:

 # statements for condition1 is True

 if condition2:

 # statements for condition2 is True

 else:

 # statements for condition2 is False

else:

 # statements for condition1 is False

Syntax of method 2:

if condition1:

 # statements for condition1 is True

else:

 if condition2:

 # statements for condition2 is True

 else:

 # statements for condition2 is False

63 SGOU - SLM - BSc - Introduction to Python Programming

Flowchart:

 Fig 1.4.3 flowchart of nested if statement

Example:

x = 10

if x >= 0:

if x == 0:

print(“Zero”)

else:

print(“Positive number”)

else:

print(“Negative number”)

Output:

Positive number

1.4.3.4 elif ladder statements
The elif ladder, short for “else if”, is a control structure used when multiple conditions
need to be evaluated in sequence. It simplifies the logic of complex decision-making,
where several possible outcomes exist. Instead of writing multiple nested if-else blocks,
the elif ladder offers a clean, readable, and structured way to handle multiple conditional
branches.

64 SGOU - SLM - BSc - Introduction to Python Programming

1.	 The program first checks the condition in the if statement.

2.	 If it evaluates to True, the corresponding block is executed, and the rest of
the ladder is skipped.

3.	 If it is False, the program checks the next elif condition, and so on.

4.	 If none of the if or elif conditions are true, the optional else block is executed.

Syntax:
Syntax:

if expression:
statement(s)

elif expression:
statement(s)

elif expression:
statement(s)

else:

statement(s)

Flowchart:

 Fig 1.4.4 flowchart of elseif ladder statement

65 SGOU - SLM - BSc - Introduction to Python Programming

Example:

x= -2

if x > 0:

print(“Positive number”)

elif x == 0:

print(“Zero”)

else:

print(“Negative number”)

Output:

Negative number

1.4.3 Loops
A loop is a control structure that allows a block of code to be executed repeatedly
as long as a specific condition is satisfied. Loops are used when we want to perform
repetitive tasks such as processing items in a list, printing patterns, or running a block
of code multiple times.

Python supports two main types of loops:

1.	 for loop

2.	 while loop

1.4.3.1 for Loop
A for loop is used when we want to repeat a group of instructions a specific number of
times. It is especially useful when we know in advance how many times we want to
run the loop. In Python, the for loop is often used with a collection of items, such as a
list, a tuple, or a string. These collections are called iterable objects because we can go
through each item one by one. At the beginning of the loop, Python picks the first item
in the collection and assigns it to a loop variable. Then, it runs the block of code inside
the loop. This process continues for each item in the collection until all the items have
been used. Once the sequence is finished, the loop stops automatically.

Syntax

for variable in sequence:

 statement(s)

Flowchart:

66 SGOU - SLM - BSc - Introduction to Python Programming

 Fig 1.4.5 flowchart of for loop

Example:

items = [5, 10, 15, 20, 25]

sum = 0

for val in items:

sum = sum+val

print(“The sum is”, sum)

Output:

The sum is 75

1.4.3.2 while loop
The while loop is used to repeat a set of statements as long as a specific condition
remains true. It begins by checking the condition. If the condition is true, the loop’s
body (the block of code inside it) is executed. After completing one round of execution,
the condition is checked again. If it is still true, the loop runs again. This process
continues until the condition becomes false, at which point the loop stops. The while
loop is especially useful when we do not know in advance how many times the loop
should repeat. It allows the program to keep running a task until a certain situation or
result is reached.

67 SGOU - SLM - BSc - Introduction to Python Programming

Syntax

Syntax:

for var in sequence:

statement(s)

Flowchart:

 Fig 1.4.6 flowchart of while loop

Example

n = 10

sum = 0

i = 1

while i <= n:

 sum = sum + i

 i = i + 1

print(“The sum is”, sum)

Output:

The sum is 55

68 SGOU - SLM - BSc - Introduction to Python Programming

1.4.4 break Statement
The break statement is used to stop a loop immediately, even if its condition is still true
or there are more items to process. It is commonly used when a certain condition is met
and you want to exit the loop early. The break statement can be used inside both for and
while loops.

Syntax:

loop:

 if condition:

 break

 # other statements

Example

for i in range(5):

 if i == 3:

 break

 print(i)

Output:

0

1

2

1.4.5 continue Statement
The continue statement is used inside loops to skip the current iteration and proceed
directly to the next one. When the Python interpreter encounters a continue statement
inside a loop (either for or while), it immediately stops executing the remaining
statements in the current iteration and moves to the next cycle of the loop. This is
useful when specific values or cases need to be skipped during loop execution without
stopping the entire loop.

Syntax:

for variable in sequence:

 if condition:

 continue

 # statements

69 SGOU - SLM - BSc - Introduction to Python Programming

Example:

for i in range(5):

 if i == 2:

 continue

 print(i)

Output:

0

1

3

4

Recap

	♦ Control Structures: Direct the flow of program execution; divided into
conditional statements and loops.

	♦ Conditional Statements:

	♦ if statement: Executes code when a condition is true.

	♦ if-else statement: Executes one block if true, another if false.

	♦ Nested if: Using one if or if-else inside another to handle multiple conditions.

	♦ elif ladder: Checks multiple conditions in sequence for decision-making.

	♦ Loops: Used to repeat code multiple times.

	♦ for loop: Repeats for a fixed number of times or over items in a collection.

	♦ while loop: Repeats as long as a condition remains true.

	♦ break Statement: Immediately exits a loop when a condition is met.

	♦ continue Statement: Skips the current iteration and continues with the next
loop cycle.

70 SGOU - SLM - BSc - Introduction to Python Programming

1.	 Which keyword is used to repeat a block of code a specific number of times?

2.	 What keyword is used to exit a loop early?

3.	 Which keyword skips the current iteration and moves to the next in a loop?

4.	 What is the keyword used to repeat a block of code as long as a condition
is true?

5.	 What type of loop executes when the condition is true before each iteration?

6.	 What keyword is used to provide an alternative block of code in if statement?

7.	 What is the loop variable in for i in range(5)?

8.	 Which loop is preferred when the number of iterations is known?

9.	 Which loop is preferred when the number of iterations is not known?

10.	How many times will a for loop run: for i in range(2, 6)?

Objective Type Questions

Answers to Objective Type Questions

1.	 for

2.	 break

3.	 continue

4.	 while

5.	 while

6.	 else

7.	 i

8.	 for

9.	 while

10.	4

71 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

1.	 Explain the working of if, elif, and else statements in Python with suitable
examples.

2.	 Write a Python program to check whether a number entered by the user is
even or odd using an if-else statement.

3.	 Describe the syntax and use of the for loop in Python. Write a program to
print numbers from 1 to 10 using a for loop.

4.	 Write a Python program using a while loop to calculate the sum of natural
numbers up to a given number n.

5.	 What is the difference between break and continue statements? Explain each
with an example.

Reference

1.	 https://www.w3schools.com/python/

2.	 https://www.learnpython.org/

Suggested Reading

1.	 Brown, Martin C. Python: The complete reference. Osborne/McGraw-Hill,
2001.

2.	 Jose, Jeeva. Taming Python by Programming. KHANNA PUBLISHING
HOUSE.

3.	 Lutz, Mark. Learning python: Powerful object-oriented programming. “
O’Reilly Media, Inc.”, 2013.

72 SGOU - SLM - BSc - Introduction to Python Programming

Data Structures
in Python2

Unit 1
List and Tuples

Learning Outcomes

Prerequisites

	♦ describe the need for using lists and tuples to store multiple values in a single
variable efficiently.

	♦ demonstrate the ability to create, access, modify, and delete elements in
Python lists.

	♦ differentiate between mutable (list) and immutable (tuple) data types and
identify when to use each.

	♦ apply indexing and slicing techniques to retrieve or manipulate specific
portions of data from a list or tuple.

Upon completion of this unit, the learner will be able to:

In Python programming, variables can normally store only a single value at a time.
When handling large amounts of related data, like storing names of 100 students or daily
temperatures for a month, creating separate variables becomes inefficient. To solve this,
Python provides data structures like lists and tuples that allow storing multiple values in
a single variable. Lists are mutable, meaning the contents can be changed after creation,
whereas tuples are immutable. This helps developers choose based on whether they
want to protect or modify the data. Lists are useful when you need to update, insert, or
remove items frequently. Tuples are preferred for fixed data like coordinates, configu-
ration values, or constant lookup values. For example, in a school management system,
student names can be stored in a list, while the fixed set of weekdays for class schedules
can be stored in a tuple.

Key words
List, Tuple, Append, Insert, Pop, Slicing, Indexing, Immutable

75 SGOU - SLM - BSc - Introduction to Python Programming

Discussion
2.1.1 Python Lists
We have already discussed variable names. Only one data can be represented by a
variable. For example, Student_name = “KKG”.

Sometimes we need to read, store, process, and finally, output many data, maybe
dozens, perhaps even thousands of data. Do you create that many different variable
names for each value? Then you will have to spend long hours writing statements as
shown below.

	 X = 20

	 X1=100

	 X2=30
 ………….

	 Xn = 19

(Note: X is a variable name, it could be any name such as mark or age). Think of how
easy and convenient it would be to use one variable that will store all these data as
shown below.

X = [20,100,30 … 19]

Using List is one of the solutions. We can use the list to store more than one data under
one name. A list is a collection of data, similar to an array in many other programming
languages. Lists might contain items of different types, but usually, the items will be
the same type.

Since we can add and remove items, we say that a list is a mutable data type in which
data can be altered.

The list can be used to store multiple items or values or data in a single variable name.
for example x= [“KKG”, “pen”,”beach”]. x represents a list. If we write x = “KKG”,
x is a string variable name that stores only one data.

The list is defined in Python as a list of comma-separated values (items) between []
square brackets.

The items in the list can be accessed using the index operator [].

Age = [2,4,1,10,5]. This List has 5 items. The first value is saved as Age[0] = 2, second
item Age[1] = 4. The third value is in Age [2], fourth value in Age[3] and fifth value in
Age[4]. A list with n items, the index will start from 0 and the last index is n-1

76 SGOU - SLM - BSc - Introduction to Python Programming

Fig 1.3.3

The value or expression inside the brackets represents the index. The index can be an
integer or integer expression. Remember that the indices start at 0: In Age[0], 0 is the
index

Example of integer expression as index:

I = 3

Age[I + 1] represents Age[4]

Example: Student_List = [“John”, “KKG”,”Jane”]

The following list is an example of a list that contains a string, a float, an integer, and
another list:

L = [‘Covid’, 2.0, 5, [10, 20]]

A list that contains no items is called an empty list.

Example: Lis = [].

In the following activities guess the output first, then run the code and check the
result.

Activity 1: Write and Run the below code and see the result

lis= []

print(lis)

Output : []

Activity 2: Run the below code and observe the result.

Student_List= [“John”, “KKG”, “Jane”]

print(Student_List)

Output: [‘John’, ‘KKG’, ‘Jane’]

Activity 3: Write and Run the below code and check the result

Student_List= [“John”, “KKG”, “Jane”]

print(Student_List[0])

77 SGOU - SLM - BSc - Introduction to Python Programming

Output: John

If you try to read an element that does not exist, you will get an IndexError.

Run the below code and see the result

Fig 1.3.4

The list named Student_List shown above has three items. The first item index is 0, the
second index is 1 and the third index is 2. If we try to print the Student_List with index
3 will give an error message.

Python lists are built‑in, dynamically resizing arrays that automatically grow or shrink
as needed. They can hold any kind of object, including other lists - because they store
references in contiguous memory, whereas the actual objects might reside elsewhere.
This design allows lists to contain mixed data types and duplicate items. Lists are
mutable, meaning elements can be modified, replaced, or removed in place. They are
ordered, preserving the insertion sequence, and elements are accessed via zero-based
indexing, allowing direct access by position.

Example

a = [10, 20, “GfG”, 40, True]
print(a)

print(a[0], a[1], a[2], a[3], a[4])

print(type(a[2]), type(a[4]))

This example shows a list containing integers, a string, and a boolean; accessing
elements by index retrieves and confirms their types.

Memory Model: Lists Store References, Not Values

A list object doesn’t hold the actual items directly; instead, it holds pointers to objects
stored separately in memory. Python creates individual objects for 10, “GfG”, True,
etc., and the list contains references to these locations. Modifying one element does not
change others, although if the element refers to a mutable object, that object itself can
be mutated.

78 SGOU - SLM - BSc - Introduction to Python Programming

2.1.1.1 Creating Lists
a. Using square brackets:

a = [1, 2, 3, 4, 5]

b = [‘apple’, ‘banana’, ‘cherry’]

c = [1, ‘hello’, 3.14, True]

b. Using the list() constructor with iterables:

a = list((1, 2, 3, ‘apple’, 4.5))

c. With repeated elements using the multiplication operator:

a = [2] * 5 # [2, 2, 2, 2, 2]

b = [0] * 7 # [0, 0, 0, 0, 0, 0, 0]

2.1.1.2 Accessing Elements
You can retrieve elements using both positive and negative indices. The first element
has index 0 and the last element can be accessed with index −1.

a = [10, 20, 30, 40, 50]

print(a[0]) # 10

print(a[-1]) # 50

Modifying a List

Add elements:

 - append(x) → adds one element at the end

 - insert(idx, x) → places an element at a specific position

 - extend(iterable) → adds multiple elements from an iterable

Update an element via index:

 a[1] = 25

Remove elements:

remove(val) → removes first occurrence of val

pop([idx]) → removes and returns element at idx (defaults to last)

del a[idx] → deletes element at given index

2.1.1.3 Iterating Through a List
Using a simple for loop:

79 SGOU - SLM - BSc - Introduction to Python Programming

for item in [‘apple’, ‘banana’, ‘cherry’]:

 print(item)

Nested Lists
Lists can contain other lists, making them useful for representing nested structures like
matrices. Access nested elements via chained indexing:

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

print(matrix[1][2])

Outputs 6

List Comprehensions

A streamlined way to generate lists in a single line using an iterable and expression:

squares = [x**2 for x in range(1, 6)]

print(squares)

Outputs [1, 4, 9, 16, 25]

Theoretical Insight

Python lists are implemented as dynamic arrays, similar to C++ vectors or Java
ArrayLists. They support O(1) time for indexing and amortized O(1) for append
operations, thanks to occasional over‑allocation strategies. Lists are best suited for
collections where frequent random-access, addition, or deletion at end operations are
needed. However, inserts or deletions in the middle or at the front can be slower (O(n)),
because elements have to be shifted.

2.1.2 Tuples in python
A tuple allows you to group multiple values into a single variable.

It is one of the four primary built-in data structures in Python designed for storing
collections. The other three are lists, sets, and dictionaries, each serving different
purposes and having unique characteristics.

Tuples are ordered collections, meaning items maintain their insertion order, and they
are immutable, meaning their contents cannot be modified after creation.

Tuples are defined using parentheses.

Example:

thistuple = (“apple”, “banana”, “cherry”)

print(thistuple)

Output:

80 SGOU - SLM - BSc - Introduction to Python Programming

(‘apple’, ‘banana’, ‘cherry’)

This code creates a tuple with three string elements and prints its contents.

2.1.2.1 Tuple Items in Python
Tuple elements are indexed, ordered, and immutable, and they also support duplicate
values.

Each item in a tuple can be accessed using its position, starting from index 0 for the first
item, 1 for the second, and so on.

Ordered Nature

Tuples maintain the sequence in which elements are added. Once defined, the position
of elements remains fixed.

Immutable

Tuples cannot be modified after they are created. This means you cannot update, insert,
or delete any elements once the tuple is formed.

Supports Duplicates

Because tuple elements are indexed, identical values can appear more than once within
the same tuple.

Example:

thistuple = (“apple”, “banana”, “cherry”, “apple”, “cherry”)

print(thistuple)

Output:

(‘apple’, ‘banana’, ‘cherry’, ‘apple’, ‘cherry’)

This example shows a tuple that includes repeated items. The values “apple” and
“cherry” appear more than once, which is perfectly valid in a tuple.

2.1.2.2 Length of a Tuple
To find out the total number of elements present in a tuple, you can use Python’s built-in
len() function.

Example:

thistuple = (“apple”, “banana”, “cherry”)

print(len(thistuple))

This code prints the count of items in the tuple thistuple, which in this case is 3.

81 SGOU - SLM - BSc - Introduction to Python Programming

2.1.2.3 Creating a Tuple with a Single Element
When defining a tuple that contains just one item, it’s essential to include a comma
after the item. Without the comma, Python will treat it as a regular value (like a string)
instead of a tuple.

Example:

This is a tuple with one item

thistuple = (“apple”,)

print(type(thistuple))

Output: <class ‘tuple’>

This is just a string, not a tuple

thistuple = (“apple”)

print(type(thistuple)) # Output: <class ‘str’>

Note: The trailing comma is what makes it a tuple, even if there is only one item.

2.1.2.4 Tuple Items – Data Types
Items stored in a tuple can be of any data type.

Example:
You can create tuples containing:

	♦ Strings

	♦ Integers

	♦ Boolean values

Tuple with string values

tuple1 = (“apple”, “banana”, “cherry”)

Tuple with integer values

tuple2 = (1, 5, 7, 9, 3)

Tuple with boolean values

tuple3 = (True, False, False)

Note: Tuples are versatile and can hold any type of data, including combinations of
different types.

A tuple can contain different data types:

A tuple with strings, integers and boolean values:

82 SGOU - SLM - BSc - Introduction to Python Programming

tuple1 = (“abc”, 34, True, 40, “male”)

2.1.2.5 type() Function
In Python, when you use the type() function on a tuple, it shows that the object is of the
tuple data type.

Example Output:

<class ‘tuple’>

This confirms that the variable is recognized by Python as a tuple object.

2.1.2.6 The tuple() Constructor
You can also create a tuple using the built-in tuple() function.

Example

Using the tuple() constructor to create a tuple:

thistuple = tuple((“apple”, “banana”, “cherry”)) # notice the use of double parentheses

print(thistuple)

This method is useful when converting other iterable objects like lists or strings into a
tuple.

Python Collections

Python provides four main types of collections for storing groups of items:

	♦ List: An ordered and mutable collection that allows duplicate values.

	♦ Tuple: An ordered and immutable collection that also permits duplicates.

	♦ Set: An unordered, unindexed, and mostly immutable collection that does
not allow duplicates.

	♦ Dictionary: An ordered and mutable collection of key-value pairs with
unique keys (no duplicates).

Each collection type serves different purposes depending on how you want to organize
and manage data.

2.1.3 List Indexing and Slicing
Lists can be indexed and sliced. Indexing returns the item as shown below.

Example: Student_List = [“John”, “KKG”,”Jane”]

Student_List[0] returns the item John

Student_List[1] returns the item KKG

Sometimes we need to access or process part of the list. For example, display the first
100 student names from a list with a total of 1000 students’ names. Slice operations

83 SGOU - SLM - BSc - Introduction to Python Programming

return a new list containing the requested elements.

Syntax: List[start : end : step]

The list is the name of List

Start represents the starting index

End represents the ending index

Step represents the increment or decrement value for the index.

Example:

Student_List= [“John”, “KKG”, “Jane”]

print(Student_List[0:2:1])

The output of the above code is

[‘John’, ‘KKG’]

The start index in the above example is zero, the end index is 2 and the step is 1. The
slicing will start from the index zero and output the name John, then the index will be
incremented to one.(The step is 1) and output the name KKG, then the index will be
incremented to 2, but the item will not be returned. Remember the index start from zero
and end at n-1

Python List Slicing

Python list slicing is a core concept that enables direct access to specific parts of a list
using slicing syntax. It allows us to extract sublists using both positive and negative
indices with concise code.

Example: Extract elements from index 1 to 4 (exclusive)

a = [1, 2, 3, 4, 5, 6, 7, 8, 9]

print(a[1:4])

Output

[2, 3, 4]

Syntax

list_name[start : end : step]

	♦ start (optional): inclusive starting index (defaults to 0)

	♦ end (optional): exclusive ending index (defaults to list length)

	♦ step (optional): interval between elements (defaults to 1)

Examples

84 SGOU - SLM - BSc - Introduction to Python Programming

1. All items

print(a[:]) # or a[::]

Returns the full list.

2. Before or after a position

/////’////////

print(a[2:]) # from index 2 to end

print(a[:3]) # from start up to index 3 (exclusive)

3. Between two indices

print(a[1:4]) # elements 2 through 4

4. With step intervals

print(a[::2]) # every 2nd element

print(a[1:8:3]) # elements at steps of 3 starting index 1

5. Out-of-bound slicing

print(a[7:15]) # returns [8, 9], no error

Gracefully handles indices beyond list range.

6. Negative indexing

print(a[-2:]) # [8, 9]

print(a[:-3]) # all except last three

print(a[-4:-1]) # slice from -4 to -1

print(a[-8:-1:2]) # spaced slicing with negative indices

7. Reversing via slicing

print(a[::-1])

A neat and efficient way to create a reversed copy using a negative step

A Bit of Theory
 In Python slicing operates via a slice(start, stop, step) object, which the Python
interpreter uses to copy list segments. If the start is greater than end, or incompatible
with step, slicing returns an empty list rather than causing an error. This design promotes
robustness and avoids unnecessary exceptions.

85 SGOU - SLM - BSc - Introduction to Python Programming

2.1.4 Sequence
A sequence type is a type of data such as a list in Python that can store more than one
value. A sequence type data structure can store zero(for example, an empty list), one
or more values. There are 3 more types of sequence data type that function differently
than the list.

	♦ Dictionary

	♦ Tuple

	♦ Sets

2.1.5 Differences between List, Tuple, Dictionary, and set
Table 1.3.1

Property List Tuple Dictionary Set

Ordered Yes Yes From version 3.7 No

Indexed Yes Yes Yes No

Key and Value Pair No No Yes No

Bracket type [] () { } { }

Changeable(add/Remove values) Yes No Yes Yes

Allow duplicate values Yes Yes No No

List, Tuple, Dictionary, and set are used to store multiple values using a single variable
name

2.1.6 Data types and examples
Table 1.3.2

Data type Example Result Keyword

Integer Number_of_Children = 2

print (Number_of_Children)

2 int

Float mark = 89.5

print(mark)

print(type(mark))

89.5

<class 'float'>

float

x =6.62607E-34
print(x)
print(type(x))

6.62607e-34

<class 'float'>

float

String Student_name = “KKG” KKG str

86 SGOU - SLM - BSc - Introduction to Python Programming

List x= ["john", "pen","beach"]

print(x)

print(type(x))

['john', 'pen', 'beach']

<class 'list'>

list

Tuples x= ("john", "pen", "beach")

print(x)

print(type(x))

('john', 'pen', 'beach')

<class 'tuple'>

tuple

Dictionary x ={"Mark":20, "Name":
"John", "year": 2021}

print(x)

print(type(x))

'Mark': 20, 'Name': 'John',
'year': 2021}

<class 'dict'>

dict

Set x ={20, "John", 2021}

print(x)

print(type(x))

{20, 2021, 'John'}
<class 'set'>

set

Boolean x =True

print(x)

print(type(x))

True
<class 'bool'>

bool

Recap

	♦ A list allows storing multiple items in a single variable using square brackets [].

	♦ Lists are mutable, meaning elements can be changed after creation.

	♦ Items in a list can be of mixed data types (e.g., integers, strings, booleans, even
other lists).

	♦ Lists maintain insertion order and support duplicate values.

	♦ You can access list elements using zero-based indexing (e.g., x[0] for the first
item).

	♦ Negative indexing allows accessing items from the end (e.g., x[-1] for the last
item).

	♦ An empty list is created using [] or list().

	♦ Lists can be created using the list() constructor from any iterable (e.g., list((1,
2, 3))).

87 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Use append() to add a single element to the end of the list.

	♦ Use insert(index, value) to add an element at a specific position.

	♦ Use extend(iterable) to add multiple elements from another iterable.

	♦ Use pop(index) to remove and return an element at a specific index (default is
the last).

	♦ Use remove(value) to delete the first occurrence of a specific value.

	♦ Use del list[index] to delete an element by its index.

	♦ Lists can be iterated using a for loop.

	♦ Nested lists are supported, and you can access inner elements using double
indexing (e.g., matrix[1][2]).

	♦ List slicing allows extracting sublists using [start:end:step] syntax.

	♦ Slicing supports positive and negative indices, and doesn’t raise errors for out-
of-bound ranges.

	♦ List comprehension provides a compact syntax for creating new lists using an
expression and iterable.

	♦ Python internally store references to objects, not the actual values.

Objective Type Questions

1.	 What data type allows storing multiple values under a single variable name
in Python?

2.	 Which brackets are used to define a list in Python?

3.	 What is the index of the first item in a Python list?

4.	 What is the result of accessing an index beyond the list’s length?

5.	 Which list method is used to add an element at the end of a list?

6.	 What type of error is raised when trying to access a non-existing list index?

7.	 Which list method removes and returns an item at a given index?

8.	 A list that contains no elements is called a __________ list.

9.	 Which keyword confirms that a list is a mutable data type?

10.	How do you access the last element in a list using negative indexing?

88 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 List

2.	 Square

3.	 Zero

4.	 IndexError

5.	 append

6.	 IndexError

7.	 pop

8.	 Empty

9.	 Mutable

10.	[-1]

11.	[4, 3, 2, 1]

12.	extend

13.	len

14.	O(1)

15.	list

11.	What is the output of print([1,2,3,4][::-1])?

12.	Which method is used to combine two lists?

13.	Which function returns the total number of items in a list?

14.	What is the time complexity of appending an item to a list?

15.	What is the keyword used to define a list using the constructor?

89 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

1.	 Explain the concept of Python Lists. Describe how lists are created, accessed,
and modified. Include examples demonstrating creation, indexing, slicing,
and mutability.

2.	 Differentiate between Lists and Tuples in Python. Provide a comparison based
on mutability, syntax, use-cases, and performance, along with examples.

3.	 Write a Python program that performs the following operations on a list:

Create a list with at least 5 integers

Append a new element

Insert an element at index 2

Remove the last element

Print the final list

4.	 What is list slicing in Python? Explain the slicing syntax with positive and
negative indices. Include at least three examples showing different slicing
patterns.

5.	 Describe the memory model of Python Lists. How do Python lists store
elements internally? Explain how mutability and referencing work with an
example that includes nested lists.

Reference

1.	 Python online documents. https://docs.python.org/

Suggested Reading

1.	 A Beginner’s Guide To Learn Python In 7 Day, Author: Ramsey Hamilton

2.	 Python Programming for Beginners: Learn The Basics Of Python
Programming (Python Crash Course, Programming for Dummies). Author:
James Tudor

3.	 https://www.python.org/about/gettingstarted/

Unit 2
Dictionaries and Sets

Learning Outcomes

Prerequisites

	♦ recall the definition of a Python dictionary.

	♦ list the key characteristics of Python sets.

	♦ identify methods to add elements to a set in Python.

	♦ recognize the built-in functions used for dictionary item access.

	♦ name the four primary set operations in Python

Upon completion of this unit, the learner will be able to:

Imagine you are developing a contact management system where you need to store and
organize information about people’s phone numbers, email addresses, and names. You
want to make sure each contact is unique and easily searchable. At the same time, you
want to quickly find common contacts shared between your friends or identify contacts
exclusive to your list.

To do this efficiently, you use dictionaries to store contact details as key-value pairs
where each person’s name is a unique key linked to their contact info. Meanwhile, you
use sets to manage groups of contacts, so you can quickly perform operations like find-
ing contacts you and your friend both have or all contacts combined.

This unit will teach you how to use these powerful data structures, their key features,
and how to apply set operations and dictionary manipulations to solve real-world prob-
lems like this effectively.

Key words

Key-value pairs, Mutable, Union, Intersection, Symmetric Difference

91 SGOU - SLM - BSc - Introduction to Python Programming

In Python, sets and dictionaries are powerful built-in data structures that provide
efficient ways to store and manage data. Both are based on hash tables, making them
optimized for fast data access, insertion, and deletion. While they share similarities in
performance and underlying implementation, they serve different purposes: sets are
used to store unordered collections of unique elements, whereas dictionaries store
key-value pairs, allowing for quick lookup of values based on unique keys. These
structures are essential tools for writing clean, efficient, and expressive Python code.

2.2.1 Dictionary

A Python dictionary is a data structure used to store data in key-value pairs. The keys
must be unique and immutable, while the values can be of any data type and may be
duplicated.

 In the dictionary below, data is organized using key-value pairs, allowing for easy and
efficient value retrieval

d = {1: ‘How’, 2: ‘Are’, 3: ‘You’}

print(d)

Output

{1: ‘How’, 2: ‘Are’, 3: ‘You’}

2.2.1.1 Key Characteristics of Dictionary

1.	 Unordered (prior to Python 3.7) – In versions before Python 3.7, dictionaries
did not preserve the order in which items were inserted. However, starting
from Python 3.7, maintaining insertion order became a guaranteed feature
of the language.

2.	 Mutable – Dictionaries can be modified after creation; you can add new
key-value pairs, change existing ones, or delete items.

3.	 Key-Based Access – Instead of using numerical indexes like lists, dictionaries
use keys to retrieve their corresponding values.

4.	 Unique Keys – Every key in a dictionary must be distinct. If a duplicate key
is used during assignment, the previous value is overwritten.

5.	 Mixed Data Types – Both keys and values in a dictionary can be of various
data types, allowing for flexible usage.

2.2.2 Key-Value Pairs
In Python, dictionaries store information as key-value pairs. Each key serves as a unique
identifier for its value, enabling quick access or modification of the value through the

Discussion

92 SGOU - SLM - BSc - Introduction to Python Programming

key.

Syntax: key: value

Multiple pairs are separated by commas and enclosed within curly braces {}.

	♦ Keys must be unique and of an immutable type, such as strings, numbers,
or tuples.

	♦ Values can be of any data type and do not need to be unique.

person = {

 “name”: “John”,

 “age”: 25,

 “city”: “New York”,

 “age”: 30

}

print(person)

Output:

{‘name’: ‘John’, ‘age’: 30, ‘city’: ‘New York’}

If the same key appears more than once, the last value assigned to it will be retained.

2.2.3 Dictionary Operations

Dictionary operations in Python refer to the common actions you can perform on
dictionaries like adding, accessing, updating, deleting items, and more.

2.2.3.1 Accessing Dictionary Items
We can access a value from a dictionary by using the key within square brackets
or get() method.

d = { “name”: “Prajjwal”, 1: “Python”, (1, 2): [1, 2, 4] }

print(d[“name”]) # Using square brackets

print(d.get(“name”)) # Using the get() method

Output

Prajjwal

Prajjwal

Both methods return the value associated with the key “name “.

93 SGOU - SLM - BSc - Introduction to Python Programming

2.2.3.2 Adding and Updating Dictionary Items
We can add new key-value pairs or modify existing ones in a dictionary using assign-
ment

d = {1: ‘Python’, 2: ‘For’, 3: ‘All’}

d[“age”] = 22 # Adding a new key-value entry

d[1] = “Python dict” # Modifying the value of an existing key

print(d)

Output

{1: ‘Python dict’, 2: ‘For’, 3: ‘All’, ‘age’: 22}

In this example, a new key “age” is added with the value 22, and the value for the key
1 is updated to “Python dict”.

2.2.3.3 Deleting Items from a Dictionary

To remove elements from a dictionary we can use the following methods

	♦ del: Deletes a specific key and its associated value.

	♦ pop(): Removes a key and returns the corresponding value.

	♦ clear(): Removes all items, leaving the dictionary empty.

	♦ popitem(): Deletes and returns the most recently added key-value pair.

d = {1: ‘Python’, 2: ‘For’, 3: ‘All’, ‘age’:22}

del d[“age”] # Using del to remove an item

print(d)

Using pop() to remove an item and return the value

val = d.pop(1)

print(val)

Using popitem to removes and returns the last key-value pair

key, val = d.popitem()

print(f”Key: {key}, Value: {val}”)

Clear all items from the dictionary

d.clear()

print(d)

94 SGOU - SLM - BSc - Introduction to Python Programming

Output
{1: ‘Python’, 2: ‘For’, 3: ‘All’}

Python

Key: 3, Value: All

{}

2.2.3.4 Iterating through a Dictionary
You can loop through a dictionary using a for loop to access

	♦ Keys with the keys() method

	♦ Values with the values() method

	♦ Both keys and values using the items() method

d = {1: ‘python’, 2: ‘For’, ‘age’:22}

Iterate over keys

for key in d:

 print(key)

Iterate over values

for value in d.values():

 print(value)

Iterate over key-value pairs

for key, value in d.items():

 print(f”{key}: {value}”)

Output

1

2

age

Python

For

22

1: Python

2: For

age: 22

95 SGOU - SLM - BSc - Introduction to Python Programming

2.2.4 Sets
In Python, a set is an unordered collection of unique elements. Unlike lists or tuples,
sets do not allow duplicate values i.e.; each element in a set must be distinct. Sets are
mutable, which means you can add or remove elements after the set has been created.

Sets are defined using curly braces {} or the built-in set() function. They are espe-
cially useful for membership testing, removing duplicates from sequences, and
performing common set operations such as union, intersection, and difference.

Conceptually, a set represents a collection of distinct objects. It is used to group items
and examine their properties and relationships. The elements in a set are referred to as
members or elements of the set.

2.2.4.1 Characteristics of sets in Python
1. Unordered

	♦ The elements in a set are not stored in any specific order.

	♦ When printed or iterated, their order may differ each time.

2. Unindexed

	♦ Sets do not support indexing or slicing.

	♦ You cannot access elements by position like s[0].

3. No Duplicate Elements

	♦ A set automatically removes duplicate values.

4. Mutable

	♦ You can add or remove elements from a set after its creation.

	♦ Methods like add(), remove(), and update() modify the set.

2.2.4.2 Creating Sets

i. Using Curly braces

The easiest and fastest way to define a set in Python is by enclosing the elements within
curly braces.

set1 = {1, 2, 3, 4}

print(set1)

Output

{1, 2, 3, 4}

ii. Using the set() function

In Python, sets can be created either by using the built-in set() function with an iterable

96 SGOU - SLM - BSc - Introduction to Python Programming

or by placing elements inside curly braces {}, with each item separated by a comma.

my set = set([1,2,3,4,5])

print (my set)

Output

{1, 2, 3, 4, 5}

2.2.4.3 Adding Elements to a Set
Items can be added to a set using the add() and update() methods. The add() method
is used to insert a single element, while the update() method allows you to add multi-
ple elements at once.

set1 = {1, 2, 3} # Creating a set

set1.add(4) # Add one item

set1.update([5, 6]) # Add multiple items

print(set1)

Output

{1, 2, 3, 4, 5, 6}

2.2.4.4 Accessing a Set
Since sets are unindexed and do not support element access by position, we use loops
to go through their items. Additionally, the in keyword, a membership operator, can be
used to check whether a specific element is present in the set.

set1 = set([“Python”, “For”, “All.”])

Accessing element using For loop

for i in set1:

 print(i, end=” “)

Checking the element using in keyword

print(“Python” in set1)

Output

All. Python For True

The order of the first three words may vary because sets are unordered collections in
Python. The presence check (“Python” in set1) will always return True.

2.2.4.5 Removing an Element
In Python, elements can be removed from a set using different methods, each with its
own behavior:

97 SGOU - SLM - BSc - Introduction to Python Programming

	♦ remove() and discard() methods can be used to delete a specific element
from the set.

	♦ pop() removes and returns an arbitrary element since sets are unordered.

	♦ clear() deletes all elements from the set, leaving it empty.

i. Using remove() or discard() Method
The remove() method deletes a specific element from a set, but if that element is not
present, it raises a KeyError. In contrast, the discard() method also removes a speci-
fied element, but it does not throw an error if the element is missing from the set.

Using Remove Method

set1 = {1, 2, 3, 4, 5}

set1.remove(3)

print(set1)

Attempting to remove an element that does not exist

try:

 set1.remove(10)

except KeyError as e:

 print(“Error:”, e)

Using discard() Method

set1.discard(4)

print(set1)

Attempting to discard an element that does not exist

set1.discard(10) # No error raised

print(set1)

Output
{1, 2, 4, 5}

Error: 10

{1, 2, 5}

{1, 2, 5}

ii. Using pop() Method
The pop() method deletes and returns a random element from the set, meaning the
specific item removed is unpredictable. If the set is empty, using pop() will result in a
KeyError.

98 SGOU - SLM - BSc - Introduction to Python Programming

set1 = {1, 2, 3, 4, 5}

val = set1.pop()

print(val)

print(set1)

Using pop on an empty set

set1.clear() # Clear the set to make it empty

try:

 set1.pop()

except KeyError as e:

 print(“Error:”, e)

Output

1

{2, 3, 4, 5}

Error: ‘pop from an empty set’

iii. Using clear() Method

The clear() method deletes every element in the set, resulting in an empty set.

set1 = {1, 2, 3, 4, 5}

set1.clear()

print(set1)

Output

set()

2.2.5 Set Operations
Python set operations like union, intersection, difference, and symmetric difference are
essential tools for working with unique collections of elements. These built-in opera-
tions allow you to combine, compare, and analyze sets efficiently in Python.

2.2.5.1 Union
It merges elements from both sets, and can be performed using the union() method or
the | operator.

a = {1, 2, 3}

b = {3, 4, 5}

99 SGOU - SLM - BSc - Introduction to Python Programming

print(a | b) # Output: {1, 2, 3, 4, 5}

print(a.union(b)) # Output: {1, 2, 3, 4, 5}

2.2.5.2 Intersection
It is used to find shared elements between sets using the intersection() method or
the & operator.

a = {1, 2, 3}

b = {2, 3, 4}

print(a & b) # Output: {2, 3}

print(a.intersection(b)) # Output: {2, 3}

2.2.5.3 Difference
It retrieves elements that exist in one set but not in the other, using the difference()
method or the - operator.

a = {1, 2, 3}

b = {2, 3, 4}

print(a - b) # Output: {1}

print(a.difference(b)) # Output: {1}

2.2.5.4 Symmetric Difference
It returns elements that are present in either of the sets but not in both, using the sym-
metric_difference() method or the ^ operator.

a = {1, 2, 3}

b = {3, 4, 5}

print(a ^ b) # Output: {1, 2, 4, 5}

print(a.symmetric_difference(b)) # Output: {1, 2, 4, 5}

100 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ Python sets and dictionaries are built-in data structures optimized for fast
access, insertion, and deletion using hash tables.

	♦ Dictionaries store data as key-value pairs with unique, immutable keys and
values of any type.

	♦ Dictionaries support adding, updating, and deleting items.

	♦ Values in dictionaries can be accessed using keys with square brackets or the
get() method.

	♦ Items in dictionaries can be deleted using del, pop(), clear(), or popitem().

	♦ Sets are unordered collections of unique elements and do not allow duplicates.

	♦ Sets are mutable and can be created using curly braces {} or the set() function.

	♦ Elements can be added to a set using the add() method (single item) or
update() method (multiple items).

	♦ Sets do not support indexing or slicing; elements are accessed by looping or
using the in keyword to check membership.

	♦ Elements can be removed from a set using remove() (raises error if element
not found), discard() (no error if element missing), pop() (removes and
returns an arbitrary element), and clear() (removes all elements).

	♦ Set operations include:

•	 Union (union() method or | operator) merges elements from both sets.

•	 Intersection (intersection() method or & operator) finds common
elements.

•	 Difference (difference() method or - operator) gets elements in one set
but not the other.

•	 Symmetric difference (symmetric_difference() method or ^ operator)
returns elements in either set but not both.

Objective Type Questions

1.	 What data structure in Python stores key-value pairs?

2.	 What keyword is used to define a set in Python?

3.	 Which operator is used for the union of two sets?

101 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 Dictionary

2.	 set

3.	 |

4.	 clear()

5.	 Set

6.	 in

7.	 pop()

8.	 get()

9.	 intersection()

10.	add()

4.	 Which method removes all items from a dictionary?

5.	 Which data structure stores only unique elements?

6.	 What operator is used for checking membership in a set?

7.	 Which method removes a random element from a set?

8.	 Which dictionary method returns the value for a given key safely?

9.	 Which method returns shared elements between two sets?

10.	Which method adds a single element to a set?

Assignments

1.	 Describe the key features that differentiate Python sets from dictionaries.

2.	 Write a Python program to demonstrate all four major set operations: union,
intersection, difference, and symmetric difference.

3.	 Explain the behavior and usage of key-value pairs in Python dictionaries
with suitable examples.

102 SGOU - SLM - BSc - Introduction to Python Programming

Reference

1.	 Beazley, D., & Jones, B. (2013). Python cookbook (3rd ed.). O’Reilly Media.

2.	 Hetland, M. L. (2005). Python programming: An introduction to computer
science. Franklin, Beedle & Associates Inc.

3.	 Martelli, A., Ravenscroft, A., & Ascher, D. (2006). Python in a nutshell.
O’Reilly Media.

4.	 Pilgrim, M. (2009). Dive into Python 3. Apress.

5.	 Grinberg, M. (2018). Flask web development: Developing web applications
with Python. O’Reilly Media.

Suggested Reading

1.	 https://docs.python.org/3/tutorial/datastructures.html

2.	 Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. Python
Software Foundation.

3.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

4.	 Sweigart, A. (2015). Automate the boring stuff with Python. No Starch Press.

5.	 Downey, A. (2015). Think Python: How to think like a computer scientist
(2nd ed.). Green Tea Press

4.	 Create a set from a list containing duplicate elements and display the result
to show how duplicates are handled.

5.	 Develop a dictionary to store and manage contact details (name and phone
number) and perform addition, update, deletion, and retrieval operations.

Unit 3
Strings and String Manipulation

Learning Outcomes

Prerequisites

	♦ explain the concept of strings and how to declare them using quotes in
Python.

	♦ use escape sequences to properly format output text in a Python program.

	♦ apply various string methods like replace(), split(), join(), find() to manipulate
text.

	♦ perform string comparisons using relational operators and understand
lexicographical order.

	♦ utilize indexing and slicing to access and extract parts of strings efficiently.

Upon completion of this unit, the learner will be able to

Before diving into string operations in Python, it’s important to understand why study-
ing strings is essential. In the digital world, textual data is everywhere such as names,
messages, emails, addresses, websites, search queries, and even programming code
itself. All of this data is handled as strings in most programming languages, including
Python. Learning how to work with strings is fundamental to being able to process,
analyze, and manipulate real-world data.

Consider a real-life example: Imagine you’re creating a messaging app. Every time a
user sends or receives a message, you’re dealing with strings. You might need to check
if a message starts with a certain keyword (e.g., “URGENT”), convert everything to
lowercase for uniformity, or even search for specific phrases within messages. Without
understanding how to use string methods, slicing, or comparisons, these tasks would be
impossible to perform effectively.

Understanding strings also lays the foundation for more advanced topics like data pro-
cessing, file handling, web development, and natural language processing (NLP).
Therefore, a strong grasp of strings and their operations is a crucial skill for any aspir-
ing Python programmer.

104 SGOU - SLM - BSc - Introduction to Python Programming

Discussion

String, Slicing, Indexing, Formatting, Immutable, Method, Concatenation, Join,
Split, Escape Sequence

Key words

A string in Python is a sequence of characters enclosed within either single quotes
' ' or double quotes '' ''. Strings are used to represent text-based data such as names,
addresses, and sentences. Python strings are immutable, which means once created, the
contents of a string cannot be changed.

Examples:

name = “Alice”

message = ‘Welcome to Python!’

Think of a string like a train made up of boxcars (characters) arranged in a specific
order. Once the train (string) is formed, you cannot modify a single boxcar directly,
you’d need to create a new train instead.

Multi-line Strings: If we need a string to span multiple lines then we can use triple
quotes (“‘ or ””’)

You can create strings in various ways:

	♦ Single Quotes: ‘Hello’

	♦ Double Quotes: “World”

	♦ Triple Quotes: “‘ This is a multiline string’’’ or ‘‘‘‘‘‘ This also works””’’

s = ‘‘‘‘‘‘I am Learning

Python String for fun””’’

print(s)

s = ‘‘‘I’m priya’’’

print(s)

#Output

I am Learning

Python String for fun
I’m priya

2.3.1 String Methods
Python strings come with many built-in methods for manipulation.

105 SGOU - SLM - BSc - Introduction to Python Programming

1. lower() and upper()

Convert to lowercase or uppercase:

name = “Alice”

print(name.lower()) # alice

print(name.upper()) # ALICE

2. strip()

Removes leading/trailing spaces:

txt = “ hello”

print(txt.strip()) # “hello”

3. replace()

Replaces a substring with another:

text = “Python is easy”

print(text.replace(“easy”, “fun”)) #Python is fun

4. split()

Splits the string into a list:

sentence = “Python is awesome”

print(sentence.split()) # [‘Python’, ‘is’, ‘awesome’]

5. join()

Joins elements of a list into a string:

words = [“Python”, “is”, “fun”]

print(“ ”.join(words)) #Python is fun

6. find() and index()

find()

Purpose: Returns the index of the first occurrence of the substring.

Return Value: Returns -1 if the substring is not found.

Safe to use when you’re unsure if the substring exists.

index()

Purpose: Also returns the index of the first occurrence of the substring.

Return Value: Raises a ValueError if the substring is not found.

106 SGOU - SLM - BSc - Introduction to Python Programming

Use it only if you’re sure the substring is present.

print(“hello”.find(“e”)) # 1

print(“hello”.index(“e”)) # 1

print(“hello”.find(“a”)) # Output: -1 (not found)

7. startswith() and endswith()

startswith()

Purpose: Checks if a string starts with the specified substring.

Returns: True if it does, False otherwise.

endswith()

Purpose: Checks if a string ends with the specified substring.

Returns: True if it does, False otherwise.

text = “programming”

print(text.startswith(“pro”)) # True

print(text.endswith(“ing”)) # True

2.3.1.1 String Operations

1. Escape Characters in Strings

Some characters can’t be typed directly, so escape sequences are used:

Table 2.3.1 escape sequence

Escape Sequence Description

\n New line

\t Tab

\" Double quote

\\ Backslash

Example:

print(“Line1\nLine2”)

Output

Line1

Line2

107 SGOU - SLM - BSc - Introduction to Python Programming

2. String Immutability

Once a string is created, its characters cannot be changed. Any modification results in
a new string.

Example:

name = “John”

name[0] = “P” # Error: strings are immutable

name = “Paul” # Assigns a new string instead

print(name) # Output: Paul

3. Looping Through Strings

In Python, a string is a sequence of characters, so you can iterate over it using a for
loop.

for char in “Python”:

 print(char)

#Output

P

y

t

h

o

n

“Python” is a string made up of 6 characters. The for loop goes through each character
one by one. On each iteration, char holds the current character, which is printed.

4. String Comparison

Strings can be compared using relational (comparison) operators like:

== (equal to)

!= (not equal to)

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than or equal to)

108 SGOU - SLM - BSc - Introduction to Python Programming

These comparisons are done using lexicographical order (i.e., dictionary order based
on Unicode/ASCII values).

Example:

print(“abc” == “abc”) # True (Both strings are identical, so the result is True.)

print(“abc” != “xyz”) # True

print(“abc” < “xyz”) # True(lexicographical order,

compared character by character: ‘a’ < ‘x’ # True → rest of the string isn’t checked.)

print(“abc” > “XYZ”) # True (Lowercase letters (like ‘a’) have higher Unicode
values than uppercase letters (‘X’), so it’s True.)

print(“Apple” < “apple”) # True (uppercase < lowercase, ‘A’ has a lower ASCII/Uni-
code value than ‘a’, so it returns True.)

5. String Length

Use len() to find the number of characters:

name = “Alice”

print(len(name)) # 5

The string “Alice” contains the characters: ‘A’, ‘l’, ‘i’, ‘c’, ‘e’. Total number of characters
= 5.

So, len(name) returns 5.

6. String Membership Testing

Use in or not in to test if a character or substring is present:

print(“a” in “banana”) # True

print(“z” not in “apple”) # True

2.3.2 String Formatting
In Python, string formatting is used to insert variables or values into strings in a
controlled and readable way. It allows you to create output that is dynamic and
well-formatted, especially useful when displaying data, generating reports, or building
user-friendly messages.

Python provides three main methods for string formatting:

The % operator (older style)

F-strings (f””) – introduced in Python 3.6

The format() method

109 SGOU - SLM - BSc - Introduction to Python Programming

2.3.2.1 Using % operator
This method is similar to C-style formatting. Although older, it’s still found in legacy
code.

Example:

name = “Carol”

marks = 88.5

print(“Student: %s, Marks: %.1f” % (name, marks))

%s = string, %.1f = float with 1 decimal place

2.3.2.2 Using f-strings (Python 3.6+)
This is the most modern and concise way introduced in Python 3.6. You prefix the
string with the letter f and insert variables directly inside {}.

Example:

name = “Bob”

score = 90

print(f”{name} scored {score} in the test.”)

Output: Bob scored 90 in the test.

F-strings support expressions too:

print(f”Next year, {name} will be {age + 1} years old.”)

name = input(“Enter your name: “)

age = int(input(“Enter your age: “))

print(f”Next year, {name} will be {age + 1} years old.”)

#Input:

Enter your name: Asha

Enter your age: 20

Output:

Next year, Asha will be 21 years old.

2.3.2.3 Using str.format() method
This is a widely used and flexible method.

Syntax: “Text {} more text {}”.format(value1, value2)

110 SGOU - SLM - BSc - Introduction to Python Programming

Example:
name = “Alice”

age = 25

print(“My name is {} and I am {} years old.”.format(name, age))

Output: My name is Alice and I am 25 years old.

You can also use index numbers inside the placeholders:

print(“Name: {0}, Age: {1}, Name again: {0}”.format(name, age))

name = input(“Enter your name: “)

age = input(“Enter your age: “)

print(“Name: {0}, Age: {1}, Name again: {0}”.format(name, age))

#Input

Enter your name: Rahul

Enter your age: 21

#Output

Name: Rahul, Age: 21, Name again: Rahul

F-strings are the most preferred due to their readability and efficiency.

2.3.3 String Concatenation
Concatenation is the process of combining two or more strings using the + operator.

Example:
first = “Hello”

second = “World”

result = first + “ “ + second

print(result)

Output: Hello World

Note: You cannot concatenate a string and an integer directly.

age = 20

print(“Age: “ + str(age)) # Convert integer to string first

Output: Age: 20

2.3.4 String Indexing and Slicing
Strings are one of the most commonly used data types for storing and manipulating text.

111 SGOU - SLM - BSc - Introduction to Python Programming

A string is essentially a sequence of characters, and Python allows you to access and
extract specific parts of a string using techniques called indexing and slicing. Indexing
helps retrieve individual characters by their position, while slicing allows you to extract
substrings using a range of indices. These tools are essential for text processing, such
as analyzing words, modifying sentences, or reversing text. Understanding how to use
indexing and slicing effectively is a fundamental step in mastering Python programming.

2.3.4.1 Indexing
Each character in a string has an index, starting from 0.

Example:

text = “Python”

print(text[0])

Output: P

Negative Indexing

Python also supports negative indexing. Negative indexing starts from -1, which refers
to the last element, -2 is the second last, and so on.

text = “Python”

print(text[-1])

Output: n
2.3.4.2 Slicing
Slicing lets you extract parts of a string.
Syntax:

string[start:stop:step]

start – the index to begin the slice (inclusive).

stop – the index to end the slice (exclusive).

step – the gap or stride between elements (default is 1).

All three are optional. Omitting them gives flexibility in slicing.

Example:

text = “Python”
print(text[0:3]) # Output: Pyt # extract characters from index 0 up to, but not
including, index 3.

print(text[:4]) # Output: Pyth	 # extract characters from index 0 to 3

print(text[2:]) # Output: thon	 #extract characters from index 2 to the last char-
acter

112 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ A string is a sequence of characters enclosed in single (‘), double (“), or
triple (‘’’/”””) quotes.

	♦ Strings are immutable—you cannot modify a string in place.

	♦ Escape sequences like \n, \t, \”, and \\ help format special characters in
strings.

	♦ Use string methods such as:

	♦ lower(), upper(): case conversion

	♦ strip(): trim spaces

	♦ replace(): substitute text

	♦ split() & join(): convert between strings and lists

	♦ find(), index(): locate substrings

	♦ startswith(), endswith(): prefix/suffix check

	♦ Use char in string to loop through characters one by one.

	♦ Strings are compared lexicographically using relational operators (==, !=,
<, >...).

	♦ Use len() to find the length of a string.

	♦ Use in and not in for membership testing.

	♦ Format strings using:

	♦ % operator (old)

	♦ f”{}” (modern, preferred)

	♦ .format() method

	♦ Concatenate strings with +, and convert non-strings using str().

	♦ Access individual characters via indexing; use negative indexes to count
from the end.

	♦ Extract substrings using slicing: string[start:stop:step].

113 SGOU - SLM - BSc - Introduction to Python Programming

Objective Type Questions

1.	 What data type in Python is used to store text?
2.	 What is the term for the fact that Python strings cannot be modified after

creation?
3.	 Which quotes are used for multi-line strings in Python?

4.	 Which method converts all characters in a string to uppercase?

5.	 What method removes leading and trailing whitespace from a string?

6.	 Which method is used to replace substrings in Python?

7.	 What method splits a string into a list of words?

8.	 Which method joins elements of a list into a single string?

9.	 What method safely finds the index of a substring (returns -1 if not found)?

10.	Which method raises an error if a substring is not found?

11.	Which function checks if a string starts with a specified substring?

12.	What escape sequence is used to insert a new line in a string?

13.	What operator is used to compare two strings for equality?

14.	What function is used to get the length of a string?

15.	What operator is used for string concatenation?

16.	What function is used to take user input in Python?

17.	What keyword is used in string slicing to define the step?

18.	What function converts a value to string for concatenation?
19.	What type of loop is commonly used to iterate over a string character by

character?
20.	What is the most modern and readable way to format strings in Python?

Answers to Objective Type Questions

1.	 string

2.	 immutable

3.	 triple

4.	 upper

114 SGOU - SLM - BSc - Introduction to Python Programming

5.	 strip

6.	 replace

7.	 split

8.	 join

9.	 find

10.	index

11.	startswith

12.	\n

13.	==

14.	len

15.	+

16.	input

17.	step

18.	str

19.	for

20.	f-string

Assignments

1.	 Write a Python program to input a sentence and count how many times the
character ‘e’ appears.

2.	 Demonstrate the use of at least 5 different string methods on the string text =
“ Python is Powerful! “. Explain the purpose of each method used.

3.	 Check whether a user-input string starts with “Hello” and ends with “!”.
Print appropriate messages.

4.	 Slice the string “Programming” to print the following parts separately:
“Program”, “ming”, and “gram”.

5.	 Write a Python program to accept a string from the user, reverse it using
slicing, and check if it is a palindrome.

115 SGOU - SLM - BSc - Introduction to Python Programming

Suggested Reading

1.	 Matthes, E. (2023). Python crash course: A hands-on, project-based
introduction to programming (3rd ed.).

2.	 Sweigart, A. (2024). Automate the boring stuff with Python: Practical
programming for total beginners (3rd ed.).

3.	 Downey, A. B. (2023). Think Python: How to think like a computer scientist
(2nd ed.). Green Tea Press.

4.	 Zelle, J. M. (2022). Python programming: An introduction to computer
science (3rd ed.). Franklin, Beedle & Associates.

5.	 Barry, P. (2022). Head First Python: A brain-friendly guide (3rd ed.).
O’Reilly Media.

Reference

1.	 Lutz, M. (2021). Learning Python (5th ed.). O’Reilly Media.

2.	 Sweigart, A. (2020). Automate the Boring Stuff with Python (2nd ed.). No
Starch Press.

3.	 Matthes, E. (2023). Python Crash Course (3rd ed.). No Starch Press.

4.	 Beazley, D., & Jones, B. (2023). Python Cookbook (3rd ed.). O’Reilly
Media.

5.	 Downey, A. (2015). Think Python (2nd ed.). O’Reilly Media.

Unit 4
 List Comprehensions and Iterators

Learning Outcomes

Prerequisites

	♦ define list comprehension and identify its basic syntax.

	♦ recall the syntax used for generator expressions.

	♦ list common iterable objects in Python such as lists, strings, and dictionaries.

	♦ name the two main functions used with iterators: iter() and next().

Upon completion of this unit, the learner will be able to:

Have you ever made a list of things to buy from a shop like apples, bananas, and
mangoes? In Python, we can make a similar list using code, and we call it a list. You
may also remember using a for loop in Python to go through each item in a list, just like
checking off each fruit from your shopping list.

Now, imagine if Python could help you do this in an even shorter and smarter way—
like creating a new list of only the items you really need, in just one line of code. That’s
where list comprehensions and generator expressions come in.

These tools are not only shorter but also make your programs easier to read and under-
stand. List comprehensions help you create new lists from existing ones using a simple
and clean format. Generator expressions, on the other hand, allow you to process data
efficiently without storing everything in memory especially useful when working with
large amounts of data.

List Comprehension, Generator Expression, Python Loops, Iterator

Key words

117 SGOU - SLM - BSc - Introduction to Python Programming

Discussion
2.4.1 List Comprehension
List comprehension is a simple way to create a new list by taking values from an existing
list, changing them if needed, and adding them to the new list, all in a single line of
code. It helps make your code shorter, easier to read, and more efficient.

Syntax of List Comprehension:

[expression for item in iterable if condition]

Where:

	♦ expression – What you want to do with each item (e.g., keep it as it is or
modify it).

	♦ item – The variable that represents each element from the original collection.

	♦ iterable – The existing collection (like a list, tuple, or string) you are looping
through.

	♦ condition (optional) – A test that filters which items to include in the new
list.

Consider the following example scenario:

Suppose you have a list of numbers, and you want to create a new list containing only
the even numbers from that list.

Without List Comprehension:

We have a list of numbers from 1 to 10. We want to create a new list that contains only
the even numbers from this list. The python program for the example scenario is given
below:

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

even_numbers = [] # Start with an empty list

for num in numbers: # Go through each number in the list

 if num % 2 == 0: # Check if the number is even

 even_numbers.append(num) # If it is even, add it to the new list

print(even_numbers)

Output:

[2, 4, 6, 8, 10]

The same task can be performed in a simpler and more concise way using list
comprehension, as shown in the Python program below:

118 SGOU - SLM - BSc - Introduction to Python Programming

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

even_numbers = [num for num in numbers if num % 2 == 0]

print(even_numbers)

Output:

[2, 4, 6, 8, 10]

This program uses a for loop to check each number in the list and adds only the even
numbers to a new list called even_numbers.

2.4.2 Generator Expression
A generator expression is a short and simple way to create values one by one, like
list comprehension. But instead of creating all the values at once and storing them in
memory (like a list does), it creates each value only when needed, as you go through it
in a loop. This is very helpful when you are working with large amounts of data or when
you want to save memory.

Syntax of Generator Expression:

 (expression for item in iterable if condition)

Generator expressions look similar to list comprehensions, but they use parentheses ()
instead of square brackets [].

Example 1: Square of numbers

Let’s say we want to find the squares of numbers from 1 to 5.

 squares = (x * x for x in range(1, 6))

This line does not create a list, but instead creates a generator object, which holds the
instructions to calculate the square of each number from 1 to 5. To get the values from
the generator, we must use a for loop:

for num in squares:

 print(num)

Output:

1

4

9

16

25

In this example, the expression x * x is used to calculate the square of each number. The

119 SGOU - SLM - BSc - Introduction to Python Programming

range(1, 6) generates numbers from 1 to 5. The generator expression processes each
number one by one, calculates the square, and prints it. This way, the program doesn’t
create and store the whole list in memory, it only keeps the current value it’s working
with, making it more memory efficient.

Example 2: Even numbers from 1 to 10

Now let’s create a generator to filter even numbers from a list of numbers 1 to 10:

numbers = range(1, 11)

evens = (num for num in numbers if num % 2 == 0)

for val in evens:

 print(val)

Output:

2

4

6

8

10

Here, range(1, 11) creates numbers from 1 to 10. The generator expression (num for
num in numbers if num % 2 == 0) goes through each number and checks if it is even
(i.e., divisible by 2). If the number is even, it is included in the generator. The for loop
then prints each even number one at a time. This method is useful for filtering data
while keeping the memory usage low.

2.4.2.1 Comparison of List Comprehension and Generator Expressions

Table 2.4.1 Comparison of List Comprehension and Generator Expressions

Features List Comprehension Generator Expression
Brackets Used Uses square brackets [] Uses round brackets ()
How values are stored Stores all values at once in memory Creates one value at a time
Memory usage Uses more memory Uses less memory (more

efficient)
When to use When you need all results

immediately
When you need values one
by one (e.g., in a loop)

2.4.3 Iterators and Iterable Objects
When we write programs in Python, we often deal with collections of data like lists,
strings, or dictionaries. Many times, we want to go through each item in these collections
one by one. To make this possible, Python provides two important concepts: iterables

120 SGOU - SLM - BSc - Introduction to Python Programming

and iterators. These concepts work behind the scenes whenever you use a for loop.
Understanding the difference between them helps you write better and more efficient
code, especially when dealing with large amounts of data.

In the following sections, we will explore what iterables and iterators are, how they
work, and how they differ from each other, using simple examples.

2.4.3.1 What is an Iterable?
An iterable is any object in Python that contains a collection of items and allows you to
go through those items one by one. This means you can access each item in the object
one after the other, usually by using a for loop. For example, when you have a list of
fruits and you want to print each fruit one by one, you can do that using a for loop
because the list is iterable.

Common Examples of Iterables:

	♦ Lists – e.g., [1, 2, 3]

	♦ Tuples – e.g., (1, 2, 3)

	♦ Strings – e.g., “Hello”

	♦ Sets – e.g., {1, 2, 3}

	♦ Dictionaries – e.g., {“name”: “John”, “age”: 25}

Consider the following program:

fruits = [“apple”, “banana”, “mango”]

for fruit in fruits:

 print(fruit)

In this example, fruits is a list containing three elements: “apple”, “banana”, and
“mango”. In Python, lists are iterable objects, meaning they can be traversed one
element at a time. By using a for loop, we can go through each item in the list. During
each iteration, the variable fruit takes on the value of the current element, and the print()
function displays it.

2.4.3.2 What is an Iterator?
In Python, an iterator is a tool that helps us go through items in a group, one at a time.
This group can be a list, a string, or a set of items. What makes an iterator special is that
it remembers where it left off, so it knows which item to give you next.

To use an iterator, we first need an iterable- an object like a list or string that contains
multiple items. We then use the iter() function to turn this iterable into an iterator. Once
we have the iterator, we can use the next() function to get the items one after another.

Two Important Functions:

	♦ iter() – Turns a list or other collection into an iterator.

121 SGOU - SLM - BSc - Introduction to Python Programming

	♦ next() – Gives the next item from the iterator. If there are no more items left,
Python shows a StopIteration message.

Example:

fruits = [“apple”, “banana”, “mango”]

it = iter(fruits)

print(next(it))

print(next(it))

print(next(it))

Output:

apple

banana

mango

In this example, we first create a list called fruits with three items: “apple”, “banana”,
and “mango”. We then use the iter() function to turn the list into an iterator and store
it in the variable it. Using the next() function, we get each item one by one from the
iterator. The first call to next(it) gives “apple”, the second gives “banana”, and the third
gives “mango”. If we try to call next(it) again after this, Python shows a StopIteration
error because there are no more items left in the list.

Recap

	♦ In Python, a list is a common example of an iterable object, which means it
can be looped over using a for loop.

	♦ The for loop is used to access each element in a list or any iterable, allowing
sequential processing of items.

	♦ List comprehensions offer a concise way to create new lists by combining
loops and conditions into a single line of code.

	♦ A list comprehension typically includes an expression, a loop, and an
optional condition to filter elements.

	♦ For example, [x for x in numbers if x % 2 == 0] generates a list of even
numbers from an existing list.

	♦ Generator expressions are similar to list comprehensions but use parentheses
instead of square brackets and generate items one at a time (lazily).

	♦ The built-in function iter() is used to create an iterator from an iterable, and
next() retrieves the next item from the iterator.

122 SGOU - SLM - BSc - Introduction to Python Programming

Objective Type Questions

1.	 What is the output type of a list comprehension?

2.	 What do generator expressions use instead of square brackets?

3.	 Which function is used to get the next item from an iterator?

4.	 What exception is raised when an iterator has no more items?

5.	 What function is used to convert an iterable into an iterator?

6.	 What type of object does a generator expression return?

7.	 Are strings iterable in Python?

8.	 What type of comprehension uses []?

9.	 Can generator expressions be used in a for loop directly?

10.	What Python data structure allows filtering and looping in one line?

Answers to Objective Type Questions

1.	 List

2.	 Parentheses()

3.	 next

4.	 StopIteration

5.	 iter

6.	 Generator

7.	 Yes

8.	 List

9.	 Yes

10.	Comprehension

123 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

1.	 Explain with examples how list comprehensions work in Python.

2.	 Write a Python program to generate a list of even numbers from 1 to 20
using list comprehension.

3.	 Differentiate between iterators and iterable objects in Python with suitable
examples.

4.	 What is a generator expression? How is it different from a list comprehension?

5.	 Using the iter() and next() functions, write a program to manually access
each element in a list of five fruits.

Suggested Reading

1.	 Brown, Martin C. Python: The complete reference. Osborne/McGraw-Hill,
2001.

2.	 Jose, Jeeva. Taming Python by Programming. KHANNA PUBLISHING
HOUSE.

3.	 Lutz, Mark. Learning python: Powerful object-oriented programming. “
O’Reilly Media, Inc.”, 2013.

Reference

1.	 https://www.w3schools.com/python/

2.	 https://www.learnpython.org/

Functions, Modules,
Packages and Regular
Expressions3

Unit 1
 Functions

Learning Outcomes

Prerequisites

	♦ familiarize the concept of functions and explain their role in structuring and
organizing Python programs efficiently.

	♦ differentiate between built-in functions and user-defined functions, and
apply them appropriately in various coding scenarios.

	♦ demonstrate the ability to define functions using different types of arguments
such as positional, keyword, default, variable-length, and unpacked
arguments.

	♦ analyze how Python handles function arguments with respect to mutable
and immutable data types using the concepts of pass by reference and pass
by value.

	♦ develop and use advanced function techniques such as recursive functions,
lambda (anonymous) functions, and nested functions to solve real-world
programming problems.

After completing this section, learners will be able to:

Consider a program that needs to calculate the area of multiple rectangles at different
points in the code. Writing the same formula repeatedly not only clutters the program
but also increases the chance of errors. As Python programs grow larger and more
complex, writing all the code in a single block becomes difficult to manage. Repeating
the same logic in multiple places leads to redundancy and makes maintenance harder.
Functions help break down a large problem into smaller, manageable tasks, making the
code more structured. They allow code to be reused by defining it once and calling it
multiple times with different inputs. This improves readability, reduces errors, and sim-
plifies debugging. Functions also support better testing and make collaboration easier
by organizing code into independent, logical units. Overall, functions promote modu-
larity, efficiency, and clarity in Python programming.

Discussion
A function is a block of statements that performs a particular task. The main idea behind
the function is to put some commonly or repeatedly done tasks together and can use
functions whenever we need to perform the same task multiple times without writing
the same code again. As our program grows larger and larger, functions make it more
organized and manageable.

3.1.1 Advantages of functions

Modularity: Functions break down complex programs into smaller, manageable parts,
making code more understandable, testable, and maintainable. They promote code
reusability and the principle of avoiding repetition.

Code Organization: Functions provide a structured approach to programming by
dividing code into logical units. This improves overall code navigation, comprehension,
and reduces the likelihood of errors. Well-organized code is easier to read and maintain.

Reusability: Functions enable code reuse, allowing them to be called multiple times
with different inputs. This eliminates the need for redundant code, promoting efficient
programming practices.

Abstraction: Functions hide internal implementation details, allowing users to focus
on what the function does and how to use it. This simplifies programming and promotes
a higher-level understanding of the program’s functionality.

Testing and Debugging: Functions facilitate testing and debugging efforts as
they can be individually tested to ensure proper functionality. Debugging becomes
more manageable as errors can be isolated to specific functions, enabling focused
troubleshooting.

Collaboration: Functions promote collaboration by dividing code into independent
units, enabling different team members to work on separate functions concurrently.
Functions also facilitate code sharing and open-source collaboration within the Python
community.

Code Maintainability: Functions enhance code maintainability by isolating specific
tasks. Updates or changes can be made to individual functions, reducing the risk of
introducing bugs. This simplifies the maintenance process, particularly in large and
complex projects.

3.1.2 Types of function
There are two types of functions:

Def, Return, Arguments, Parameters, Scope, Lambda, Recursion, Built-in Functions

Key words

126 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Built-in functions

	♦ User defined functions

3.1.2.1 Built-in Functions
Built-in functions are an integral part of Python’s standard library, offering a broad range
of functionalities that streamline coding tasks. These functions are readily accessible
without the need for additional installation or setup. An example of such a fundamental
built-in function is print(), which enables us to display text or variables on the console.
By simply passing the desired content as arguments, we can swiftly output information
to the user. Executing print(“Hello, world!”) will print the phrase “Hello, world!” on
the console.

Python’s built-in functions provide numerous ways to manipulate and analyze data.
One such function is sorted(), which returns a new list containing the sorted elements
from the input iterable. Using sorted([5, 2, 7, 1, 3]) will yield [1, 2, 3, 5, 7], showcasing
how the function arranges the elements in ascending order. Another useful built-in
function is len(), which determines the length of an object, such as a string, list, or
tuple. By employing len(), we can quickly ascertain the number of elements in a given
collection. For example, len(“Python”) will return the value 6, representing the length
of the string “Python”.

Python’s built-in functions also facilitate convenient mathematical operations. The abs()
function, for instance, returns the absolute value of a number, disregarding its sign and
providing the positive value. Hence, executing abs(-5) will yield 5. Additionally, the
round() function allows us to round a floating-point number to a specified number of
decimal places. For example, round(3.14159, 2) will return 3.14, rounding the number
to two decimal places. These built-in mathematical functions offer flexibility when
performing calculations and are commonly employed in various applications.

3.1.2.2 User Defined functions
User-defined functions are those functions that we define ourselves to do certain specific
tasks. A user-defined function in Python is a piece of code that you create to perform
a particular task. It enables you to group a set of instructions together under a unique
name, enhancing the modularity and organization of your code. This named entity
becomes a custom function within your program, allowing you to call it repeatedly
with different inputs.

3.1.3 Creating a Function
We can define our own functions in Python by using the “def” keyword.
The syntax of a Python function is

def function_name(parameter1, parameter2, ...):

''''''

 Docstring: Description of the function (optional).

''''''

127 SGOU - SLM - BSc - Introduction to Python Programming

 # Function body : Code block that defines the behavior of the function

 # This can include variable declarations, conditional statements, loops, etc.

 # Optional return statement to specify the value(s) to be returned called return value

To define a function in Python, we use the “def” keyword, followed by the function
name, which should be a valid identifier in Python. If the function takes any parameters,
they are placed within parentheses and separated by commas.

A docstring, which is an optional multi-line string enclosed in triple quotes (“””), can be
included right after the function definition. This docstring provides a brief description
of the function’s purpose, parameters, and return values.

The function body comprises the code block that specifies the behavior of the function.
It starts with a colon (:) and is indented consistently. The body can contain multiple
statements, all indented at the same level.

If the function is expected to return a value, the “return” statement is used to specify
the value(s) to be returned. The return statement is optional, and if it is not included,
the function will automatically return None. It is possible to return a single value or
multiple values separated by commas.

Here is a simple python function definition:

 	 def greet(name): '''''' Prints a greeting message.''''''

	 print(''Hai, '' + name + ''!'')

In this example, we have defined a function called greet that takes a parameter called
name. The function’s purpose is to print a greeting message to the console. When the
function is called with a specific name, it will print “Hai, “ followed by the provided
name and an exclamation mark.

3.1.4 Calling a Function
To call a function in Python, you simply write the function name followed by parentheses.
If the function requires any arguments, you provide them inside the parentheses.

To call the above example function, we write:

greet(“Ann”)

Here the passed string argument is “Ann”. The function is then executed, resulting in
the output “Hai, Aan!” being displayed on the console.

3.1.5 Arguments
Arguments are the values that you pass to a function during its invocation. They serve
as inputs for the function to perform specific operations or calculations. Python supports
various types of arguments which are included below.

128 SGOU - SLM - BSc - Introduction to Python Programming

3.1.5.1 Positional Arguments
These arguments are provided to a function in the same order as they are defined in the
function’s parameter list. The values are assigned to the respective parameters based
on their positions.

Example:

def add_numbers(x, y):

 ''''''Adds two numbers.''''''

 	 return x + y

result = add_numbers(3, 5)

print(result)

Output: 8

In this example, 3 is assigned to x and 5 is assigned to y based on their positions.

3.1.5.2 Keyword Arguments
With keyword arguments, you explicitly specify the parametername followed by the
corresponding value, separated by an equal sign. This allows you to pass arguments in
any order, disregarding their position in the parameter list.

Example:

def add_numbers(x, y):

 “””Adds two numbers.”””

 return x + y

result = add_numbers(y=4, x=2)

print(result)

Output: 6

Here, the function is called with keyword arguments, allowing us to specify the values
explicitly.

3.1.5.3 Default Arguments
Default arguments have predefined values assigned to them in the function’s parameter
list. If an argument is not supplied during the function call, the default value is used
instead.

Example:

def greet(name, message=”Hai”):

 “””Prints a personalized greeting.”””

129 SGOU - SLM - BSc - Introduction to Python Programming

 print(message + “, “ + name)

greet(“Ann”) # Output: Hai, Ann

greet(“Balu”, “Hello”)

Output: Hello, Balu

In this example, the message parameter has a default value of “Hai”. If not provided,
the default value is used.

3.1.5.4 Variable-length Arguments
Python functions can accept a varying number of arguments. To achieve this, you can
use the asterisk (*) before a parameter name for variable-length positional arguments,
or two asterisks (**) for variable-length keyword arguments.

Example:

def add(*numbers):

 “””Addition of numbers.”””

 total = sum(numbers)

 return total

result = add(1, 2, 3, 4, 5)

print(result)

Output: 15

The function add accepts a variable number of positional arguments using *numbers.
The arguments are treated as a tuple inside the function.

3.1.5.5 Unpacking Arguments
Arguments can be unpacked from a list or tuple using the asterisk (*) operator. This
allows you to pass the individual elements of a sequence as separate arguments to a
function.

Example:

def add(a, b, c):

 “””Adds three numbers.”””

 return a + b + c

numbers = [2, 3, 4]

result = add(*numbers)

print(result)

130 SGOU - SLM - BSc - Introduction to Python Programming

Output: 9

In this example, the elements of the numbers list are unpacked using * and passed as
separate arguments to the add function.

3.1.6 Pass by Reference and Pass by Value
In languages such as C++ or Java, it’s important to know whether function arguments
are passed by value or by reference. Python, however, uses a different approach that
can be confusing. It doesn’t strictly use either method. Instead, Python employs a model
known as pass by object reference, or sometimes call by sharing.

3.1.6.1 Pass by Reference (Mutable Objects):
In Python, when an object is passed as an argument to a function using pass by
reference, a reference to the object’s memory location is passed. This means that any
modifications made to the object within the function will impact the original object
outside the function as well.

However, it’s important to note that in Python, all variable assignments are references
to objects. So when an object is passed to a function, a reference to the object is passed
as well. If the function modifies the object directly, the changes will be visible outside
the function since it operates on the same underlying object.

Example:

def modify_list(lst):

 lst.append(4) # Modifying the list within the function

test_list = [1, 2, 3]

modify_list(test_list)

print(test_list) 	

Output: [1, 2, 3, 4]

In this example, the test_list object (a list) is passed to the modify_list function. The
function modifies the list by appending an element. Since lists are mutable objects, the
changes made to the list within the function are also reflected in the original list outside
the function.

3.1.6.2 Pass by Value (Immutable Objects):
When using pass by value, a copy of the object’s value is passed as an argument to a
function. This means that any modifications made to the object within the function do
not affect the original object outside the function.

However, it’s important to note that in Python, objects of immutable types, such as
integers, strings, and tuples, are passed by value. If the function modifies the object
directly, a new object is created, while the original object remains unchanged.

131 SGOU - SLM - BSc - Introduction to Python Programming

Example:

def modify_number(num):

 num += 1 # Modifying the number within the function

test_number = 5

modify_number(test_number)

print(test_number)

Output: 5

In this example, the test_number object (an integer) is passed to the modify_number
function. However, integers are immutable objects in Python. Therefore, any
modifications made to the num variable within the function do not affect the original
test_number object outside the function.

3.1.7 Scope and Lifetime of Variables
Scope and lifetime of variables determine where and for how long a variable is accessible
and exists in a program.

3.1.7.1 Scope
Global Scope: Variables defined outside any function or class have global scope,
meaning they can be accessed from anywhere within the program.

Local Scope: Variables defined inside a function or block have local scope, which
means they are only accessible within that specific function or block.

Lifetime

Global Variables: Global variables are created when the program starts and persist
throughout the entire execution of the program. They are destroyed when the program
terminates.

Local Variables: Local variables have a limited lifetime within the scope of the function
or block in which they are defined. They are created when the function or block is
entered and cease to exist when the function or block is exited.

Example:

def test_function():

local_var = 15 # Local variable within the function

print(“Local variable:”, local_var)

global_var = 25 # Global variable

test_function()

print(“Global variable:”, global_var)

132 SGOU - SLM - BSc - Introduction to Python Programming

Output

Local variable: 15

Global variable: 25

In this example, we have a function called test_function() that defines a local variable
local_var with a value of 15. This variable is only accessible within the scope of the
function. When the function is called, the local variable is created and printed.

We also have a global variable global_var defined outside the function. Global variables
are accessible from anywhere in the program. It is printed after the function call.

When we run the program, the output will be:

Local variable: 15

Global variable: 25

Here, we can see that the local variable local_var is accessible and exists within the
scope of the function test_function(). Once the function finishes executing, the local
variable is destroyed.

On the other hand, the global variable global_var has a global scope, and it persists
throughout the entire program execution.

3.1.8 Return Values
Return values in Python pertain to the values that a function can provide to the caller
once it has executed its tasks. The return statement is employed to indicate the specific
value that a function will return.

3.1.8.1 Single Value Return:

To return a single value, a function employs the return statement followed by the value
that will be returned. This allows the function to provide a single result to the caller.

Example:

def multiply(a, b):

return a * b

result = multiply(3, 4)

print(result)

Output: 12

By utilizing the return statement, the multiply function returns the product of two
numbers, and the resulting value is assigned to the variable “result.”

Multiple Value Return: Functions have the ability to return multiple values by listing
them separated by commas within the return statement. This allows the function to
provide multiple results as a tuple or any other sequence type.

133 SGOU - SLM - BSc - Introduction to Python Programming

Example:

def get_person_details():

name = “Ann”

age = 25

occupation = “Teacher”

return name, age, occupation

person = get_person_details()

print(person)

Output: (“Ann”, 25, “Teacher”)

3.1.8.2 Empty Return
In situations where a return statement is encountered without a value or if a function
lacks a return statement, Python implicitly returns None.

Example:

def is_even(number):

 if number % 2 == 0:

 return True

 	 else:

 	 return

result1 = is_even(4)

result2 = is_even(5)

print(result1) # Output: True

print(result2) # Output: None

In this example, we have a function called is_even() that checks whether a given number
is even. If the number is divisible by 2, the function returns True using the return True
statement. If the number is not even, the function does not explicitly provide a return
value.

When we call is_even() with the number 4, the function returns True, indicating that 4
is an even number. We assign the return value to the variable result1 and print it, which
outputs True.

When we call is_even() with the number 5, which is an odd number, the function does
not have a return statement for this case. In such situations, Python implicitly returns

134 SGOU - SLM - BSc - Introduction to Python Programming

None. We assign the return value to the variable result2 and print it, which outputs
None.

3.1.9 Function within Functions
In Python, it is permissible to define a function within another function, which is referred
to as a nested function or a function within a function. This allows for the creation of
a local function that can only be accessed and invoked from within the enclosing
function. The inner function has visibility and access to the variables and parameters
of the outer function, forming a nested scope.

Example:

def outer_function():

 def inner_function():

 print(“This is the inner function”)

 print(“This is the outer function”)

 	 inner_function()

outer_function()

In this example, the outer_function defines the inner_function within it. When the
outer_function is called, it prints “This is the outer function” and then invokes the
inner_function. The inner_function, in turn, prints “This is the inner function”.

3.1.10 Anonymous Functions
Anonymous functions in Python are also known as lambda functions. They are compact
and inline functions that can be defined without the traditional “def” keyword. Instead,
lambda functions are created using the “lambda” keyword, followed by a parameter
list, a colon (:), and an expression that defines the function’s behavior.

The basic syntax of a lambda function can be summarized as follows:

3.1.11 lambda arguments: expression
Lambda functions are commonly used for simple, one-line operations, especially in
situations where a full function definition is not necessary or practical. They are often
employed as arguments to other functions or utilized within functional programming
paradigms.

For example, consider a lambda function that calculates the square of a given number:

square = lambda x: x ** 2

result = square(5)

print(result)

Output: 25

135 SGOU - SLM - BSc - Introduction to Python Programming

In this example, we define a lambda function named “square” that takes an argument
“x” and returns its square. We then call the lambda function with the argument “5” and
store the result in the variable “result”. Finally, we print the value of “result”, which
outputs “25”.

Recursive Function
A recursive function is a function that invokes itself during its execution. It is employed
when a problem can be divided into smaller, similar subproblems. With each recursive
call, the function addresses a reduced version of the problem until a base case is
encountered, which serves as the stopping condition for the recursion.

Example:

def factorial(n):

 if n == 0:

 return 1

 else:

 	 return n * factorial(n - 1)

In this example, the factorial function takes an integer n as an argument. It checks if n
is equal to 0, which represents the base case. If it is, the function returns 1. Otherwise,
it recursively calls itself with the argument n - 1 and multiplies the result by n. This
process continues until the base case is reached.

Let’s use this function to calculate the factorial of 5:

result = factorial(5)

print(result)

Output: 120

In this case, we call the factorial function with the argument 5 and assign the result to
the variable result. The factorial of 5 is calculated by recursively multiplying 5 by the
factorial of 4, which further multiplies 4 by the factorial of 3, and so on, until we reach
the base case. The final result, 120, is then printed.

Recap

	♦ A function is a block of reusable code that performs a specific task, helping
avoid code repetition.

	♦ Functions divide large programs into smaller, manageable parts, making the
code easier to understand and test.

	♦ Functions help structure code into logical sections, improving readability
and maintainability.

	♦ Once defined, a function can be called multiple times with different inputs,
reducing redundancy.

136 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Functions hide the implementation details and allow the user to focus on
what the function does.

	♦ Functions can be tested individually, making it easier to isolate and fix errors.

	♦ Code can be divided into functions so multiple team members can work on
different tasks concurrently.

	♦ Python supports built-in functions (like print(), len(), abs()) and user-defined
functions created using the def keyword.

	♦ Functions are defined using def, followed by the function name, parentheses
(with parameters), and a colon.

	♦ To execute a function, call it using its name followed by parentheses,
optionally passing arguments.

	♦ Arguments are inputs passed to functions. Types include:

•	 Positional (ordered)

•	 Keyword (named)

•	 Default (with default values)

•	 Variable-length (*args, **kwargs)

•	 Unpacking (using * to unpack sequences)

	♦ Mutable types (like lists) are passed by reference, and changes inside the
function affect the original object.

	♦ Immutable types (like strings and integers) behave as if passed by value; changes
inside the function do not affect the original object.

	♦ Variables defined outside functions have global scope and can be accessed
throughout the program.

	♦ Variables defined inside functions have local scope and only exist during the
function’s execution.

	♦ The return statement is used to send data back from a function. Functions can
return a single value, multiple values, or None.

	♦ Functions can be defined inside other functions. These are called nested or
inner functions.

	♦ Lambda (anonymous) functions are short, one-line functions created with
the lambda keyword.

137 SGOU - SLM - BSc - Introduction to Python Programming

Objective Type Questions

1.	 What keyword is used to define a function in Python?

2.	 What type of function is print() in Python?

3.	 What is the term for functions defined by the user?

4.	 Which keyword is used to return a value from a function?

5.	 What type of argument allows passing values without considering order?

6.	 What symbol is used for variable-length positional arguments?

7.	 What kind of function is defined without a name using the lambda keyword?

8.	 What is the default return value of a function that has no return statement?

9.	 What type of scope does a variable defined inside a function have?

10.	What is the process of calling a function from within itself called?

11.	Which function returns the length of a string or list?

12.	Which function returns the absolute value of a number?

13.	What is the keyword used to define an anonymous function?

14.	What is the term used when a function is defined inside another function?

15.	What is the name of the model used in Python for argument passing?

	♦ Example of lambda function:

square = lambda x: x ** 2

print(square(5)) # Output: 25

	♦ Recursive functions call themselves to solve problems that can be broken into
smaller similar problems (e.g., factorial).

Answers to Objective Type Questions

1.	 def

2.	 Built-in

138 SGOU - SLM - BSc - Introduction to Python Programming

3.	 User-defined

4.	 return

5.	 Keyword

6.	 *

7.	 Lambda

8.	 None

9.	 Local

10.	Recursion

11.	len

12.	abs

13.	lambda

14.	Nested

15.	Sharing

Assignments

1.	 Explain the advantages of using functions in Python programming.
Discuss how modularity, reusability, code organization, abstraction, and
maintainability contribute to better software design. Provide examples to
support your explanation.

2.	 Differentiate between built-in functions and user-defined functions in
Python. Define each type, give at least three examples for built-in functions,
and explain the syntax and use of user-defined functions with suitable code.

3.	 Discuss various types of function arguments supported in Python.
Elaborate on positional, keyword, default, variable-length, and unpacked
arguments. Include sample programs to demonstrate how each type works.

4.	 What is the difference between pass by value and pass by reference in Python?
With the help of appropriate examples, explain how mutable and immutable
objects behave when passed to a function in Python.

139 SGOU - SLM - BSc - Introduction to Python Programming

5.	 Explain scope and lifetime of variables in Python with examples.
Describe global and local scope and variable lifetimes using code snippets.
Also, explain how scope affects variable access inside and outside functions.

6.	 Define and compare recursive functions, lambda functions, and nested functions.
Explain the concept of each, including syntax and use-cases. Provide
examples to show how and when each type of function can be used effectively.

140 SGOU - SLM - BSc - Introduction to Python Programming

Unit 2
 Built-in Functions and Lambda

Functions

Learning Outcomes

Prerequisites

	♦ explore Python’s built-in numeric and mathematical functions.

	♦ explain the use of string methods for text manipulation.

	♦ utilize list methods for data operations.

	♦ perform type conversions in Python.

	♦ familiarize lambda functions.

After completing this section, learners will be able to:

Have you ever wondered how Python can instantly tell you the maximum of a list of
numbers, or change a string to uppercase with just a single word? Python comes with
a powerful set of built-in tools that make coding faster, cleaner, and more enjoyable.
These features are used every day by developers to solve real-world problems with
minimal effort.

As you explore Python further, you’ll begin to notice how often you repeat certain tasks
like cleaning up text, organizing data in a list, or transforming values. Wouldn’t it be
great if Python had shortcuts for these common actions? The good news is, it does! And
learning them not only saves time but also makes your code look more professional.

There’s also something special about writing functions without even giving them a
name - yes, that’s possible! With just a few keystrokes, you can embed logic directly
where it’s needed. These compact expressions can change the way you think about pro-
gramming. Ready to unlock Python’s hidden potential? Let’s begin.

Key words

abs(), round(), pow(), upper(), lower(), append(), remove(), Lambda functions

3.2.1 Python Built-in Functions
Python simplifies mathematical operations by providing a rich set of built-in functions
that can be used directly, without importing any external modules. These functions
handle common numeric tasks such as calculating absolute values, powers, minimum
and maximum values, rounding, and more. Whether you’re working with integers,
floating-point numbers, or performing basic arithmetic operations, Python’s built-in
numeric and mathematical functions offer reliable and efficient tools to support your
programming needs. Understanding these functions is essential for writing clean,
concise, and effective code.

3.2.1.1 Numeric and Mathematical Functions
Python provides several built-in numeric and mathematical functions that allow you
to perform common mathematical operations without importing any external modules.
These functions are simple yet powerful tools for performing calculations, manipulating
numbers, and analyzing data.

1. abs() – Absolute Value

Returns the absolute (non-negative) value of a number.

abs(-7) → 7

abs(3.5) → 3.5

2. round() – Rounding Numbers

Rounds a floating-point number to the nearest integer or to a specified number of
decimal places.

round(3.14159) → 3

round(3.14159, 2) → 3.14

3. pow() – Exponentiation

Returns the value of a number raised to the power of another number.

pow(2, 3) → 8 # Same as 23

pow(2, 3, 5) → 3 # (23) % 5 = 8 % 5 = 3

4. min () – Minimum Value

Returns the smallest value among multiple values or in an iterable.

min(5, 3, 9) → 3

min([4, 1, 7]) → 1

5. max() – Maximum Value

Returns the largest value among multiple values or in an iterable.

Discussion

142 SGOU - SLM - BSc - Introduction to Python Programming

max(5, 3, 9) → 9

max([4, 1, 7]) → 7

6. sum() – Sum of Elements

Returns the total of all numeric values in an iterable (like a list or tuple).

sum([1, 2, 3, 4]) → 10

sum((5, 5, 5)) → 15

7. divmod() – Quotient and Remainder

Returns a tuple containing the quotient and the remainder when dividing two numbers.

divmod(10, 3) → (3, 1) # 10 // 3 = 3, 10 % 3 = 1

8. bin(), oct(), hex() – Number Base Conversions

bin() – Converts an integer to binary format

oct() – Converts an integer to octal format

hex() – Converts an integer to hexadecimal format

bin(10) → ‘0b1010’

oct(10) → ‘0o12’

hex(10) → ‘0xa’

3.2.1.2 Built-in String methods in Python
Strings in Python come with a variety of built-in methods that allow easy manipulation,
searching, and formatting. These methods return new strings or values without
modifying the original string (since strings are immutable).

1. upper() – Convert to Uppercase

Converts all characters in the string to uppercase.

“hello”.upper() → “HELLO”

2. lower() – Convert to Lowercase

Converts all characters in the string to lowercase.

“HELLO”.lower() → “hello”

3. capitalize() – Capitalize first letter

Capitalizes the first character and makes the rest lowercase.

“python”.capitalize() → “Python”

4. title() – Capitalize each word

143 SGOU - SLM - BSc - Introduction to Python Programming

Capitalizes the first letter of each word in the string.

“hello world”.title() → “Hello World”

5. strip() – Remove Whitespace

Removes leading and trailing whitespace.

“ hello “.strip() → “hello”

6. replace(old, new) – Replace Substring

Replaces all occurrences of a substring with another.

“banana”.replace(“a”, “o”) → “bonono”

7. find(sub) – Find Substring

Returns the index of the first occurrence of the substring. Returns -1 if not found.

“hello”.find(“e”) → 1

8. count(sub) – Count Substring

Counts how many times a substring occurs in the string.

“banana”.count(“a”) → 3

9. startswith(prefix) / endswith(suffix)

Checks whether the string starts or ends with a particular substring.

“python”.startswith(“py”) → True

“notes.txt”.endswith(“.txt”) → True

10. split(sep) – Split into List

Splits the string into a list based on a separator (default is space).

“one,two,three”.split(“,”) → [‘one’, ‘two’, ‘three’]

11. join(iterable) – Join Elements with Separator

Joins elements of an iterable into a single string with the current string as a separator.

“-”.join([“a”, “b”, “c”]) → “a-b-c”

12. isalpha(), isdigit(), isalnum() – Character Checks

isalpha() – True if all characters are alphabetic.

isdigit() – True if all characters are digits.

isalnum() – True if all characters are alphanumeric.

“abc”.isalpha() → True

144 SGOU - SLM - BSc - Introduction to Python Programming

“123”.isdigit() → True

“abc123”.isalnum() → True

3.2.1.3 Built-in List methods

1. append(x) – Add item to end

Adds an item x to the end of the list.

list1 = [1, 2, 3]

list1.append(4)

print(list1) → [1, 2, 3, 4]

2. extend(iterable) – Add multiple items

Adds all elements of an iterable (like a list or tuple) to the end.

list1 = [1, 2, 3]

list1.extend([4, 5])

print(list1) → [1, 2, 3, 4, 5]

3. insert(i, x) – Insert at position

Inserts item x at position i.

list1 = [1, 2, 4]

list1.insert(2, 3)

print(list1) → [1, 2, 3, 4]

4. remove(x) – Remove item by value

Removes the first occurrence of item x.

list1 = [1, 2, 3, 2]

list1.remove(2)

print(list1) → [1, 3, 2]

5. pop([i]) – Remove and return item

Removes and returns the item at index i. If i is not given, removes the last item.

list1 = [1, 2, 3]

list1.pop() → 3

print(list1) → [1, 2]

list1.pop(0) → 1

145 SGOU - SLM - BSc - Introduction to Python Programming

print(list1) → [2]

6. index(x) – Find Index of Item

Returns the index of the first occurrence of item x.

list1 = [10, 20, 30]

list1.index(20) → 1

7. count(x) – Count Occurrences

Returns the number of times item x appears in the list.

list1 = [1, 2, 2, 3, 2]

list1.count(2) → 3

8. sort() – Sort List

Sorts the list in ascending order (modifies the list in-place).

list1 = [3, 1, 2]

list1.sort()

print(list1) → [1, 2, 3]

9. reverse() – Reverse the List

Reverses the order of elements in-place.

list1 = [1, 2, 3]

list1.reverse()

print(list1) → [3, 2, 1]

10. clear() – Remove All Items

Removes all elements from the list.

list1 = [1, 2, 3]

list1.clear()

print(list1) → []

3.2.1.4 Type Conversion
Type conversion functions allow you to convert data from one type to another. These
are especially useful when handling user input, file data, or performing operations
between different data types.

int() – Converts a value to an integer.

Example: int(‘5’) → 5

146 SGOU - SLM - BSc - Introduction to Python Programming

float() – Converts a value to a floating-point number.

Example: float(‘3.14’) → 3.14

str() – Converts a value to a string.

Example: str(100) → ‘100’

list(), tuple(), dict(), set() – Convert iterables to their respective data structure types.

Example: list(‘abc’) → [‘a’, ‘b’, ‘c’]

3.2.2 Lambda Function
A Python lambda function is an anonymous, compact function created using the lambda
keyword. Lambda functions are useful in situations where you need a short, throwaway
function for a limited purpose.

3.2.2.1 Why is the Lambda function needed?

1.	 Concise Function Definition : Lambda functions allow you to define small
functions in a single line, which makes your code more concise and readable

2.	 Ideal for One-Time Use : Lambda functions are often used when a function
is needed temporarily and does not require a formal name.

3.	 Useful in Functional Programming : Lambda functions work well with
functions like map(), filter(), and reduce(), which expect another function
as an argument.

4.	 Simplifies Callbacks and Event Handlers : In GUI applications or
asynchronous programming, lambda helps define quick callback functions.

5.	 Cleaner Code for Simple Operations: Avoids the overhead of formally
defining a function when a single expression will suffice.

Unlike regular functions defined with def, lambda functions have no name and consist
of a single expression whose result is automatically returned.

Syntax

	 lambda arguments : expression

Where
arguments are the input parameters to the lambda function. A lambda function can take
any number of arguments, separated by commas and

expression is the single expression that the lambda function evaluates and returns.

Example

	 square = lambda x: x * x

	 print(square(5)) # Output: 25

147 SGOU - SLM - BSc - Introduction to Python Programming

Lambda functions are not a replacement for regular functions but are needed for
brevity, clarity, and convenience in specific situations where a short, unnamed function
is sufficient.

3.2.2.2 Use cases of Lambda function

1. Used with Built-in Functions like map(), filter(), and reduce()

These functions expect another function as an argument. Lambda functions are often
used here because the logic is simple and doesn’t require a named function.

map() – Applies a function to every element in a list (or any iterable).

nums = [1, 2, 3, 4]

squares = list(map(lambda x: x * x, nums))

print(squares) # Output: [1, 4, 9, 16]

➤ Here, lambda x: x*x computes the square of each number in the list.

filter() – Filters elements based on a condition.

nums = [1, 2, 3, 4, 5]

evens = list(filter(lambda x: x % 2 == 0, nums))

print(evens) # Output: [2, 4]

➤ This lambda returns True for even numbers, so only those are included.

reduce() – Repeatedly applies a function to the items of a list to reduce it to a single

value. (You must import it from functools)

from functools import reduce

nums = [1, 2, 3, 4]

product = reduce(lambda x, y: x * y, nums)

print(product) # Output: 24

➤ This multiplies all elements together using the lambda.

2. Sorting with custom keys

Lambda is often used in the key argument of sorted() when sorting objects based on a
certain rule.

names = [‘john’, ‘Alice’, ‘bob’]

sorted_names = sorted(names, key=lambda x: x.lower())

print(sorted_names) # Output: [‘Alice’, ‘bob’, ‘john’]

148 SGOU - SLM - BSc - Introduction to Python Programming

➤ Here, sorting is done alphabetically without case sensitivity using lambda x:
x.lower().

3. Short functions for GUI or Callback-based Code

In GUI or event-driven programs, lambda can define quick actions (callbacks) without
a separate function.

button_click = lambda: print(“Button clicked”)

button_click() # Output: Button clicked

➤ A lambda is used to define what should happen when a button is clicked—no need
for a separate named function.

4. Inline function in List Comprehensions

You can use lambda inside comprehensions when applying simple operations to each
element.

add_five = lambda x: x + 5

updated = [add_five(i) for i in range(3)]

print(updated) # Output: [5, 6, 7]

➤ lambda x: x + 5 quickly adds 5 to each value without a full function definition.

Recap

Numeric and Mathematical Functions

	♦ abs(x) – Absolute value

	♦ round(x[, n]) – Round to nearest integer or given decimal places

	♦ pow(x, y[, z]) – Exponentiation, optional modulus

	♦ min() / max() – Smallest or largest among values or in iterable

	♦ sum(iterable) – Sum of all values

	♦ divmod(a, b) – Tuple of quotient and remainder

	♦ bin(x) / oct(x) / hex(x) – Convert integer to binary, octal, hexadecimal

Built-in String Methods

	♦ upper() / lower() – Convert to uppercase or lowercase

	♦ capitalize() / title() – Capitalize first letter or each word

	♦ strip() – Remove leading/trailing whitespace

149 SGOU - SLM - BSc - Introduction to Python Programming

	♦ replace(old, new) – Replace substring

	♦ find(sub) – Index of first occurrence, -1 if not found

	♦ count(sub) – Number of occurrences of a substring

	♦ startswith() / endswith() – Check prefix or suffix

	♦ split(sep) – Split into list using separator

	♦ join(iterable) – Join elements with separator

	♦ isalpha() / isdigit() / isalnum() – Character checks

Built-in List Methods

	♦ append(x) – Add item to end of list

	♦ extend(iterable) – Add multiple elements

	♦ insert(i, x) – Insert item at index i

	♦ remove(x) – Remove first occurrence

	♦ pop([i]) – Remove and return item (default last)

	♦ index(x) – Return index of first occurrence

	♦ count(x) – Count occurrences of value

	♦ sort() – Sort list in ascending order

	♦ reverse() – Reverse list in-place

	♦ clear() – Remove all elements from list

Type Conversion Functions

	♦ int() / float() / str() – Convert to integer, float, string

	♦ list() / tuple() / dict() / set() – Convert to respective collection types

Lambda Function

	♦ Anonymous, one-line function

	♦ Defined using lambda keyword

	♦ Syntax: lambda arguments: expression

	♦ Returns result of expression automatically

	♦ Ideal for short, throwaway logic

150 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Useful in functional and event-driven programming

Why Lambda is Needed

	♦ Concise function definition in a single line

	♦ Good for temporary use

	♦ Clean integration with map(), filter(), reduce()

	♦ Simplifies GUI callbacks and event handlers

	♦ Reduces code clutter for simple logic

Use Cases of Lambda Function

With map(), filter(), reduce()

	♦ map(lambda x: x*x, iterable) – Apply operation to each element

	♦ filter(lambda x: condition, iterable) – Keep elements meeting condition

	♦ reduce(lambda x, y: x*y, iterable) – Combine all items into one value

With sorted() and custom keys

	♦ sorted(list, key=lambda x: x.lower()) – Case-insensitive sorting

GUI callbacks or inline actions

	♦ lambda: action() – Quick inline function for events

In list comprehensions

	♦ lambda x: x + 5 – Short arithmetic operation on elements

Objective Type Questions

1.	 Which function returns the absolute value of a number?

2.	 Which keyword is used to define a lambda function?

3.	 Which string method converts all characters to lowercase?

4.	 Which list method removes the last element by default?

5.	 Which function returns both quotient and remainder?

6.	 Which function converts an integer to binary?

151 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 abs

2.	 lambda

3.	 lower

4.	 pop

5.	 divmod

6.	 bin

7.	 float

8.	 extend

7.	 Which type conversion function converts a value to a float?

8.	 Which list method is used to add multiple elements at once?

9.	 Which function is used to get the sum of a list?

10.	Which string method checks if all characters are digits?

11.	Which function returns the highest value among inputs?

12.	Which string method returns the number of occurrences of a substring?

13.	Which list method is used to sort elements?

14.	Which string method splits a string into a list?

15.	Which function is used to round a number?

16.	Which string method replaces a specific substring?

17.	Which function performs exponentiation?

18.	Which list method reverses the order of elements?

19.	Which string method capitalizes the first character of each word?

20.	Which function is commonly used with lambda for applying logic to every
item in a list?

152 SGOU - SLM - BSc - Introduction to Python Programming

9.	 sum

10.	isdigit

11.	max

12.	count

13.	sort

14.	split

15.	round

16.	replace

17.	pow

18.	reverse

19.	title

20.	map

Assignments

1.	 Discuss Python’s built-in numeric and mathematical functions. Explain the
purpose and usage of functions like abs(), round(), pow(), min(), max(),
and sum() with appropriate examples.

2.	 Describe the common built-in string methods available in Python. How do
methods like upper(), lower(), strip(), replace(), find(), and split() help in
string manipulation? Illustrate with examples.

3.	 Explain the different list methods in Python with examples. How do methods
like append(), extend(), insert(), remove(), pop(), and sort() support list
operations?

4.	 What is a lambda function in Python? Why is it needed? Write the syntax
and explain its use with at least three different use cases, such as with map(
), filter(), and sorted(). Include example code snippets.

153 SGOU - SLM - BSc - Introduction to Python Programming

References

1.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

2.	 Sweigart, A. (2015). Automate the Boring Stuff with Python: Practical
Programming for Total Beginners. No Starch Press.

3.	 Downey, A. B. (2015). Think Python: How to Think Like a Computer
Scientist (2nd ed.). Green Tea Press.

4.	 Beazley, D., & Jones, B. K. (2013). Python Cookbook (3rd ed.). O’Reilly Media.

Suggested Reading

1.	 Beazley, D., & Jones, B. K. (2013). Python Cookbook (3rd ed.). O’Reilly
Media.

2.	 VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for
Working with Data. O’Reilly Media.

Web Resources

1.	 Python Software Foundation. (n.d.). The Python Tutorial. https://docs.
python.org/3/tutorial/

2.	 W3Schools. (n.d.). Python Tutorial. https://www.w3schools.com/python/

154 SGOU - SLM - BSc - Introduction to Python Programming

Unit 3
 Modules and Packages

Learning Outcomes

Prerequisites

	♦ define modules and packages in Python.

	♦ identify different types of build-in modules in Python.

	♦ describe the process of importing modules.

	♦ explain how to describe a custom module and how Python finds and loads it
during execution.

	♦ summarize the structure and purpose of Python packages and how __init__.py
is used.

After completing this section, learners will be able to:

Before exploring modules and packages, it’s important that you understand basic
Python concepts such as variables, loops, functions, and conditional statements. These
form the building blocks of any Python program. But as your projects grow larger like
building a simple game or managing a library of books you’ll quickly find that putting
all your code into a single file becomes messy and hard to manage. That’s when you
need a better way to organize and reuse your code exactly what this unit offers.

Imagine you’re building an online shopping app. You might have one part of the code
that handles user login, another for displaying products, and another that processes
payments. Writing all of that in one file would be confusing and hard to maintain.
Instead, by using modules and packages, you can separate the code into logical parts
like login.py, products.py, and checkout.py and then import only what you need. This
approach makes the code cleaner, easier to understand, and more efficient to debug or
upgrade just like professional software developers do.

Python’s strength lies in its ability to let you write clean, reusable, and scalable code.
This unit introduces you to importing existing modules like math and random, creating
your own custom modules, and organizing them into packages. Learning this not only
saves time but also prepares you for working on real-world applications whether you’re
developing games, automating tasks, analyzing data, or building websites. By master-

Import, Variables, Custom Modules, Built-in Modules, Subpackages.

Key words

ing modules and packages, you’re taking a major step from writing simple scripts to
building powerful, well-structured programs.

Discussion
3.3.1 Introduction to Python Modules
Python modules are like ready-made toolboxes that hold useful tools (code) you can
use anytime in your programs. For example, imagine you have a box full of different
colored crayons to draw pictures you don’t have to make new crayons every time you
want to color something. In Python, if you want to do math calculations, you can use
the built-in math module, which already has many useful math functions like sqrt()
for square roots. This way, you save time and keep your code neat by using modules
instead of writing everything from scratch.

Python modules are files that contain Python code, defining functions, classes, and
variables that can be utilized in other Python programs. Their purpose is to organize and
reuse code, encouraging modularity and reusability. Modules aid in separating different
concerns and making code easier to maintain. They can be either built-in modules
included in the Python standard library or external modules developed by the Python
community and installed using tools like pip. By importing modules into our programs,
we can access their functionality and utilize their defined objects to perform various
tasks, saving time and effort by avoiding the need to write code from scratch.

Using Python modules offers many benefits that make programming easier and more
efficient. Modules help organize code into smaller, reusable parts, which improves
clarity and maintainability. They also allow you to use pre-written code, saving time

156 SGOU - SLM - BSc - Introduction to Python Programming

and effort. Overall, modules make it simpler to build, update, and manage Python
programs, especially as projects grow larger and more complex. Some key advantages
of Python modules are:

1.	 Code Reusability: You can write a piece of code once in a module and reuse
it across many programs, saving time and effort.

2.	 Better Organization: Modules help break large programs into smaller,
manageable files, making the code easier to understand and maintain.

3.	 Namespace Management: Modules provide separate namespaces, reducing
the risk of name conflicts between variables and functions in different parts
of a program.

4.	 Simplified Maintenance: When code is organized into modules, fixing
bugs or updating features becomes easier because you only need to change
the code in one place.

5.	 Access to Built-in Functionality: Python’s rich standard library includes
many useful built-in modules, so you can perform complex tasks without
writing code from scratch.

6.	 Collaboration Friendly: Modules allow multiple developers to work on
different parts of a project independently, improving teamwork and efficiency.

3.3.1.1 Creating a Python module (Creating custom modules)
Creating a Python module follows a simple syntax. To define a module, you create a
new Python file with a .py extension. Inside this file, you can define functions, classes,
and variables that you intend to use in other Python programs. These definitions allow
you to organize and reuse code effectively.

Example:

Here’s an example of creating a Python module named math_operations.py:

math_operations.py

def add(a, b):

 return a + b

def subtract(a, b):

 return a - b

def multiply(a, b):

 return a * b

def divide(a, b):

157 SGOU - SLM - BSc - Introduction to Python Programming

 if b != 0:

 return a / b

 else:

 print(“Error: Division by zero is not allowed.”)

In this example, the module math_operations contain four functions: add, subtract,
multiply, and divide. These functions perform basic mathematical operations and can
be reused in other Python programs.

3.3.1.2 The import Statement
The import statement is used in Python to bring modules or specific objects from
modules into the current program’s namespace. It allows us to access and utilize the
functionality defined within the imported modules. This helps organize code and reuse
functionality without rewriting it.

Syntax:

import module_name

Example Output

import math_operations

result = math_operations.add(5, 3)

print(result)

8

import math_operations

result = math_operations.divide(10, 2)

print(result)

5.0

In the above code, we import the math_operations module and use its functions add and
divide to perform addition and division operations respectively. This does not import
the functions or classes directly instead imports the module only. To access the functions
inside the module the dot(.) operator is used.

3.3.1.3 Variables in Module
Variables within a Python module can be accessed and used by other programs that
import the module. They serve as containers for storing data that can be shared between
different parts of a program or even across multiple programs. This allows for efficient
data organization and sharing, promoting code modularity and reusability.
Example:
my_module.py

158 SGOU - SLM - BSc - Introduction to Python Programming

my_variable = “Hello, World!”

def print_variable():

print(my_variable)

In this example, the module my_module contains a variable named my_variable assigned
with the string value “Hello, World!”. It also includes a function print_variable() that
prints the value of my_variable.

3.3.1.4 Naming a Module

In Python, a module is simply a file containing Python code, and the name of the
module is the name of the file (without the .py extension). Choosing a clear and
meaningful name for your module is important because it helps make your code easy
to read, maintain, and reuse. Module names should follow standard naming rules use
lowercase letters, avoid special characters, and keep the name short but descriptive.
For example, a module that handles student data might be named student.py. Good
naming practices improve the overall organization and structure of your Python
programs. Choosing a suitable name for a Python module is crucial and involves the
following guidelines:

1.	 Descriptive: Opt for a name that precisely describes the module’s purpose
and functionality. A descriptive name allows others to understand its role
with minimal effort.

2.	 Concise: Keep the module name short and avoid unnecessary length. Shorter
names are easier to type, remember, and fit well within code.

3.	 Lowercase: Use lowercase letters for module names. This is a common
convention in Python, distinguishing modules from classes and constants.

4.	 Underscores: When using multiple words in the module name, separate
them with underscores(_) for better readability. For instance, favor “my_
module” over “mymodule”.

5.	 Avoid conflicts: Ensure that the module name doesn’t conflict with any
Python keywords or built-in module names. This helps prevent naming
clashes and potential issues.

6.	 Meaningful and self-explanatory: Select a module name that conveys
meaning and is self explanatory. This empowers developers, including
yourself in the future, to grasp the module’s purpose without delving into
the code details.

For example, if developing a module for string manipulation utilities, consider names
like “string_utils” or “str_helpers”. These names clearly convey the module’s focus on
string-related functionalities.

159 SGOU - SLM - BSc - Introduction to Python Programming

3.3.1.5 Renaming a Module
In Python, renaming a module means giving it a different name (alias) while importing
it. This is done using the as keyword in the import statement. Renaming can make long
or complex module names easier to type and read in your code. For example, instead of
writing import pandas, you can write import pandas as pd and use pd throughout
your program. This technique is especially helpful when working with commonly used
libraries or when avoiding name conflicts between modules. Renaming does not change
the actual file name - it only changes how you refer to it in your script. To rename a
module in Python, you need to perform the following steps:

1.	 Change the module file name: Modify the name of the module file by
renaming it while preserving the .py extension. For instance, if the original
module file was named “old_module.py”, rename it to “new_module.py”.

2.	 Update import statements: Scan through other code files and locate import
statements that refer to the original module name. Update these import
statements to use the new module name instead. Replace occurrences of
“import old_module” with “import new_module”.

3.	 Modify module references: If there are any references to the original
module within the code files, update them to reflect the new module name.
For example, if there was a function called “old_module.some_function()”,
change it to “new_module.some_function()”.

4.	 Test and validate: Execute the code and ensure that everything functions
correctly after renaming the module. Verify for any errors or unexpected
behavior, and make any necessary adjustments.

3.3.1.6 Executing a Module as a Script
To execute a Python module as a script, you can utilize the special construct if __name__
== “__main__”. This construct allows you to differentiate between when the module is
being directly executed as a script versus when it is being imported as a module.

Here’s an example of how to execute a module as a script:

def add(a, b):

 return a + b

def subtract(a, b):

 return a - b

if __name__ == “__main__”:

 # Code block executed when the module is run as a script

 result = add(5, 3)

 print(“Result:”, result)

160 SGOU - SLM - BSc - Introduction to Python Programming

In the above example, the module defines two functions, add and subtract. The if __
name__ == “__main__” condition is used to determine if the module is being directly
executed. If it is, the code block within the condition will be executed.

To run the module as a script, you can execute the following command in the terminal
or command prompt:

python module_name.py

Replace module_name with the actual name of your module file. This will execute the
code within the if __name__ == “__main__” condition.

When the module is imported and used by another Python script, the code within the
if __name__ == “__main__” block will not be executed. This allows the module to
be imported and its functions to be used without any interference from the script-
execution-specific code.

By using the if __name__ == “__main__” construct, you can execute specific code
when running a module as a script while still enabling it to be imported and utilized as
a module in other scripts.

3.3.1.7 The Module Search Path
The module search path in Python is a collection of directories that the Python interpreter
examines when attempting to import modules in a program. The sys.path variable,
which is a list of directory locations, determines this search path.

When importing a module, Python follows a specific order to search for the module in
different locations. The search path is checked in the following sequence:

	♦ The current directory: Python checks the directory from which the script
or interactive interpreter is executed. This allows for importing modules
from the same directory as the script.

	♦ PYTHONPATH environment variable: Python examines the directories
specified in the PYTHONPATH environment variable. This variable contains
a list of directory names separated by colons (on Unix-like systems) or
semicolons (on Windows systems).

	♦ Default module directory: Python checks the standard library directories
that are part of the Python installation. These directories contain built-in
modules and other standard library modules.

	♦ Third-party module directories: If the module is not found in the previous
locations, Python searches in directories typically used for installing third-
party modules. These directories are commonly determined by package
managers, such as site-packages or dist-packages.

The module search path can be modified programmatically by adding or modifying
entries in the sys.path list. This can be helpful when you need to include additional
directories for module searching during runtime.

161 SGOU - SLM - BSc - Introduction to Python Programming

To examine the current module search path, you can access the sys.path variable:

import sys

print(sys.path)

This will display a list of directories constituting the module search path. dir() function
In Python, the dir() function is a powerful tool for inspecting the contents of a module
and retrieving a list of names, attributes, and methods defined within it. By calling
dir(module_name), you can explore the specific names associated with that module.

Here’s an example demonstrating the usage of dir() on a module:

Import a module

import my_module

Display names, attributes, and methods of the module

print(dir(my_module))

In the above code, we import the my_module module and then use the dir() function to
retrieve a list of names associated with it. The output will include functions, variables,
classes, and other objects defined within the my_module.

Using dir() on a module provides valuable insights into the available functionality and
objects within the module. It helps in understanding what the module offers and allows
you to utilize its attributes and methods effectively.

Keep in mind that the dir() function provides only the names defined within the module,
without providing detailed explanations or documentation. For more information about
a specific attribute or method, you can use the help() function, passing the module and
the name as arguments (e.g., help(my_module.some_function)).

By leveraging the dir() function, you can explore the contents of a module and harness
its capabilities to build robust and efficient Python programs.

3.3.1.8 Built-in Modules
In Python, built-in modules are special code libraries that come pre-installed with
Python. These modules contain ready-made functions and tools that help you perform
common programming tasks such as math calculations, working with dates, generating
random numbers, or interacting with the operating system. Instead of writing these
functions yourself, you can simply use the import statement to bring in a built-in
module and start using its features right away. This makes your code shorter, cleaner,
and more efficient, especially when solving everyday problems in Python. Some
commonly used built-in modules in Python include “math” for mathematical operations,
“random” for random number generation and selection, “datetime” for manipulating
and formatting dates and times, “os” for performing operating system-related tasks,
“sys” for system-specific operations, “re” for working with regular expressions, “json”
for JSON manipulation, “csv” for handling CSV files, “urllib” for working with URLs
and HTTP operations, and “sqlite3” for interacting with SQLite databases (Table 3.3.1).

162 SGOU - SLM - BSc - Introduction to Python Programming

Table 3.3.1 Build-in modules in Python

Module Name What It Does Example

math Math functions like square root,
sin

import math

math.sqrt(25)

random Generate random numbers
import random

random.randint(1, 10)

datetime Work with dates and time
import datetime

datetime.date.today()

os Work with the operating system
import os

os.getcwd()

sys Get info about the Python
environment

import sys

sys.version

re Work with regular expressions
(text patterns)

import re

re.search(r"\d+", "Age: 25")

urllib Handle URLs and web requests
import urllib

urllib.request.urlopen("https://
example.com")

json Work with JSON data
import urllib

json.dumps({"x": 1})

csv Work with CSV files
import csv

csv.reader(open("data.csv"))

These built-in modules offer a wide range of functionalities and simplify common
programming tasks, providing developers with efficient and effective tools for their
Python programs.

3.3.2 Packages
Python packages serve as a means to structure and distribute Python code effectively.
Essentially, a package is a directory containing one or more Python modules, along
with an optional special file named __init__.py. It facilitates the grouping of related
modules, establishing a hierarchical organization for your code.

163 SGOU - SLM - BSc - Introduction to Python Programming

The primary purpose of packages is to enable code organization and reuse in a modular
and scalable manner. By organizing modules into packages, you can prevent naming
conflicts, enhance code maintainability, and improve code readability. Moreover,
packages can be shared with others, fostering code collaboration and reuse.

3.3.2.1 Creating Packages
To create a package, you create a directory with a unique name and include the __init__.
py file within it. The __init__.py file can either be left empty or contain initialization
code that executes when the package is imported. Packages can have sub-packages,
which are essentially nested directories containing their own _init__.py files. This
nesting capability allows for a hierarchical arrangement of packages, facilitating the
organization of code at different levels of abstraction.

Package installation and management can be handled using package managers like pip,
which is the predominant package manager in the Python ecosystem. Utilizing pip, you
can effortlessly install, upgrade, and uninstall packages from the Python Package Index
(PyPI), a community-maintained repository of Python packages.

Once a package is installed, its modules can be imported and utilized in other Python
scripts through the import statement. This statement grants access to functions, classes,
and variables defined within the package’s modules.

3.3.2.2 Package Initialization
Package initialization in Python refers to the process of preparing a package for use
when it is imported. It involves executing the code within the __init__.py file located
in the package directory.

The __init__.py file serves as an indicator that the directory is a Python package. It
can contain Python code that is executed during package import. This initialization
code typically handles tasks like importing specific modules, setting up package-level
variables, or performing any necessary initialization logic. Common scenarios for
package initialization include:

	♦ Importing Modules: The __init__.py file can include import statements to
bring in modules within the package. This simplifies access to the package’s
modules and their contents when the package is imported.

	♦ Setting Package-Level Variables: Initialization code can define variables
that are accessible at the package level. These variables can be shared among
the package’s modules or used for configuration purposes.

	♦ Executing Initialization Logic: The __init__.py file can contain code that
carries out initialization steps required by the package. This may involve
tasks such as establishing database connections, configuring logging, or
registering components.

While the __init__.py file is optional, it provides a way to customize package behavior
during import and serves as a central location for package initialization.

164 SGOU - SLM - BSc - Introduction to Python Programming

When a package is imported, the Python interpreter automatically executes the code
within the __init__.py file, if present. This initialization code runs only once, regardless
of how many times the package is imported in a program.

By leveraging package initialization, you ensure that your package is properly set up
and ready for use upon import. This simplifies package organization and allows for
better control over the package’s behavior and functionality.

Example:

Suppose you have a package named “my_package” with the following directory
structure:

my_package/

__init__.py

 module1.py

 module2.py

To initialize the package, follow these steps:

Create the __init__.py file: Inside the “my_package” directory, create a file named
__init__.py. This file can be left empty or include initialization code.

Define module files: Within the “my_package” directory, create two Python module
files, module1.py and module2.py. Each module will contain functions or variables
related to specific functionalities.

Here’s an example of how you can initialize the package:

init.py:

print(“Initializing my_package...”)

Import modules within the package

from . import module1

from . import module2

module1.py:

def function1():

print(“This is function 1 from module 1”)

module2.py:

def function2():

print(“This is function 2 from module 2”)

165 SGOU - SLM - BSc - Introduction to Python Programming

In the __init__.py file, we print a message to indicate that the package is being
initialized. We also import the modules module1 and module2 using relative imports
(from . import ...).

Now, let’s use the package in another Python script:

main.py:

import my_package

print(“Package imported!”)

my_package.module1.function1()

my_package.module2.function2()

When you run the main.py script, the output will be:

Initializing my_package...

Package imported!

This is function 1 from module 1

This is function 2 from module 2

In this example, when the my_package package is imported, the __init__.py file is
executed, and the initialization code within it is run. It prints the initialization message
and imports the module1 and module2 modules. You can then access the functions
defined in the modules using the package name and module name as demonstrated in
main.py. This example demonstrates the process of package initialization in Python,
where the __init__.py file is crucial for setting up the package during import. Remember
to modify the package and module names and customize the functionality based on
your specific requirements.

3.3.2.3 Subpackages
Subpackages in Python provide a means of structuring and organizing code within
packages in a hierarchical manner. They facilitate improved modularity, organization,
and reusability of related components or functionality. Subpackages enable the
creation of complex projects by establishing a multi-level package structure. To create
a subpackage, you can follow these steps:

	♦ Begin by creating the main package directory, which serves as the parent
directory for the subpackage. This directory should include an init.py file
that can either be left empty or contain initialization code specific to the
package.

	♦ Inside the main package directory, create a subdirectory with a unique name
that will function as the subpackage. This subdirectory should also have an
init.py file, which can be empty or contain initialization code specific to the
subpackage.

166 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Include one or more module files (Python files) within the subpackage
directory to hold the code relevant to the subpackage. These modules can
consist of functions, classes, or other code elements.

By utilizing subpackages, developers can enhance code maintainability, separation
of concerns, and code reuse. Subpackages allow for the logical grouping of related
modules, facilitating easier navigation and utilization of specific functionality within a
project.

Example: Suppose you are working on a project related to geometry calculations and
want to organize your code into subpackages. You can create a main package called
“geometry” and include subpackages such as “shapes” and “utils”.

The directory structure would look like this:

geometry/

 __init__.py

 shapes/

 __init__.py

 circle.py

 rectangle.py

 utils/

 __init__.py

 calculations.py

In this example, the “geometry” package serves as the main package. It contains two
subpackages, “shapes” and “utils”, represented by separate directories. Each subpackage
has its own __init__.py file, indicating that they are Python subpackages. The “shapes”
subpackage includes two module files: “circle.py” and “rectangle.py”. These files
can contain classes and functions related to calculations and properties of circles and
rectangles. The “utils” subpackage consists of one module file: “calculations.py”. This
file can contain utility functions or calculations that are commonly used in geometry
operations.

To import and use modules from the subpackages, you can use the dot notation: from
geometry.shapes.circle import Circle from geometry.utils.calculations.

import calculate_area

circle = Circle(radius=5)

area = calculate_area(circle)

print(“The area of the circle is: {area}”)

Here, we import the Circle class from the “shapes.circle” subpackage and the calculate_

167 SGOU - SLM - BSc - Introduction to Python Programming

area function from the “utils.calculations” subpackage. This allows us to create a circle
object and calculate its area using the imported functionality.

This unit focuses on organizing Python code through modular programming. It begins
by explaining how to use the import statement to access built-in and user-defined mod-
ules, helping to reduce code duplication and improve clarity. Learners then explore how
to create their own modules by writing reusable functions and classes in separate .py
files. The unit also introduces packages, which are collections of modules grouped in
directories, typically containing an __init__.py file to signal Python that the folder is
a package. Together, these concepts help students write cleaner, more manageable, and
scalable Python programs by breaking complex code into simpler, reusable parts.

Objective Type Questions

1.	 What does init.py file do?

2.	 What keyword is used to import specific items from a module?

3.	 What keyword is used to create a package?

4.	 What is a module in Python?

5.	 Which keyword is used to import a module?

6.	 Name a built-in Python module.

7.	 What is the file extension of a Python module?

8.	 What does from math import sqrt do?

9.	 What will import math; print(math.pi) output?

10.	How do you import all contents from a module?

11.	Which function lists all functions and attributes in a module?

12.	How do you create a custom module?

13.	What is a package in Python?

14.	What does the __init__.py file do in a package?

15.	How do you import a module from a package?

16.	What does dir(math) return?

17.	Which module is used for working with URLs?

18.	Which built-in module helps interact with the operating system?

19.	What does sys.path contain?

20.	What is a subpackage?

168 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 Initialization

2.	 from

3.	 init.py

4.	 A file containing Python code such as functions, classes, or variables.

5.	 import

6.	 math, json, random

7.	 .py

8.	 It imports only the sqrt function from the math module.

9.	 3.141592653589793

10.	from module import *

11.	dir() function

12.	Create a .py file containing functions or classes.

13.	A directory containing Python modules and an __init__.py file.

14.	It marks the directory as a Python package.

15.	Using import package.module or from package import module

16.	A list of all attributes and functions available in the math module.

17.	urllib

18.	os module

19.	A list of directories Python searches for modules.

20.	A package inside another package.

Assignments

1.	 Create a module that contains functions for calculating the area and
circumference of a circle, and import it to calculate these values for user-
provided input.

169 SGOU - SLM - BSc - Introduction to Python Programming

Reference

1.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

2.	 Sweigart, A. (2015). Automate the Boring Stuff with Python: Practical
Programming for Total Beginners. No Starch Press.

3.	 Beazley, D., & Jones, B. K. (2013). Python Cookbook (3rd ed.). O’Reilly
Media.

4.	 Downey, A. (2015). Think Python: How to Think Like a Computer Scientist
(2nd ed.). Green Tea Press.

5.	 Pilgrim, M. (2009). Dive Into Python 3. Apress.

Suggested Reading

1.	 Python Official Documentation. Modules. https://docs.python.org/3/tutorial/
modules.html

2.	 Real Python. Python Modules and Packages: An Introduction. https://
realpython.com/python-modules-packages/

3.	 GeeksforGeeks. Python Modules and Packages. https://www.geeksforgeeks.
org/python-modules-packages/

4.	 W3Schools. Python Modules. https://www.w3schools.com/python/python_
modules.asp

5.	 Programiz. Python Modules and Packages. https://www.programiz.com/
python-programming/modules-packages

2.	 Design a package with subpackages representing different categories of
animals, each containing modules with functions to display information
about specific animals, and import them to display details based on user
input.

3.	 Create a module that includes a function to generate a random password,
and import it to generate and display a password with a user-defined length.

4.	 Develop a package with subpackages for basic mathematical operations
(addition, subtraction, etc.) and import the appropriate subpackage and
module to perform calculations based on user input.

170 SGOU - SLM - BSc - Introduction to Python Programming

Unit 4
 Regular Expression

Learning Outcomes

Prerequisites

	♦ familiarize the concept of regular expressions and their uses.

	♦ identify and use special sequences in regex.

	♦ utilize the re module functions such as match(), search(), findall(), and sub().

	♦ apply regex for searching, matching, and replacing patterns in text.

	♦ differentiate between string methods and regex methods.

After completing this section, learners will be able to:

Regular expressions are important because they help us quickly search, match, or
replace patterns in text. In real-world situations like checking if an email is valid, find-
ing phone numbers in a file, or removing unwanted spaces in a document regex makes
the job faster and more accurate. Instead of writing long and complex code, a single
regex pattern can do the work efficiently.

To understand regular expressions, it’s helpful to know basic Python topics such as
working with strings, using loops and conditions, and simple functions like replace()
and split(). These skills make it easier to learn how regex patterns behave and how they
interact with text using Python’s re module.

Pattern Matching, Special Sequence, Python ReModule, Search Function, Replace
Function, Text Processing

Key words

Discussion
3.4.1 Understanding regex patterns
A Regular Expression (or regex) is a special pattern used to search, match, or find
specific parts of text. It’s like giving the computer instructions on what kind of text you
are looking for. For example, if you want to find all phone numbers in a file or check if
an email address is correct, regex can help.

In order to find a string or group of strings, a Regular Expression (RegEx) is a unique
string of characters. By comparing a text to a specific pattern, it may determine if it
is present or absent. It can also divide a pattern into one or more sub-patterns. Regex
functionality is available in Python through the re module. Its main purpose is to provide
a search, for which a string and a regular expression are required. It either returns the
first match in this case or none at all.

3.4.1.1 Special Sequences
A special sequence is a ’\’ followed by one of the characters in the list below, and has
a special meaning:

Table 3.4.1 Special Sequences

Character Description Example

\A Returns a match if the specified characters are at the
beginning of the string "\AThe"

\b

Returns a match where the specified characters are at
the beginning or at the end of a word
(the "r" in the beginning is making sure that the string
is being treated as a "raw string")

r"\bain"
r"ain\b"

\B

Returns a match where the specified characters are
present, but NOT at the beginning (or at the end) of a
word
(the "r" in the beginning is making sure that the string
is being treated as a "raw string")

r"\Bain"
r"ain\B"

\d Returns a match where the string contains digits
(numbers from 0-9) "\d"

\D Returns a match where the string DOES NOT contain
digits "\D"

\s Returns a match where the string contains a white
space character "\s"

172 SGOU - SLM - BSc - Introduction to Python Programming

\S Returns a match where the string DOES NOT contain a
white space character "\S"

\w
Returns a match where the string contains any word
characters (characters from a to Z, digits from 0-9, and
the underscore _ character)

"\w"

\W Returns a match where the string DOES NOT contain
any word characters "\W"

\Z Returns a match if the specified characters are at the
end of the string "Spain\Z"

\A Returns a match if the specified characters are at the
beginning of the string "\AThe"

\b

Returns a match where the specified characters are at
the beginning or at the end of a word
(the "r" in the beginning is making sure that the string
is being treated as a "raw string")

r"\bain"
r"ain\b"

\B

Returns a match where the specified characters are
present, but NOT at the beginning (or at the end) of a
word
(the "r" in the beginning is making sure that the string
is being treated as a "raw string")

r"\Bain"
r"ain\B"

\d Returns a match where the string contains digits
(numbers from 0-9) "\d"

\D Returns a match where the string DOES NOT contain
digits "\D"

\s Returns a match where the string contains a white
space character "\s"

\S Returns a match where the string DOES NOT contain a
white space character "\S"

\w
Returns a match where the string contains any word
characters (characters from a to Z, digits from 0-9, and
the underscore _ character)

"\w"

\W Returns a match where the string DOES NOT contain
any word characters "\W"

173 SGOU - SLM - BSc - Introduction to Python Programming

\Z Returns a match if the specified characters are at the
end of the string "Spain\Z"

\A Returns a match if the specified characters are at the
beginning of the string "\AThe"

\b

Returns a match where the specified characters are at
the beginning or at the end of a word
(the "r" in the beginning is making sure that the string
is being treated as a "raw string")

r"\bain"
r"ain\b"

\B

Returns a match where the specified characters are
present, but NOT at the beginning (or at the end) of a
word
(the "r" in the beginning is making sure that the string
is being treated as a "raw string")

r"\Bain"
r"ain\B"

\d Returns a match where the string contains digits
(numbers from 0-9) "\d"

\D Returns a match where the string DOES NOT contain
digits "\D"

3.4.2 re Module
In Python, the re module stands for “regular expressions”. This module provides
powerful tools to search, match, and manipulate strings using patterns. Think of it
as a smart search tool that helps you find things in text, like finding phone numbers
in a document, checking if an email is valid, or replacing specific characters. Unlike
simple string functions, the re module allows you to define complex rules using special
characters and patterns.

To use it in your Python program, you need to import it first:

import re

Once imported, you can use its various functions to work with patterns and strings.

Use of re Module

Suppose you want to extract all phone numbers from a paragraph, or remove extra
spaces, or hide sensitive data like email addresses. Doing these tasks with basic string
methods (replace, split, etc.) would require long, repetitive code. But with re, you can
do it with just one line using patterns. The re module makes these jobs easier, faster,
and more accurate.

Common Functions in the re Module

Here are the main functions provided by the re module:

174 SGOU - SLM - BSc - Introduction to Python Programming

Table 3.4.2 Common functions in the re Module

Function Purpose

re.match() Checks if the pattern matches from the beginning of the string.

re.search() Searches the entire string and returns the first match.

re.findall() Returns a list of all non-overlapping matches.

re.sub() Replaces parts of the string that match the pattern.

re.split() Splits a string based on a pattern (like a smart version of split()).

re.fullmatch() Checks if the entire string matches the pattern.

3.4.3 Searching
Once you understand how regex patterns work, the next important step is learning how
to search for those patterns inside a piece of text. In Python, this is done using the re
module, which provides a function called re.search() (already mentioned in table 3.4.2)
. This function is used to scan through a string and check if the pattern exists anywhere
in the text. If the pattern is found, it returns a match object, which contains information
about what was found and where it was found. If the pattern is not found, it returns
None, which means there is no match.

Let’s say you have a sentence like “The cat is sleeping.” and you want to check if the
word “cat” is in it. You can create a regex pattern cat and use it with re.search() to see
if that pattern appears in the text.

Example 1:

import re

text = “The cat is sleeping.”

pattern = r”cat”

match = re.search(pattern, text)

if match:

 print(“Found:”, match.group())

This will output Found: cat because the pattern cat is present in the string.

You can also use regex to search for more complex things. For example, if you want
to check if there is a number in the text, you can use the pattern \d+. Here, \d means “a
digit”, and + means “one or more times”. So this pattern will match numbers like 3, 45,
or 6789.

175 SGOU - SLM - BSc - Introduction to Python Programming

Example 2:

text = “Order number is 12345.”

pattern = r”\d+”

match = re.search(pattern, text)

if match:

 print(“Found number:”, match.group())

This will output, Found number: 12345 because the number appears in the string.

It’s important to note that re.search() only finds the first occurrence of the pattern. Even
if the pattern appears multiple times, it will only return the first match. For example, in
the sentence “There are 2 cats, 3 dogs, and 5 birds,” if you search using the pattern \d+,
it will only return 2, even though there are three numbers in the sentence.

Example 3:

text = “There are 2 cats, 3 dogs, and 5 birds.”

pattern = r”\d+”

match = re.search(pattern, text)

print(“First number found:”, match.group())

This will output, First number found: 2.

You can also search for patterns at the beginning or end of a string using special
symbols. The caret symbol ^ is used to match text at the start, and the dollar symbol $
is used to match text at the end. For instance, if a sentence starts with the word “Hello”,
the pattern ^Hello will match. Similarly, if a sentence ends with the word “end.”, the
pattern end\.$ will match.

Example 4:

text = “Hello, how are you?”

pattern = r”^Hello”

match = re.search(pattern, text)

print(bool(match))

Output

True

Example 5:

176 SGOU - SLM - BSc - Introduction to Python Programming

text = “This is the end.”

pattern = r”end\.$”

match = re.search(pattern, text)

print(bool(match))

Output

True
In both cases, the patterns match because the words appear exactly where expected
at the beginning or the end. Using re.search() is very helpful for checking whether
something exists in text, such as a name, keyword, number, or format. Once a match
is found, you can use .group() to get the matched text, or use it in programs to make
decisions. Although re.search() only returns the first match, it is a very powerful way to
detect patterns quickly in strings of any size.

3.4.4 Matching
Matching with regular expressions is similar to searching, but with a more specific
purpose. In Python, when you want to check if a string starts exactly with a certain
pattern, you use the re.match() function. While re.search() looks for a pattern anywhere
in the string, re.match() checks only at the very beginning of the string. If the pattern
appears at the start, it returns a match object; otherwise, it returns None.

Imagine you have the sentence “Hello world”. If you use re.match() with the pattern
Hello, it will return a match because “Hello” is right at the beginning. But if you try to
match the word “world”, it will return nothing, because “world” is not at the start.

Example 1: Match at the beginning

import re

text = “Hello world”

pattern = r”Hello”

match = re.match(pattern, text)

if match:

 print(“Matched:”, match.group())

 # Output: Matched: Hello

Now let’s try matching a word that is not at the beginning.

Example 2: No match

text = “Hello world”

177 SGOU - SLM - BSc - Introduction to Python Programming

pattern = r”world”

match = re.match(pattern, text)

print(match)

 # Output: None

So, re.match() is strict. It only matches if the pattern appears right from the start of the
string. If you want to find a match anywhere in the string, even in the middle or end,
you should use re.search() instead.

Another useful function is re.findall(). This function returns all matches of a pattern
in the string, not just the first one. It gives the result as a list of matched items. For
example, if you want to find all numbers in a sentence, you can use the pattern \d+ with
re.findall().

Example 3: Find all matches

text = “There are 2 cats, 3 dogs, and 5 birds.”

pattern = r”\d+”

matches = re.findall(pattern, text)

print(“Numbers found:”, matches)

Output: [‘2’, ‘3’, ‘5’]

re.findall is very useful when you want to extract every instance of a certain pattern, like
all numbers, emails, or words from a paragraph.

There’s also another function called re.finditer() which is similar to findall(), but instead
of returning just the matched strings, it gives you match objects for each result. This is
helpful when you want to know where in the text each match was found.

Example 4: Using re.finditer()

text = "There are 2 cats and 3 dogs."

pattern = r"\d+"

matches = re.finditer(pattern, text)

for match in matches:

 print("Found:", match.group(), "at position", match.start())

Output:

Found: 2 at position 10

Found: 3 at position 21

178 SGOU - SLM - BSc - Introduction to Python Programming

Fig 3.4.1 Visual Breakdown of text

This will print each number found and its position in the string. So while re.match() is
best for checking if a string starts with something, re.findall() and re.finditer() are better
when you want to find all occurrences of a pattern in a string.

Matching with regex is very helpful when you’re processing large amounts of text and
need to find specific parts quickly and accurately. Whether you want to match a word at
the beginning, find every email address, or extract all numbers from a document, these
regex functions can help you do that with just a few lines of code.

3.4.5 Replacing text
When we work with text in Python, we often come across situations where we want to
replace some words or characters with something else. For example, imagine you’re
editing a document and you want to replace every occurrence of the word “cat” with
“dog”. Doing it manually is time-consuming, especially with large files. Luckily, Python
provides simple ways to do this using string methods and regular expressions.

	♦ Simple Replacement Using str.replace()
Python has a built-in method called replace() that allows you to replace a specific piece
of text with another.

Example:

text = “I have a red car”

new_text = text.replace(“red”, “blue”)

print(new_text)

Output: I have a blue car

Explanation: The word “red” was replaced with “blue”. This is a direct and easy way
to replace exact words. However, it cannot handle patterns or rules, like “replace all
numbers” or “remove extra spaces”.

	♦ Replacing Using Regular Expressions (Regex)
To replace text based on patterns (like replacing all digits, special characters, or email
addresses), we use Python’s re module and its powerful function: re.sub().

179 SGOU - SLM - BSc - Introduction to Python Programming

Syntax: re.sub(pattern, replacement, text)

Pattern: the regex pattern you want to find.

Replacement: the new text you want to insert.

text: the original string where replacement will happen.

Example 1: Replace All Digits with a Symbol

Let’s say you have a sentence that contains some numbers, and you want to replace all
numbers with #.

import re

text = “My phone number is 9876543210”

new_text = re.sub(r’\d’, ‘#’, text)

print(new_text)

Output: My phone number is

Explanation: \d is a regex pattern that matches any digit (0–9). Every digit in the
sentence is replaced with a #.

Example 2: Remove Extra Spaces

Sometimes, text has extra spaces that you want to clean up.

text = “This sentence has too many spaces.”

clean_text = re.sub(r’\s+’, ‘ ‘, text)

print(clean_text)

Output: This sentence has too many spaces.

Explanation: \s+ means “one or more spaces”. It replaces multiple spaces with a single
space.

Example 3: Hide Email Addresses

In a document, you might want to hide email addresses for privacy.

text = “Contact me at john.doe@example.com”

hidden = re.sub(r’\S+@\S+’, ‘[email hidden]’, text)

print(hidden)

#Output: Contact me at [email hidden]

Explanation: \S+@\S+ matches any pattern that looks like an email address. It replaces
the email with [email hidden].

180 SGOU - SLM - BSc - Introduction to Python Programming

Example 4: Replace Only First Match

You can also replace only the first match using an optional parameter.

text = “apple apple apple”

new_text = re.sub(r’apple’, ‘orange’, text, count=1)

print(new_text)

#Output: orange apple apple

Explanation: Only the first “apple” is replaced with “orange”.

Use str.replace() when you know the exact text, and re.sub() when you need more power
and flexibility.

Recap

	♦ Regex is used for pattern matching in strings.

	♦ Special sequences like \d, \w, \s help target specific character types.

	♦ The re module enables advanced string operations.

	♦ re.search() finds the first match anywhere.

	♦ re.match() only checks at the beginning.

	♦ re.findall() returns all matches.

	♦ re.sub() replaces patterns with another string.

	♦ Regex simplifies complex string tasks like data cleaning.

Objective Type Questions

1.	 What function returns all pattern matches in a string?

2.	 What does \d match?

3.	 Which regex function checks only the beginning of a string?

4.	 What operator is used for string concatenation in Python?

5.	 What function replaces text based on a regex pattern?

6.	 What function returns match objects with their positions?

7.	 Which method should you use to remove extra spaces from a string?

181 SGOU - SLM - BSc - Introduction to Python Programming

8.	 What does \s represent in regex?

9.	 Which regex method substitutes part of a string?

10.	What regex character is used to represent any character except a newline?

11.	What function is used to search a pattern in a string?

12.	What symbol is used to indicate the start of a string in regex?

13.	What symbol matches the end of a string?

14.	Which special sequence matches a word character?

15.	Which regex symbol means zero or more repetitions?

Answers to Objective Type Questions

1.	 re.findall()

2.	 A digit character ([0-9])

3.	 re.match()

4.	 + (plus operator)

5.	 re.sub()

6.	 re.finditer()

7.	 str.strip() (or) re.sub(r’\s+’, ‘ ‘, text).strip()

8.	 Any whitespace character

9.	 re.sub()

10.	. (dot)

11.	re.search()

12.	^

13.	$

14.	\w

15.	*

182 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

1.	 Write a Python program to find all email addresses in a string using regex.

2.	 Replace all digits in the given sentence with *.

3.	 Explain the difference between re.match() and re.search() with examples.

4.	 Extract all numbers from: “The 3 cats have 2 toys and 5 balls.”

5.	 Replace the first occurrence of “apple” with “orange” using re.sub().

Reference

1.	 Matthes, E. (2023). Python crash course: A hands-on, project-based
introduction to programming (3rd ed.). No Starch Press.

2.	 Sweigart, A. (2024). Automate the boring stuff with Python: Practical
programming for total beginners (3rd ed.). No Starch Press.

3.	 Downey, A. B. (2023). Think Python: How to think like a computer scientist
(2nd ed.). Green Tea Press.

4.	 Zelle, J. M. (2022). Python programming: An introduction to computer
science (3rd ed.). Franklin, Beedle & Associates.

Suggested Reading

1.	 Python Software Foundation. (2023). Python documentation: re module.
https://docs.python.org/3/library/re.html

2.	 Barry, P. (2022). Head First Python: A brain-friendly guide (3rd ed.).
O’Reilly Media.

183 SGOU - SLM - BSc - Introduction to Python Programming

File Handling and
Object-Oriented
Programming4

Unit 1
Introduction to File Handling

Learning Outcomes

Prerequisites

	♦ identify different file modes used in Python file operations.

	♦ familiarize with key file methods used for reading, writing, updating, and
managing files.

	♦ explore the use of the with statement to manage files safely and efficiently.

After the successful completion of the unit, the learner will be able to:

Long before modern programming languages, computers processed data in real time.
Once the program stopped, all the data disappeared. There was no way to store results,
save inputs, or revisit outputs. To overcome this limitation, the idea of files was intro-
duced. A file became a convenient way to organize and store data on a storage device,
making it possible to retrieve or update it even after a program ends. This shift trans-
formed programming from temporary calculations to permanent record keeping.

Now, think about the digital world around you: music playlists, saved passwords,
downloaded documents, and even browser history. These are all made possible because
programs know how to handle files. Without file handling, every time you closed an
app, all your preferences and progress would vanish. As programmers, learning how
to work with files gives us the power to make software smarter, more interactive, and
persistent.

In this lesson, you’ll explore how Python, with just a few lines of code, can open, read,
write, and modify files. Once you master this, your programs will no longer be forgetful
- they’ll be able to store and retrieve data like any modern application.

‘r’, ‘w’,’a’, ‘r+’, ‘w+’, ‘x’, ‘rb’, seek(), with

Key words

186 SGOU - SLM - BSc - Introduction to Python Programming

In real-world applications, data often needs to be stored and retrieved for future use. This
includes tasks such as saving user information, configuration settings, or logging data.
Python file handling provides a simple and efficient way to interact with files on your
system. It allows you to create, read, write, and modify files using built-in functions.
With just a few lines of code, Python can open files in different modes, append data,
or overwrite content. This makes it a powerful tool for managing data in a persistent
and organized manner. File handling is an essential skill for every Python programmer,
especially when working with data processing or automation tasks.

Once you understand the importance of file handling, the next step is to learn how to
perform basic operations such as opening a file, reading its content, writing new data,
or updating existing data.

4.1.1 Opening a file in Python
To begin working with files in Python, it is important to learn how to open a file using
the built-in open() function. This function allows the program to access a file stored
on the system and perform actions such as reading, writing, or appending content.
Depending on the requirement, the file can be opened in different modes, each serving
a specific purpose. Once a file is opened, Python offers a simple and readable syntax to
perform the desired operations efficiently.

Syntax
	 open(“filename”, “mode”)

“filename” is the name of the file you want to work with.

“mode” specifies the purpose: read, write, append, etc.

When working with files in Python, it is important to specify how you want to interact
with the file. You might want to read its contents, write new data, or add to what already
exists. This is done using file modes, which are passed as a second argument to the open(
) function. Each mode serves a different purpose and affects how the file is accessed or
modified. The common modes are :

1.	 “x” – Create (creates a new file and raises an error if it already exists)

2.	 “r” – Read (default mode)

3.	 “w” – Write (creates a new file or overwrites if it exists)

4.	 “a” – Append (adds content to the end of the file)

4.1.1.1 Creating a new File
To create a file only if it does not exist, use “x” mode.
Example:

	 f = open(“newfile.txt”, “x”)

Discussion

187 SGOU - SLM - BSc - Introduction to Python Programming

If newfile.txt already exists, Python will raise an error.

4.1.1.2 Reading from a File
Suppose we have a file named example.txt with some content:

Hello, Python learners!

Welcome to file handling.

Example:

We can read the content using:

	 with open(“example.txt”, “r”) as f:

 		 data = f.read()

 		 print(data)

Output :

	 Hello, Python learners!

Welcome to file handling.

Using with automatically closes the file after use.

4.1.1.3 Writing to a File
To write data to a file, use the “w” mode. If the file exists, it will be overwritten.

Example:

with open(“example.txt”, “w”) as f:

 	 	 f.write(“This is a new line of text.”)

If you now read the file, the old content will be gone.

4.1.1.4 Appending to a File
To add content without deleting existing data, use “a” mode.

Example

with open(“example.txt”, “a”) as f:

 		 f.write(“\nThis line is added to the file.”)

Output after appending:

This is a new line of text.

This line is added to the file.

4.1.1.5 ‘b’ Binary mode
The binary mode is used when working with non-text files, such as images, audio files,

188 SGOU - SLM - BSc - Introduction to Python Programming

executable programs, or any other type of file that contains binary data. When you open
a file in binary mode, you’re telling Python to handle the file as a sequence of bytes
instead of text. This mode does not perform any encoding or decoding; what you read
or write is exactly what exists in the file.

Binary mode is used in combination with other file modes:

	♦ ‘rb’ → Read binary file

	♦ ‘wb’ → Write binary file (overwrite)

	♦ ‘ab’ → Append binary data

Example

	 with open(“photo.jpg”, “rb”) as file:

 		 content = file.read()

In this example, the image is read as raw byte data, which can be useful for processing
or copying image files.

4.2.2 seek() Function in Python

The seek() function is used to change the current position of the file pointer within an
open file. It allows you to move the file pointer to a specific location, which is especially
useful when you need to read or write at a particular position in the file.

Syntax:

	 file_object.seek(offset, whence)

Where, offset is the number of bytes to move the file pointer. &

whence (optional): Specifies the reference position from where the offset is applied. It
can be:

	♦ 0 – Beginning of the file (default)

	♦ 1 – Current file position

	♦ 2 – End of the file

Example 1:

	 with open(“example.txt”, “r”) as f:

 		 f.seek(5)

 		 data = f.read()

 		 print(data)

This example moves the file pointer 5 bytes from the beginning of the file before starting
to read.

189 SGOU - SLM - BSc - Introduction to Python Programming

Example 2:
with open(“example.txt”, “r”) as f:

 	 f.read(4) # Read the first 4 bytes

 	 f.seek(3, 1) # Move the file pointer 3 bytes forward from the current position

	 data = f.read() # Read the remaining content from the new position

 	 print(data)

This example first reads 4 bytes, then skips 3 more bytes from the current position
before reading again.

The r mode alone (i.e., "r" without binary) does not support whence=2
in the seek() function on all systems, especially in text mode. Use binary
mode ("rb", "r+b" etc.) if you need to seek relative to the end of the file
using whence=2.

4.1.3 Combined File modes
In Python, combined file modes provide the flexibility to perform both reading and
writing operations within a single file access. Unlike basic modes that limit actions
to either reading or writing, these combined modes enable more dynamic interactions
with files, such as updating content, appending data while still being able to read it, or
creating a new file with full access. Understanding how and when to use these combined
modes is essential for efficient file manipulation in real-world applications.

Let’s have an explanation of the combined file modes in Python, along with illustrative
examples for each.

4.1.3.1 r+ mode – Read and Write
This mode opens the file for both reading and writing. The file must already exist, and
the file pointer is positioned at the beginning.

Example

Assuming ‘sample.txt’ contains: Hello World

with open(“sample.txt”, “r+”) as f:

 content = f.read()

 print(“Before write:”, content)

 f.seek(0) # Move the cursor to the beginning

 f.write(“Hi”) # Overwrites ‘He’ in ‘Hello’

Result in file: Hi llo World

190 SGOU - SLM - BSc - Introduction to Python Programming

4.1.3.2 w+ mode – Write and Read
Opens the file for both writing and reading. Content is overwritten if the file exists.

Example

	 with open(“sample.txt”, “w+”) as f:

 		 f.write(“Python is fun!”)

 		 f.seek(0) # Move to the beginning to read

 		 print(f.read())

Result in file: Python is fun!

4.1.3.3 a+ mode – Append and Read (creates if not exists)
Opens the file for both reading and appending. Reading is possible, but writing always
appends to the end.

Example

with open(“sample.txt”, “a+”) as f:

 	 f.write(“\nLet’s learn file handling.”)

 	 f.seek(0) # Move to beginning to read entire content

 	 print(f.read())

Result in file: Original content + appended line

4.1.3.4 x+ mode – Create and Read/Write (fails if exists)
Creates a new file and opens it for reading and writing. If the file already exists, an error
is raised.

Example

try:
 		 with open(“newfile.txt”, “x+”) as f:

 			 f.write(“This is a new file.”)

 			 f.seek(0)

 			 print(f.read())

except FileExistsError:

 		 print(“File already exists.”)

Output:

If file doesn’t exist – creates it and prints content.

If file exists – prints: File already exists.

191 SGOU - SLM - BSc - Introduction to Python Programming

4.1.4 File closing in Python
When a file is opened using open(), it occupies system resources. To release these
resources, the file must be closed using the close() method. This is especially important
when writing to a file, as it ensures that all buffered data is properly saved.

Why should we close files?

Closing a file after you’re done with it might seem like a small thing, but it is actually
very important.

	♦ Freeing up system resources
When a file is opened, your computer uses memory and system resources to keep track
of it. If you open too many files and forget to close them, your program or even the
whole system could run into trouble. For example, it may run out of memory or hit a
limit on how many files can be open at once. Closing the file tells your system that the
job is done and the resources can be released.

	♦ Making sure data is saved
Sometimes when you write data to a file, it is not saved immediately to the hard disk.
It may be stored temporarily in memory. If you forget to close the file, that data might
never actually be saved. Closing the file ensures that all the data is properly written and
saved.

	♦ Avoiding data problems
If your program crashes or shuts down before the file is properly closed, the file might
end up incomplete or corrupted. Closing it right after you finish working with it helps
protect your data from such problems.

4.1.4.1 File close() method
After working with a file (reading or writing), it is important to close the file properly
using the close() method.

Syntax

file_object.close()

Example : Closing a file after writing

	 f = open(“demo.txt”, “w”)	 # Open a file in write mode	

	 f.write(“This is a sample text.”)	 # Write some text to the file

	 f.close()	 # Close the file

Here, the file demo.txt is opened for writing. After writing text into it, we call f.close()
to safely close the file and save the data.

Example : Closing a file after reading

	 f = open(“demo.txt”, “r”)	 # Open a file in read mode

192 SGOU - SLM - BSc - Introduction to Python Programming

	 content = f.read()	 # Read the contents

	 print(content)

	 f.close()	 # Close the file

4.1.4.2 Using with statement
Instead of manually closing the file, Python provides the with statement which
automatically closes the file after the block is executed:

	 with open(“example.txt”, “r”) as f:

 		 data = f.read()

	 # No need to call f.close()

4.1.5 File methods

1.	 file.fileno() – Returns the underlying file descriptor (an integer) used by the
operating system to identify the open file.

2.	 file.seek(offset, whence=0) – Moves the file pointer to a specific position in
the file, allowing random access to file content.

3.	 file.tell() – Returns the current position of the file pointer (in bytes) from the
beginning of the file.

4.	 file.readline() – Reads and returns a single line from the file, including the
newline character at the end.

5.	 file.truncate(size=None) – Resizes the file to the given size in bytes; if no
size is specified, it truncates from the current position.

You will learn these methods in detail in the next unit.

A Sample program that demonstrates read, write and append modes.

Step 1: Write initial content to the file

f = open(“notes.txt”, “w”)

f.write(“Day 1: Started learning Python.\n”)

f.close()

Step 2: Append new content to the file

f = open(“notes.txt”, “a”)

f.write(“Day 2: Practiced file handling.\n”)

f.close()

193 SGOU - SLM - BSc - Introduction to Python Programming

Step 3: Read and print the entire content

f = open(“notes.txt”, “r”)

print(“My Learning Notes:”)

print(f.read())

f.close()

Output

My Learning Notes:

Day 1: Started learning Python.

Day 2: Practiced file handling.

Recap

Importance of File Handling

	♦ Allows storing and retrieving data persistently

	♦ Useful for saving user data, logs, and configuration files

	♦ Essential for automating tasks involving data input/output

Basic Operations in File Handling

	♦ Opening files using open()

	♦ Reading and writing data

	♦ Appending new content

	♦ Modifying and deleting files

Syntax of open() Function

	♦ open(“filename”, “mode”)

•	 “filename”: Name of the file

•	 “mode”: Specifies the operation mode (read, write, etc.)

Common File Modes

	♦ “r”: Read mode, file must exist

	♦ “w”: Write mode, creates a new file or overwrites existing one

	♦ “a”: Append mode, adds data to the end of the file

194 SGOU - SLM - BSc - Introduction to Python Programming

	♦ “x”: Exclusive creation, error if file already exists

	♦ “b”: Binary mode, used for non-text files (like images)

	♦ “t”: Text mode, default for reading/writing text

Combined Modes

	♦ “r+”: Read and write, file must exist

	♦ “w+”: Write and read, file is created or overwritten

	♦ “a+”: Append and read, creates file if it doesn’t exist

	♦ “x+”: Create and read/write, error if file exists

Using with Statement for Files

	♦ with open(“file.txt”, “r”) as f:

	♦ Automatically closes the file after the block

	♦ Safer and cleaner than using f.close() manually

Commonly Used File Methods

	♦ read(): Reads entire file as a string

	♦ readline(): Reads one line at a time

	♦ readlines(): Reads all lines into a list

	♦ write(“text”): Writes the specified string

	♦ writelines([list]): Writes a list of strings to the file

	♦ seek(offset, whence): Moves file pointer to a position

	♦ tell(): Returns the current position of the file pointer

	♦ truncate(size): Resizes the file to the given number of bytes

	♦ close(): Closes the file to free resources

	♦ fileno(): Returns the file’s descriptor used by the OS

seek() Parameters

	♦ offset: Number of bytes to move the pointer

	♦ whence: Reference point for movement

•	 0: From beginning (default)

•	 1: From current position

•	 2: From end of file (only in binary mode)

195 SGOU - SLM - BSc - Introduction to Python Programming

Binary Mode Examples

	♦ “rb”: Read binary file (like images)

	♦ “wb”: Write binary data

	♦ “ab”: Append to a binary file

Why close() Is Necessary

	♦ Releases memory and system resources

	♦ Flushes any data left in buffer to the file

	♦ Ensures data is saved properly

	♦ Helps avoid file corruption and access issues

Objective Type Questions

1.	 Which function is used to open a file in Python?

2.	 Which mode is used to write to a file, overwriting its contents?

3.	 Which mode allows adding data at the end of a file?

4.	 What is the default mode in open() function?

5.	 Which method reads a file line by line?

6.	 Which method is used to write data to a file?

7.	 Which method returns the current file pointer position?

8.	 Which method moves the file pointer to a specific location?

9.	 Which method resizes the file to a specific size?

10.	Which statement is used to automatically close a file in Python?

11.	What is the name of the method to get the file descriptor?

12.	What is the mode to read and write in the same file, without truncating it?

13.	Which method is used to close an open file?

14.	What type of files are opened with mode ‘rb’?

15.	Which keyword is used to handle files safely, ensuring they are closed
automatically?

196 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 open

2.	 w

3.	 a

4.	 r

5.	 readline

6.	 write

7.	 tell

8.	 seek

9.	 truncate

10.	with

11.	fileno

12.	r+

13.	close

14.	binary

15.	with

Assignments

1.	 Explain different file opening modes in Python with suitable examples for
each. Illustrate how the behavior of the file changes when using modes like
‘w’, ‘a’, ‘r’, ‘r+’, and ‘w+’.

2.	 Write a Python program that performs the following operations:

3.	 Creates a new file and writes three lines of text to it.

4.	 Appends two more lines to the same file.

5.	 Reads the entire content and displays it on the screen.
Include appropriate comments and explain the purpose of each file mode
used.

197 SGOU - SLM - BSc - Introduction to Python Programming

6.	 Describe the purpose of the following file methods in Python with syntax
and examples:

7.	 read(), readline(), write(), seek(), tell(), truncate(), close()
Also explain what happens if these methods are used incorrectly.

8.	 Discuss the significance of the with statement in Python file handling.
Compare file operations done with and without with. Write sample programs
to demonstrate both approaches and explain the difference in terms of
resource management and error handling.

Reference

1.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

2.	 Sweigart, A. (2015). Automate the Boring Stuff with Python: Practical
Programming for Total Beginners. No Starch Press.

3.	 Downey, A. B. (2015). Think Python: How to Think Like a Computer
Scientist (2nd ed.). Green Tea Press.

4.	 Beazley, D., & Jones, B. K. (2013). Python Cookbook (3rd ed.). O’Reilly
Media.

Suggested Reading

1.	 Beazley, D., & Jones, B. K. (2013). Python Cookbook (3rd ed.). O’Reilly
Media.

2.	 VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for
Working with Data. O’Reilly Media.

Web Resources

3.	 Python Software Foundation. (n.d.). The Python Tutorial. https://docs.
python.org/3/tutorial/

4.	 W3Schools. (n.d.). Python Tutorial. https://www.w3schools.com/python/

Unit 2
 Advanced File Operations

Learning Outcomes

Prerequisites

	♦ Familiarize file handling operations such as opening, reading, writing, and
closing files in Python.

	♦ Demonstrate the use of file pointer methods like seek(), tell(), and truncate()
to manipulate file data and cursor positions.

	♦ Differentiate between text files and binary files, and perform appropriate
operations on each.

	♦ Implement safe file access using the with statement and understand the
internal working of context managers.

	♦ Use custom context manager classes __enter__() and __exit__() methods to
handle file resources efficiently and prevent resource leaks.

After the successful completion of the unit, the learner will be able to:

Imagine an online examination system that stores each student’s answers and scores for
future reference. In such a system, Python file operations like open(), write(), and
read() are used to handle student data efficiently. For example, the program can use
write() to save each student’s responses into a text file and readlines() to fetch
the stored answers for evaluation. The seek() and tell() methods help in navi-
gating through large files to locate or update specific data without reloading the entire
content. Additionally, truncate() may be used to clear or reset result files before
storing new entries. The use of the with statement ensures that files are automatically
closed after operations, preventing data loss and memory leaks. File operations also
allow the system to access configuration files or question banks saved in .txt or
.csv formats. These operations are critical for building reliable, data-driven Python
applications where persistent storage and retrieval are necessary.

Append, mode, flush, close, exception, path, encoding

Key words

199 SGOU - SLM - BSc - Introduction to Python Programming

Discussion
4.2.1 File pointer methods
In Python, file pointer methods are essential tools that help manage how data is read
from or written to a file. These methods allow the programmer to control the position
of the file cursor, making file operations more flexible and efficient. For example, the
seek() method moves the file pointer to a specific byte location, which is useful when
you want to skip over or revisit certain parts of a file. The tell() method returns the
current position of the file pointer, helping to keep track of where operations are taking
place within the file. These methods are particularly valuable when working with large
files, where reading the entire file at once would be inefficient. They also support both
text and binary modes of operation, although some limitations exist based on the mode
used. Proper use of file pointer methods ensures precise navigation within files and
contributes to effective file handling in Python programs.

Python provides robust support for file operations and includes a range of built
in functions that allow the creation, reading, writing, and manipulation of files.
Python can handle two main types of files - text files that store data in human readable
form and binary files that store data in a format readable by machines.

Text files: These files contain characters encoded using a standard character encoding
scheme such as ASCII or UTF-8. Each line in a text file is terminated with a special
character sequence called the End of Line. In Python, this is represented by the newline
character ‘\n’, which signals the end of a line and the beginning of the next. Text
files are typically used for storing structured or unstructured plain text, such as logs,
configuration files, or documents.

Binary files: Unlike text files, binary files store data as a continuous stream of bytes.
These files do not include any line terminators. The data is encoded in binary format,
which can represent complex data types such as images, audio, video, or serialized
Python objects. When writing to or reading from binary files, Python reads the exact
byte content using specific modes and functions. Handling binary files usually requires
the use of the rb (read binary) or wb (write binary) modes to ensure that the byte stream
is preserved accurately without any encoding or newline translation.

4.2.1.1 seek() function in Python
The seek() function in Python is used to change the position of the file cursor to a
specific location within a file. This feature lets you read from or write to any part of
the file, not just from the beginning. For instance, if you want to ignore the first 10
characters while reading a file, you can use the following code:

f = open(“demo.txt”, “r”)

f.seek(10)

print(f.read())

f.close()

200 SGOU - SLM - BSc - Introduction to Python Programming

This code moves the file cursor to the tenth character and starts reading from that point.

Syntax:

file.seek(offset, from_what)

Parameters:

offset: The number of bytes to move the cursor.

from_what: (optional) The point of reference from where the cursor movement begins:

0 - sets the reference at the beginning of the file

1 - sets the reference at the current position in the file

2 - sets the reference at the end of the file

Returns:

The function returns the new absolute cursor position from the start of the file.

Note:

When working in text mode, only 0 can be used as the from_what value. If you want to
use 1 or 2, the file must be opened in binary mode using ‘rb’.

Example 1:

Using seek() in Text Mode

Assume that the file Seek_example1.txt contains the following line:
I am a third semester BSc.DSA Student.

f = open(“Seek_example1.txt”, “r”)

f.seek(22)

print(f.tell())

print(f.readline())

f.close()

Output:

22

BSc.DSA Student.

Explanation:

The seek(22) command moves the file cursor to the 22nd character.

The tell() function confirms that the cursor is currently at position 22.

201 SGOU - SLM - BSc - Introduction to Python Programming

The readline() function then reads the line starting from that position.

Example 2: Using seek() in Binary Mode with Negative Offset

Assume that the file seek_example2.txt contains the following binary content:

I am a third semester BSc. DSA Student.

f = open(“seek_example2.txt”, “rb”)

f.seek(-11, 2)

print(f.tell())

print(f.readline().decode(‘utf-8’))

f.close()

Output:

47

DSA Student.

Explanation:

The file is opened in binary read mode (“rb”).

The function seek(-11, 2) positions the cursor 11 bytes before the file’s end.

readline() starts reading from that position until the end of the file.

The output is converted from binary format to a readable string using decode.

4.2.1.2 Python tell() function
tell() method
Access modes determine the kinds of operations that can be performed on an opened
file. They specify how the file will be used after opening. These modes also decide
the position of the file pointer, also known as the file handle. A file handle acts like
a cursor that shows where data will be read from or written into the file. At times, it
becomes necessary to check the current position of the file handle. The tell() method
helps in finding out the current location of the file handle. This method returns the
present position of the file object in the form of an integer value.

The tell() method does not take any arguments. When a file is opened, unless it is
opened in append mode, the file pointer starts at the beginning of the file. Therefore, the
initial value returned by tell() is zero.

Syntax:

file_object.tell()

202 SGOU - SLM - BSc - Introduction to Python Programming

Examples

Example 1: Using tell() right after opening a file

Open a file in read mode

file = open(“myfile.txt”, “r”)

Get the current file pointer position

position = file.tell()

print(“Current file pointer position:”, position)

file.close()

Output:

Current file pointer position: 0

This is because the file pointer starts at the beginning when the file is opened in read
mode.

Example 2: Using tell() after reading some characters

Open a file in read mode

file = open(“myfile.txt”, “r”)

Read first 5 characters

data = file.read(5)

Check file pointer position

position = file.tell()

print(“After reading 5 characters, pointer is at position:”, position)

file.close()

Output:

After reading 5 characters, pointer is at position: 5

Example 3: Using tell() in a file opened in write mode

Open a file in write mode

file = open(“sample.txt”, “w”)

Write some text

file.write(“Hello World”)

Check file pointer position

203 SGOU - SLM - BSc - Introduction to Python Programming

position = file.tell()

print(“Pointer position after writing:”, position)

file.close()

Output:

Pointer position after writing: 11

The pointer is at 11 because the string “Hello World” has 11 characters.

4.2.2 Python truncate() Method
The truncate() method in Python is used to change the size of a file. This method allows
you to either reduce or increase the file’s size, depending on the value passed to it.

Functionality

When you call truncate(), it cuts off the file at the specified size, discarding any data
beyond that point. If you do not provide a size argument, the file will be truncated at
the current file pointer position (i.e., wherever the cursor is currently located within
the file). Importantly, this operation does not move the file pointer, its position remains
unchanged after the method call.

Behavior Based on Size Argument

	♦ If the specified size is less than the current size of the file, the extra data will
be permanently removed.If the size is greater than the current file size, what
happens depends on the operating system:

	♦ The file may stay unchanged.

	♦ The file might expand to the new size, with the extra bytes filled with zero
(\x00) values.

	♦ Alternatively, the new content added may be undefined or garbage data,
depending on the platform.

File Mode Requirement

To use truncate(), the file must be opened in a mode that allows writing—such as write
(‘w’) mode, append (‘a’) mode, or read and write (‘r+’) mode. Attempting to truncate a
file opened in read-only mode will raise an error.

Syntax

fileObject.truncate(size)

	♦ fileObject: A file object returned by open()

	♦ size (optional): An integer value representing the desired file size in bytes

204 SGOU - SLM - BSc - Introduction to Python Programming

Example

with open(“sample.txt”, “w+”) as f:

 f.write(“Hello, world!”)

 f.truncate(5)

After this operation, the contents of sample.txt will be “Hello” , the rest is removed.

Example: See the below image for file size.

Let’s change the file size to 100 bytes.

Python program to demonstrate # truncate() method

fp = open(‘file1.txt’, ‘w’)

Truncates the file to specified # size

fp.truncate(100)

205 SGOU - SLM - BSc - Introduction to Python Programming

Closing files

fp.close()

Output:

The two examples demonstrate different uses of Python’s truncate() method and how
it affects file content and size. In the first example, the file sample.txt is opened in
write-and-read mode (“w+”), and the string “Hello, world!” is written to it. Then, the
truncate(5) method is called, which reduces the file size to 5 bytes. As a result, only
the first five characters, “Hello”, are retained in the file, and the rest of the content is
permanently removed. This shows how truncate() can be used to shorten a file after
data has been written. In contrast, the second example opens a new file file1.txt in write
mode (“w”) without writing any content. When truncate(100) is called, it expands the
file size to 100 bytes, even though no actual text is added. The file will appear empty
but will occupy 100 bytes, typically filled with null bytes (\x00) or undefined content,
depending on the operating system. This demonstrates that truncate() can also be used
to pre-allocate file space or modify a file’s size without writing visible content. The key

206 SGOU - SLM - BSc - Introduction to Python Programming

difference lies in their intent and effect, one modifies existing content, while the other
changes the file’s size in the absence of content.

4.2.3 Using the with Statement in File Handling

In earlier approaches, whenever a file is opened, it must be explicitly closed using the
close() method. If this step is forgotten, it can lead to several problems, for example,
changes made to the file might not be saved properly until the file is closed. To avoid
such issues, Python provides the ‘with’ statement.

The ‘with’ statement is used to manage resources like files more efficiently and safely.
It simplifies the code by automatically handling the opening and closing of files. This
makes the code cleaner, easier to read, and reduces the chances of bugs. When using
with, there is no need to explicitly call file.close(), the file is automatically closed once
the block of code inside the ‘with’ statement finishes execution, even if an error occurs.

Program Execution with the ‘with’

When the following program is run:

Python program demonstrating

truncate() method with the ‘with’ statement

with open(‘file1.txt’, ‘w’) as fp:

fp.truncate(50)

Here’s what happens step by step:

1.	 The file file1.txt is opened in write mode (‘w’) using the with statement.

2.	 Inside the block, the truncate(50) method is called, which resizes the file to 50
bytes.

	♦ If the file was previously larger than 50 bytes, it gets shortened.

	♦ If it was smaller, the file may be extended to 50 bytes with null bytes (\x00),
depending on the platform.

3.	 Once the block is completed, Python automatically closes the file, ensuring all
changes are properly saved and no file resources are left open.

This approach helps avoid common mistakes and makes the file-handling process more
secure and efficient.

Output:

207 SGOU - SLM - BSc - Introduction to Python Programming

4.2.4 Working with File Renaming and Deletion in Python
Python provides built-in support for renaming and deleting files through the operating
system module. These operations are essential for effective file system management,
especially when organizing, updating, or cleaning up files.

4.2.4.1 Renaming Files in Python
To rename a file, Python offers the os.rename() function, which allows you to change
a file’s name easily. This function requires two arguments: the current name of the file
and the new name you want to assign.

Syntax:

os.rename(existing_filename, new_filename)

Parameters:

	♦ existing_filename: The current name of the file you wish to rename.

	♦ new_filename: The new name that will replace the existing one.

Example: Renaming a File

Let’s say you want to rename a file named oldfile.txt to newfile.txt. Here’s how you can
do it using Python:

208 SGOU - SLM - BSc - Introduction to Python Programming

import os

Original file name

current_name = “oldfile.txt”

Desired new name

new_name = “newfile.txt”

Renaming the file

os.rename(current_name, new_name)

print(f”File ‘{current_name}’ renamed to ‘{new_name}’ successfully.”)

Output:

File ‘oldfile.txt’ renamed to ‘newfile.txt’ successfully.

4.2.4.2 Deleting Files in Python
In Python, files can be deleted using the os.remove() function from the os module. This
function permanently deletes the file whose name is passed to it.

Syntax

os.remove(file_name)

Parameter

	♦ file_name: The name (and optionally the path) of the file you want to delete.
This should be passed as a string.

Example

The following example demonstrates how to delete a file named “file_to_delete.txt”:

import os

Name of the file to be removed

file_for_deletion = “myfilenew.txt”

Remove the file

os.remove(file_for_deletion)

print(f”File ‘{file_for_deletion}’ deleted successfully.”)

Output

File ‘myfilenew.txt’ deleted successfully.

Explanation

When this script is executed:

209 SGOU - SLM - BSc - Introduction to Python Programming

1.	 The file “myfilenew.txt” is identified.

2.	 The os.remove() function deletes the file from the system.

3.	 A confirmation message is printed once the deletion is successful.

Make sure the file exists before calling os.remove(), or it will raise a FileNotFoundError.

4.2.5 Reading a File Line by Line in Python
Python offers built-in functions to create, write, and read files. It supports handling both
text files and binary files (which store data in the form of 0s and 1s). In this section,
we’ll focus on how to read the contents of a text file one line at a time.

Example:

with open(‘filename.txt’, ‘r’) as file:

 for line in file:

 print(line.strip())

Explanation:

	♦ The open() function is used to open the file named “filename.txt” in read
mode (‘r’).

	♦ The with statement ensures that the file is properly closed after the operation
is completed.

	♦ The for loop reads the file one line at a time.

	♦ line.strip() is used to remove any leading/trailing whitespace or newline
characters before printing each line.

This approach is memory-efficient, especially useful when working with large files, as
it reads and processes one line at a time instead of loading the entire file into memory.

4.2.5.1 Reading a File Using a Loop
When a file is opened using the open() function, it returns an iterable file object. One
efficient way to read a file line-by-line is by using a for loop to iterate over this file object
directly. This approach makes use of Python’s built-in capability to process the file line-
by-line without needing to call any explicit method like readline() or readlines().

Example

Creating a sample file with multiple lines

L = [“BSc.\n”, “Data Science\n”, “and Analytics\n”]

file1 = open(‘myfile.txt’, ‘w’)

file1.writelines(L)

210 SGOU - SLM - BSc - Introduction to Python Programming

file1.close()

Opening the file in read mode

file1 = open(‘myfile.txt’, ‘r’)

count = 0

print(“Using for loop”)

Iterating over the file object line by line

for line in file1:

 count += 1

 print(“Line{}: {}”.format(count, line.strip()))

file1.close()

Output

Using for loop

Line1: BSc.

Line2: Data Science

Line3: and Analytics

Explanation

1.	 A list of strings is written to a file named “myfile.txt”.

2.	 The file is reopened in read mode.

3.	 A for loop is used to go through each line in the file one at a time.

4.	 Each line is stripped of extra whitespace (like newline characters) using
strip() and printed along with its line number.

5.	 Finally, the file is closed.

This method is memory-efficient and especially useful for reading large files, as it
processes one line at a time rather than loading the entire file into memory.

4.2.5.2 Reading Files Using List Comprehension
List comprehension in Python is a concise way to create lists by placing an expression
inside square brackets, along with a for loop to iterate over elements. When applied to
file handling, it can be used to read lines from a file efficiently.

In this example, we demonstrate two ways of reading a file using list comprehension:

1.	 Reading with newline characters included

211 SGOU - SLM - BSc - Introduction to Python Programming

2.	 Reading with newline characters removed

Example

Reading file lines with newline characters preserved

with open(‘myfile.txt’) as f:

 l = [line for line in f]

print(l)

Reading file lines with newline characters removed

with open(‘myfile.txt’) as f:

 l = [line.rstrip() for line in f]

print(l)

Output

[‘BSc.\n’, ‘Data Science\n’, ‘and Analytics\n’]

[‘BSc.’, ‘Data Science’, ‘and Analytics’]

Explanation

	♦ In the first with block, each line from the file is added to the list l as it is,
including the \n newline characters.

	♦ In the second block, the rstrip() method is used to strip off the trailing newline
characters from each line before adding it to the list.

	♦ The result is printed in both cases, showing the difference between raw file
lines and cleaned lines.

This approach is compact and useful when you want to quickly read and process lines
from a file into a list.

4.2.5.3 Reading Files Using readlines()
The readlines() function in Python reads all lines from a file at once and stores them as
individual string elements in a list. Each element in this list represents a line from the
file, including the newline characters (\n).

This method is suitable for small files since it loads the entire file content into memory.
After reading the lines, we can loop through the list and use the strip() method to remove
the newline characters from each line.

Example

Creating a file and writing multiple lines

L = [“BSc.\n”, “Data Science and\n”, “Analytics\n”]

212 SGOU - SLM - BSc - Introduction to Python Programming

file1 = open(‘myfilenew.txt’, ‘w’)

file1.writelines(L)

file1.close()

Reading the file using readlines()

file1 = open(‘myfilenew.txt’, ‘r’)

Lines = file1.readlines()

count = 0

Iterating through the list of lines

for line in Lines:

 count += 1

 print(“Line{}: {}”.format(count, line.strip()))

Output

Line1: BSc.

Line2: Data Science and

Line3: Analytics

Explanation

	♦ A list of strings is written to a file called “myfilenew.txt”, each ending with
a newline character.

	♦ The file is then opened in read mode, and readlines() reads all lines into a list
named Lines.

	♦ A for loop goes through each line in the list, using strip() to remove extra
whitespace or newline characters.

	♦ Each cleaned line is printed along with its line number.

This method is simple and effective for reading files that are not too large to fit in
memory.

4.2.6 Using the with Statement in Python
When working with files in Python, it’s crucial to ensure that files are properly closed
after operations. Forgetting to close a file can lead to issues like data not being saved
or system resources being unnecessarily occupied. Typically, this is done using the file.
close() method.

Python’s with statement simplifies file handling by automatically managing the opening
and closing of files. Once the code inside the with block finishes executing-even if an

213 SGOU - SLM - BSc - Introduction to Python Programming

error occurs, the file is safely closed. This approach leads to cleaner, more reliable code
with less risk of mistakes.

Example 1: Writing to and Reading from a File Using with Statement

Writing content to the file using with statement

L = [“BSc.\n”, “Data Science\n”, “and Analytics\n”]

with open(“myfile.txt”, “w”) as fp:

 fp.writelines(L)

 # Reading the file using readlines()

count = 0

print(“Using readlines()”)

with open(“myfile.txt”) as fp:

 l = fp.readlines()

 for line in l:

 count += 1

 print(“Line{}: {}”.format(count, line.strip()))

Reading the file using readline()

count = 0

print(“\nUsing readline()”)

with open(“myfile.txt”) as fp:

 while True:

 count += 1

 line = fp.readline()

 if not line:

 break

 print(“Line{}: {}”.format(count, line.strip()))

Reading the file using a for loop

count = 0

print(“\nUsing for loop”)

with open(“myfile.txt”) as fp:

214 SGOU - SLM - BSc - Introduction to Python Programming

 for line in fp:

 count += 1

 print(“Line{}: {}”.format(count, line.strip()))

Output

Using readlines()

Line1: BSc.

Line2: Data Science

Line3: and Analytics

Using readline()

Line1: BSc.

Line2: Data Science

Line3: and Analytics

Using for loop

Line1: BSc.

Line2: Data Science

Line3: and Analytics

Explanation

	♦ with open(...): ensures that the file is properly closed after the block completes.

	♦ readlines() reads all lines at once and returns them as a list.

	♦ readline() reads one line at a time in a loop.

	♦ Using a for loop directly on the file object allows line-by-line reading in a
more Pythonic way.

All three reading methods produce the same output, and using the with statement
ensures that the file is always closed safely, regardless of which reading method is used.

Example 2: Without with (Manual Closing)

file = open(“example.txt”, “r”)

try:

content = file.read()

print(content)

finally:

215 SGOU - SLM - BSc - Introduction to Python Programming

file.close() # Ensures the file is closed

Output:

Hello, World!

Explanation:

This approach opens “example.txt” in read mode, reads and prints its content, and then
manually ensures that the file is closed using a finally block.

Example 3: With with (Automatic Closing)

with open(“example.txt”, “r”) as file:

content = file.read()

print(content)

Output:

Hello, World!

Explanation:

The with statement handles the opening and closing of the file automatically. Once the
block completes, the file is closed without needing a finally block.

4.2.6.1 Advantages of the with Statement

	♦ Automatic Resource Management: Ensures resources are acquired and
released properly.

	♦ No Need for Try-Finally: Replaces traditional try-finally blocks used for
manual cleanup.

	♦ Improved Readability: Reduces boilerplate code, making programs easier to
read and maintain.

a. Common Use : File Handling

The with statement is most commonly used with the open() function for file operations.

Example: Reading a File

with open(“example.txt”, “r”) as file:

contents = file.read()

print(contents)

Output:

Hello, World!

216 SGOU - SLM - BSc - Introduction to Python Programming

Explanation:

Opens “example.txt” in read mode and automatically closes it after reading.

Example: Writing to a File

with open(“example.txt”, “w”) as file:

file.write(“Hello, Python with statement!”)

Output:

Hello, Python with statement!

Explanation:

The file is opened in write mode and written to. Upon exiting the block, the file is
automatically closed.

Comparison: with vs. Without with in Writing

Without with (Manual File Closure)

file = open(“example.txt”, “w”)

try:

file.write(“Hello, Python!”)

finally:

file.close()

Output:

Hello, Python!

Explanation:

The file is manually opened and closed using a try-finally block to avoid resource leaks.

With with (Automatic File Closure)

with open(“example.txt”, “w”) as file:

file.write(“Hello, Python!”)

Output:

Hello, Python!

Explanation:

The file is written and automatically closed by the with block, making the code cleaner
and safer.

217 SGOU - SLM - BSc - Introduction to Python Programming

c) Understanding Context Managers in with

The with statement relies on context managers, which define how resources are set up
and cleaned up. A context manager must define two methods:

	♦ __enter__() – Acquires the resource and returns it.

	♦ __exit__() – Releases the resource when exiting the block.

Example: Custom Context Manager for File Writing

class FileManager:

 def __init__(self, filename, mode):

 self.filename = filename

 self.mode = mode

 def __enter__(self):

 self.file = open(self.filename, self.mode)

 return self.file

 def __exit__(self, exc_type, exc_value, traceback):

 self.file.close()

with FileManager(‘example.txt’, ‘w’) as file:

 file.write(‘Hello, World!’)

Output:

Hello, World!

Explanation:

	♦ __init__() sets the filename and mode.

	♦ __enter__() opens the file.

	♦ __exit__() ensures it’s closed after writing.

	♦ This custom class behaves just like the built-in file context manager used
with open().

218 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ File pointer methods like seek() and tell() are used to control the cursor
position within a file.

	♦ The seek() method moves the file pointer to a specific byte offset, allowing
random access to file contents.

	♦ The tell() method returns the current file pointer position as an integer.

	♦ In text mode, the seek() method only supports from_what=0 (beginning of
file).

	♦ For from_what=1 (current position) or 2 (end of file), the file must be opened
in binary mode (e.g., ‘rb’).

	♦ Using seek(offset) is helpful when skipping specific parts of a file or revisiting
previous content.

	♦ Binary files must be handled using modes like ‘rb’ or ‘wb’ to avoid newline
translations.

	♦ Text files contain characters encoded in schemes like UTF-8 and are human-
readable.

	♦ Binary files store data in bytes and are used for images, audio, video, and
other non-text content.

	♦ The truncate() method resizes a file to a specified number of bytes, either
shrinking or expanding it.

	♦ If truncate() is called with no size argument, it truncates the file at the current
pointer position.

	♦ When expanding a file using truncate(size), the new content may be filled
with null bytes (\x00) or be undefined.

	♦ truncate() can only be used if the file is opened in a mode that allows writing
(e.g., ‘w’, ‘a’, ‘r+’).

	♦ The with statement in Python automatically handles opening and closing
files, even in case of errors.

	♦ Using with makes file-handling code cleaner, safer, and less prone to bugs
caused by forgetting file.close().

	♦ Python provides built-in support for renaming and deleting files using
os.rename() and os.remove().

	♦ Reading a file line by line can be efficiently done using a for loop, saving
memory when working with large files.

219 SGOU - SLM - BSc - Introduction to Python Programming

	♦ The readlines() method reads all lines at once and returns them as a list; best
for small files.

	♦ File contents can also be read using list comprehension, optionally stripping
newline characters.

	♦ You can define a custom context manager using __enter__() and __exit__()
to manage file resources similarly to the built-in open() function.

Objective Type Questions

1.	 Which method in Python moves the file cursor to a specific location?

2.	 Which method returns the current position of the file pointer?

3.	 What is the default value of from_what in seek() for text mode?

4.	 What value of from_what in seek() refers to the end of the file?

5.	 In which mode must a file be opened to use from_what = 1 or 2 in
seek()?

6.	 Which method is used to change the size of a file?

7.	 What character represents the end of a line in a Python text file?

8.	 What type of file stores data in a human-readable format?

9.	 What type of file stores data as a stream of bytes?

10.	Which keyword ensures a file is automatically closed after operations?

11.	Which Python module is used for file renaming and deletion?

12.	Which function is used to rename a file in Python?

13.	Which function is used to delete a file in Python?

14.	What error is raised if you try to delete a non-existent file?

15.	Which method reads all lines from a file into a list?

16.	Which method reads one line at a time from a file?

17.	Which loop is memory-efficient for reading large files line by line?

18.	What does the tell() method return?

19.	Which method in a custom context manager opens a resource?

20.	Which method in a custom context manager closes the resource?

220 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 seek()

2.	 tell()

3.	 0

4.	 2

5.	 rb

6.	 truncate()

7.	 \n

8.	 Text

9.	 Binary

10.	with

11.	os

12.	rename()

13.	remove()

14.	FileNotFoundError

15.	readlines()

16.	readline()

17.	for

18.	position

19.	enter()

20.	exit()

Assignments

1.	 Explain the working of seek() and tell() methods in Python file handling.
Describe the purpose of these file pointer methods with relevant syntax and
examples. Include the significance of the from_what parameter in the seek()
function and how its usage differs between text and binary modes.

221 SGOU - SLM - BSc - Introduction to Python Programming

2.	 Discuss the functionality of the truncate() method in Python. Explain how
this method alters the file size and how it behaves when the specified size is
smaller or larger than the current file size. Provide examples showing the use
of truncate() in both shrinking and expanding files.

3.	 Compare and contrast text files and binary files in Python. Write about the
differences in storage, structure, and access methods for both file types.
Include examples of how each type is opened, read from, and written to in
Python.

4.	 Describe the use of the with statement in Python file handling. Explain why
the with statement is preferred over manually opening and closing files.
Illustrate with examples showing how it enhances code safety and clarity.
Also mention what happens behind the scenes using context manager
methods like __enter__() and __exit__().

5.	 Write a Python program using a custom context manager to handle file
operations. Create a class-based context manager using __enter__() and __
exit__() methods that writes and reads data from a file. Explain how your
program ensures safe and efficient file handling.

Unit 3
Basics of Object-Oriented

Programming

Learning Outcomes

Prerequisites

	♦ define the term “class” in Python.

	♦ list the key concepts of Object-Oriented Programming (OOP).

	♦ identify the syntax used to create an object in Python.

	♦ recall the different types of constructors in Python.

	♦ familiarise the three main types of methods in a Python class

After the successful completion of the unit, the learner will be able to:

Imagine you are building a software system to manage a pet shelter. The shelter has
many dogs, each with different breeds, ages, and behaviors. You need a way to organize
all this information clearly so that you can keep track of each dog’s unique details and
what they can do.

If you just use simple lists or separate variables, it becomes confusing and hard to
manage as the number of dogs grows. How do you keep all their data and behaviors
together? How can you reuse common features without rewriting code again and again?

This is where Object-Oriented Programming (OOP) in Python comes in. OOP helps
you model real-world things like dogs as “objects” with their own data and actions.
Using OOP, you can create classes that serve as blueprints for these objects, encapsu-
late data to keep it safe, reuse code through inheritance, and even let the same function
work differently based on the context. By the end, you will be able to build structured,
reusable, and maintainable programs that reflect real-world problems more naturally.

Class, Object, Polymorphism, Encapsulation, Inheritance, Variables, Parametrized

Key Concepts

223 SGOU - SLM - BSc - Introduction to Python Programming

4.3.1 Introduction to OOPs
In Python, object-oriented Programming (OOPs) is a programming paradigm that uses
objects and classes in programming. It seeks to incorporate in programming real-world
concepts like inheritance, polymorphism, encapsulation, etc. The fundamental idea
behind OOPs is to combine the data and the functions that use it such that no other
portion of the code may access it.

4.3.2 Key Concepts of OOPs
The key concepts of Object-Oriented Programming in Python as in Fig 4.3.1 mean
the fundamental principles that define how Python supports programming using objects
and classes. These concepts help organize code around objects that combine data and
behavior, making programs easier to understand, maintain, and reuse.

The main key concepts of OOP in Python are

	♦ Class

	♦ Objects

	♦ Polymorphism

	♦ Encapsulation

	♦ Inheritance

	♦ Data Abstraction

Fig 4.3.1 OOPs Concept

4.3.2.1 Class
Suppose you need to keep track of the number of dogs that might have various
characteristics, such as breed or age. If a list is utilized, the dog’s breed and age might
be the first and second elements, respectively. What if there were 100 different breeds

Discussion

224 SGOU - SLM - BSc - Introduction to Python Programming

of dogs? How would you know which ingredient should go where? What if you wanted
to give these dogs additional traits? This is unorganized and just what classes need.

A class serves as a blueprint for creating objects and represents a collection of those
objects. It defines a set of attributes and methods that the objects (or instances) created
from it will possess. In Python, classes are defined using the class keyword. Attributes,
which are variables associated with a class, describe the properties of the objects. These
attributes are publicly accessible and can be referenced using the dot (.) operator, for
example, MyClass.MyAttribute.

Syntax: class ClassName:

 # Statement-1

 .

 .

 .

 # Statement-N

Example:

class Dog: #Define a class

 sound = “bark” # Public class variable

 __type = “Canine” # Private class variable

Using the class keyword, we built a class with the name dog in the example above.

	♦ Public class members can be accessed from anywhere in the program, as all
data members and functions are public by default unless stated otherwise.

	♦ Protected members of a class, indicated by a single underscore (_), can only
be accessed within the class itself and its subclasses.

	♦ Private members of a class, marked with a double underscore (__), are
accessible only within the class in which they are defined.

4.3.2.2 Objects
An object is a concrete instance of a class, containing its own specific data and
functionality based on the class definition.
An object includes:

	♦ State: Defined by its attributes, representing the characteristics or properties
of the object.

	♦ Behavior: Defined by its methods, showing how the object acts or responds
to other objects.

	♦ Identity: A unique identifier that distinguishes the object from others and
allows interaction between different objects.

225 SGOU - SLM - BSc - Introduction to Python Programming

To better understand state, behavior, and identity, take the example of a Dog class. The
identity of the dog can be its name, which makes it unique. The dog’s state includes
attributes like its breed, age, and color. Its behavior refers to actions it can perform, such
as eating or sleeping. This helps show how an object (a dog) can have its own data and
perform specific actions.

Creating an Object

In Python, creating an object means generating a new instance from a class. This process
is known as Object Instantiation and involves using the class to construct an individual
object with its own data and behavior.

Syntax: object_name = ClassName()

	♦ ClassName is the name of the class already defined.

	♦ object_name is the name of the object you are creating

Example:

class Dog:

 species = “Canine” # Class attribute

 def __init__(self, name, age):

 self.name = name # Instance attribute

 self.age = age # Instance attribute

dog1 = Dog(“Buddy”, 3) # Creating an object of the Dog class

print(dog1.name) #Accesses the instance attribute name of the dog1 object

print(dog1.species) #Accesses the class attribute species of the dog1 object

Output:

Buddy

Canine

	♦ The self parameter refers to the current instance of the class. It is used to
access that particular object’s attributes and methods from within the class
itself.

	♦ The __init__ method serves as the constructor in Python and is automatically
executed when a new object is instantiated. Its primary role is to initialize
the class’s attributes.

4.3.2.3 Polymorphism
Polymorphism is the concept of something existing in multiple forms. In simpler terms,
it means that a single function or message can behave differently depending on the
context. For example, one person may play various roles simultaneously like being a

226 SGOU - SLM - BSc - Introduction to Python Programming

father, a husband, and an employee. Although it is the same person, their actions vary
according to the role they are fulfilling. This flexibility in behavior based on different
situations illustrates the idea of polymorphism. The different types of polymorphism is
shown in Fig 4.3.2.

In object-oriented programming, polymorphism allows methods to perform different
tasks based on the object calling them. It enhances code reusability and flexibility by
allowing the same interface to be used for different data types. This concept is commonly
implemented through method overriding and method overloading, making programs
easier to scale and maintain.

Fig 4.3.2 Types of Polymorphism

4.3.2.4 Encapsulation
Encapsulation is one of the fundamental principles of object-oriented programming
(OOP). It refers to the concept of hiding the internal details of how an object works and
only exposing a controlled interface to the outside world. In Python, this is achieved
by wrapping data (variables) and methods (functions) into a single unit, usually a class,
and restricting direct access to some of the object’s components as shown in Fig 4.3.3.
This protects the object’s integrity by preventing unintended interference and misuse.

Fig 4.3.3 Encapsulation

Encapsulation allows programmers to define access levels for class members using
public, protected, or private access modifiers. By doing so, sensitive data can be kept
hidden from direct access and only modified through well-defined interfaces like getter
and setter methods. This not only enhances data security but also makes the code more
modular, maintainable, and easier to debug.

227 SGOU - SLM - BSc - Introduction to Python Programming

4.3.2.5 Inheritance
Inheritance is a key concept in object-oriented programming. It allows one class (called
the child class or derived class) to inherit or receive the features (like variables and
methods) of another class (called the parent class or base class). This means that the
child class can use the code written in the parent class without rewriting it. Inheritance
helps in code reusability, making programs shorter and easier to maintain.

If we have a class called Animal, we can create a child class Dog that inherits from
Animal, meaning Dog will have all the features of Animal along with its own specific
features. Inheritance can also be transitive, meaning if class B inherits from class A, and
class C inherits from class B, then class C also inherits the features of class A.

Types of Inheritance

In Python, there are five main types of inheritance, each defining a different way in
which classes relate to one another.

1. Single Inheritance

2. Multiple Inheritance

3. Multilevel Inheritance

4. Hierarchical Inheritance

5. Hybrid Inheritance

4.3.2.6 Data Abstraction
Data abstraction is a key and fundamental concept in object-oriented programming.
It involves showing only the necessary details to the outside world while hiding the
complex internal workings or implementation. For instance, consider a person driving a
car. The driver knows that pressing the accelerator makes the car go faster and applying
the brakes slows it down. However, the driver does not need to understand how the
engine responds to these actions or the internal mechanics involved. This separation of
functionality from the underlying process is what defines abstraction.

The main purpose of abstraction is

	♦ To reduce complexity and make code easier to manage.

	♦ To hide internal implementation from the user.

	♦ To focus on what an object does and how it works.

	♦ To provide a clear structure for creating reusable and extendable code.

	♦ To improve security by hiding sensitive logic.

4.3.3 Python Variables
In Python, classes can contain two main types of variables

228 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Class Variables

	♦ Instance Variables

1. Instance variables - variables that belong to each individual object created from a
class, with every object having its own distinct copy. They are usually defined within
methods, most commonly inside the __init__ method, using self.variable_name. The
main purpose of instance variables is to store data or state that is unique and specific to
each object.

class Dog:

 def __init__(self, name, breed):

 self.name = name # Instance variable

 self.breed = breed # Instance variable

 my_dog = Dog(“Buddy”, “Golden Retriever”)

 your_dog = Dog(“Lucy”, “Labrador”)

 print(my_dog.name) # Output: Buddy

 print(your_dog.name) # Output: Lucy

2. Class variables (Class Attributes)- variables that are shared among all instances of
a class. Unlike instance variables, which belong to individual objects, class variables
belong to the class itself and are defined directly within the class body, outside of any
methods. They are used to store data that is common to every instance of the class or
to hold constants related to the class, ensuring that this information is consistent and
shared across all objects created from that class.

class Employee:

 raise_amount = 1.04 # Class variable

 def __init__(self, first, last, pay):

 self.first = first

 self.last = last

 self.pay = pay

 def apply_raise(self):

 self.pay = int(self.pay * self.raise_amount)

 emp_1 = Employee(“John”, “Doe”, 50000)

 emp_2 = Employee(“Jane”, “Smith”, 60000)

 print(Employee.raise_amount) # Output: 1.04

229 SGOU - SLM - BSc - Introduction to Python Programming

 print(emp_1.raise_amount) # Output: 1.04 (accessed via instance)

4.3.4 Python Methods
In Python, a method is a function associated with an object that works with the object’s
data or carries out tasks related to it. Methods are defined inside a class and are accessed
by calling them on an instance of that class using dot notation

Example: object.method().

Python includes three main categories of methods:

	♦ Instance Methods

	♦ Class Methods

	♦ Static Methods

1. Instance Methods-These are the most frequently used methods in Python. They
work on individual instances of a class. The first parameter, typically named self, refers
to the particular object calling the method, enabling access to and modification of that
object’s attributes.

class MyClass:

 def __init__(self, value):

 self.value = value

 def get_value(self): # Instance Method

 return self.value

obj = MyClass(10)

print(obj.get_value())

2. Class Methods-Class methods are tied to the class rather than any individual object.
They are defined using the @classmethod decorator. The first parameter, usually named
cls, refers to the class itself, giving these methods the ability to access and alter class-
level attributes.

class MyClass:

 class_variable = “Hello”

 @classmethod

 def get_class_variable(cls): # Class Method

 return cls.class_variable

print(MyClass.get_class_variable())

3. Static Methods-Static methods are much like regular functions but are placed inside a

230 SGOU - SLM - BSc - Introduction to Python Programming

class to keep related functionality organized. They are defined using the @staticmethod
decorator and do not take self or cls as their first argument. Since they do not rely on
instance or class-specific data, static methods are ideal for utility tasks that are relevant
to the class conceptually but do not require access to its internal state.

class MyClass:

 @staticmethod

 def static_greeting(): # Static Method

 return “This is a static greeting.”

print(MyClass.static_greeting())

class MyClass:

 def __init__(self, value):

 self.value = value

 def get_value(self): # Instance Method

 return self.value

obj = MyClass(10)

print(obj.get_value())

4.3.5 Constructors
In Python, constructors are special methods designed to initialize objects at the time
of their creation. The main constructor method is __init__(), which is automatically
executed when a new instance of a class is created. This method is typically used to
set up instance variables or perform any setup tasks necessary for the object to operate
as expected. Constructors are essential in object-oriented programming as they ensure
that each object is initialized with the appropriate configuration when it is instantiated.

Syntax: def_init_(self):

Body of the Constructor

4.3.5.1 Types of Constructors

In Python, there are three different kinds of constructors

	♦ Default Constructor

	♦ Non-parameterized Constructor

	♦ Parameterized Constructor

1. Default Constructor
A default constructor in Python is the most basic form of constructor and does not take

231 SGOU - SLM - BSc - Introduction to Python Programming

any parameters. If a class does not explicitly define a constructor, Python automatically
provides one. This built-in default constructor is used to initialize the instance variables
of a class with their default values. It is invoked automatically when an object of
the class is created, ensuring that the object is properly set up even without custom
initialization logic.

class Student:

def __init__(self):

self.name = “John Doe”

self.age = 18

self.grade = “A”

s = Student()

print(“Name:”, s.name)

print(“Age:”, s.age)

print(“Grade:”, s.grade)

Output:

Name: John Doe

Age: 18

Grade: A

In the given example, a default constructor is defined for the Student class. This
constructor initializes the name, age, and grade attributes of the object with default
values. When an object of the Student class is created using this constructor, it
automatically assigns default values to these attributes.

2. Non-Parametrized Constructor

A non-parameterized constructor is a constructor defined by the programmer that does
not take any arguments. Also known as a no-argument constructor, it is used to assign
default values to the instance variables of a class when an object is created.

class Person:

def __init__(self):

self.name = “John”

self.age = 20

p = Person()

print(“Name:”, p.name)

232 SGOU - SLM - BSc - Introduction to Python Programming

print(“Age:”, p.age)

Output:

Name: John

Age: 20

In the given example, a non-parameterized constructor is defined for the Person class.
This constructor sets the name attribute to “John” and the age attribute to 20 by default.
When an object of the Person class is instantiated, these default values are automatically
assigned to its name and age attributes.

3. Parametrized Constructor

A parameterized constructor in Python is a type of constructor that takes one or
more arguments when an object is created. Unlike a default constructor, it allows the
programmer to provide specific values during object instantiation, which are then used
to initialize the instance variables of the class. This type of constructor is useful for
setting unique values for each object, making the initialization process more flexible
and customized.

class Rectangle:

def __init__(self, length, breadth):

self.length = length

self.breadth = breadth

r = Rectangle(10, 5)

print(“Length:”, r.length)

print(“Breadth:”, r.breadth)

Output:

Length: 10

Breadth: 5

In the given example, a parameterized constructor is defined for the Rectangle class.
This constructor takes two parameters length and breadth and uses them to initialize the
corresponding attributes of the object.

4.3.5.2 Constructor Overloading
Constructor overloading refers to the concept of having multiple constructors in a
class, each with a different set of parameters. Although Python does not allow explicit
constructor overloading as seen in some other languages, similar functionality can
be accomplished by using default arguments and optional parameters within a single
constructor.

233 SGOU - SLM - BSc - Introduction to Python Programming

Syntax: class MyClass:

def __init__(self, param1, param2=None):

Constructor implementation

Parameters:

	♦ self: Refers to the current instance of the class.

	♦ param1: A required parameter used for initialization.

	♦ param2: An optional parameter with a default value of None, which is used
if no value is supplied.

	♦ None: An optional parameter with a default value of None. If not provided,
it takes on this default value.

class Person:

 def __init__(self, name, age=None):

 self.name = name

 self.age = age

person1 = Person(“Alice”)

person2 = Person(“Bob”;25)

print(person1.name, person1.age)

print(person2.name, person2.age)

Output

Alice None

Bob 25

In this example, the Person class includes a constructor that takes name as a required
parameter and age as an optional one. Two objects, person1 and person2, are created
using different arguments. The output shows the name and age for each object, person1
has no age specified, so it displays None, while person2 has an age of 25.

234 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ Python’s Object-Oriented Programming (OOP) uses objects and classes
to model real-world concepts like inheritance, polymorphism, and
encapsulation.

	♦ OOP combines data and functions to restrict access and improve code
organization.

	♦ Key OOP concepts: Class, Objects, Polymorphism, Encapsulation,
Inheritance, and Data Abstraction.

	♦ A class is a blueprint for objects; it defines attributes and methods.

	♦ Attributes can be public, protected (single underscore _), or private (double
underscore __).

	♦ Objects are instances of classes, with unique state (attributes), behavior
(methods), and identity.

	♦ The self parameter inside methods refers to the current object instance.

	♦ The __init__ method acts as a constructor to initialize objects.

	♦ Polymorphism allows the same method or function to behave differently
depending on the object context.

	♦ Encapsulation hides internal object details and exposes controlled interfaces;
access is controlled using public, protected, and private modifiers.

	♦ Inheritance allows a child class to inherit properties and methods from a
parent class, supporting code reuse.

	♦ Data Abstraction hides complex internal implementation details and shows
only essential features.

	♦ Classes have two types of variables:

•	 Instance variables are unique to each object.

•	 Class variables are shared across all instances.

	♦ Python methods include:

•	 Instance methods (access individual object data via self).

•	 Class methods (access class-level data via cls, marked with @
classmethod).

•	 Static methods (utility methods that do not access instance or class
data, marked with @staticmethod).

235 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Constructors in Python:

•	 Default constructor: automatically provided if none defined.

•	 Non-parameterized constructor: sets default values without
parameters.

•	 Parameterized constructor: accepts parameters to initialize object
attributes.

Objective Type Questions

1.	 What keyword is used to define a class in Python?

2.	 What is an instance of a class called?

3.	 What type of method does not take self or cls as a parameter?

4.	 Which OOP concept allows one class to inherit from another?

5.	 What is the term for hiding internal details in OOP?

6.	 What is the name of the concept where one function behaves differently
based on context?

7.	 What OOP concept focuses on exposing only necessary details?

8.	 What is the name of the method used to initialize an object?

9.	 What type of constructor takes no parameters but is defined by the
programmer?

10.	What type of constructor automatically initializes with default values if none
is defined?

236 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 Class

2.	 Object

3.	 Static method

4.	 Inheritance

5.	 Encapsulation

6.	 Polymorphism

7.	 Abstraction

8.	 init

9.	 Non-parameterized constructor

10.	Default constructor

Assignments

1.	 Explain the key concepts of Object-Oriented Programming (OOP) in Python.
Illustrate each concept with a simple example.

2.	 Describe the difference between class variables and instance variables in
Python. Provide code snippets to support your explanation.

3.	 Write a Python class called Employee with a parameterized constructor
that initializes the employee’s name, ID, and salary. Then, write a method
to apply a raise to the salary based on a percentage. Create at least two
employee objects and demonstrate the use of this method.

4.	 Discuss the role of constructors in Python with appropriate examples.

5.	 Write a Python program to define a class Student with private and public
variables. Create an object and access both variables appropriately.

237 SGOU - SLM - BSc - Introduction to Python Programming

Reference

1.	 Zelle, J. (2010). Python Programming: An Introduction to Computer Science
(2nd ed.). Franklin, Beedle & Associates.

2.	 Barry, P. (2016). Head First Python (2nd ed.). O’Reilly Media.

3.	 Subramaniam, V. (2021). Programming Python with Object-Oriented
Programming. Pragmatic Bookshelf.

4.	 Beazley, D., & Jones, B. K. (2013). Python Cookbook (3rd ed.). O’Reilly
Media.

5.	 Sharma, Y. (2020). Object-Oriented Programming with Python: Learn OOP,
design patterns, and testing. Packt Publishing.

Suggested Reading

1.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

2.	 Guttag, J. V. (2016). Introduction to Computation and Programming Using
Python. MIT Press.

3.	 Downey, A. B. (2015). Think Python: How to Think Like a Computer
Scientist (2nd ed.). O’Reilly Media.

4.	 Sweigart, A. (2019). Automate the Boring Stuff with Python (2nd ed.). No
Starch Press.

5.	 https://docs.python.org/3/

Unit 4
 Core Concepts of OOP in Python

Learning Outcomes

Prerequisites

	♦ familiarize the concept of classes and objects in Python.
	♦ identify different types of inheritance in Python.
	♦ explain polymorphism with examples.
	♦ describe abstraction and encapsulation.
	♦ recognize real-world uses of OOP in Python.

After the successful completion of the unit, the learner will be able to:

Before learning Object-Oriented Programming (OOP) in Python, students should have
a basic understanding of core Python concepts such as variables, data types, functions,
conditional statements, and loops. These foundational topics help learners understand
how data is stored and manipulated, and how logic is built in Python. Knowing how
functions work, for example, lays the groundwork for understanding methods within
classes. Without this foundation, diving into OOP may feel confusing or overwhelming.

We study OOP because it helps us model real-world systems more effectively in soft-
ware. Just like in daily life, where we interact with objects such as a mobile phone
(which has properties like color, brand, and behaviors like call or text), OOP lets us
create similar structures in code. For example, if you’re designing a school manage-
ment system, a “Student” can be treated as an object with attributes like name and
marks, and behaviors like enroll() or study(). This makes programs easier to build,
understand, and maintain especially as they grow in size and complexity.

Class, Object, Inheritance, Polymorphism, Encapsulation

Key words

239 SGOU - SLM - BSc - Introduction to Python Programming

In the real world, we interact with various objects every day like a car, a mobile phone, or
a student. Each of these objects has properties (color, model, name, etc.) and behaviors
(drive, ring, study, etc.).

Object-Oriented Programming (OOPs) is a method of structuring a program by bundling
related properties and behaviors into individual objects. It is inspired by real-world
systems where everything is treated as an object with characteristics (data) and actions
(functions). Python is a powerful object-oriented programming language that allows
developers to write clean, reusable, and organized code using the principles of OOP.

In OOP, a class serves as a blueprint for creating objects, and an object is an actual
instance of a class containing real values. OOP helps break down complex problems
into smaller, more manageable pieces by modeling them as interacting objects. This
makes the program more modular and easier to maintain.

Python supports all major OOP principles like encapsulation, inheritance, polymorphism,
and abstraction which help protect data, reuse code, provide flexibility, and hide
complexity. Because of these features, OOP is widely used in developing software
applications, from small scripts to large systems.

4.4.1 Inheritance
Inheritance is one of the core features of Object-Oriented Programming (OOP), which
allows a class (called the child class) to inherit attributes and methods from another
class (called the parent class). This makes programming more efficient, as it allows
code reuse.

Python inheritance allows us to create a new class that uses the features of an existing
class. It helps us reuse code and build relationships between classes.

Syntax

class Parent:

 # parent class code

class Child(Parent):

 # child class code

4.4.1.1 Tyрes of Inheritаnсe in Python

Python offers various types of inheritance based on the number of child and parent
classes involved in the inheritance.

1.	 Single Inheritance

2.	 Multiple Inheritance

3.	 Multilevel Inheritance

Discussion

240 SGOU - SLM - BSc - Introduction to Python Programming

4.	 Hierarchical Inheritance

5.	 Hybrid Inheritance

1. Single Inheritance

Single inheritance in Python means one class inherits from one parent class. We use it
when we want a child class to reuse or extend the functionality of a single base class.

Fig 4.4.1 Single Inheritance

For example, if we define a class Vehicle with a method start(), we don’t need to rewrite
this method in a class Car; we can simply make Car inherit from Vehicle. In Python, this
is done using parentheses like class Car(Vehicle):.

class Vehicle:

 def start(self):

 print(“Vehicle started”)

class Car(Vehicle):

 pass

c = Car()

c.start() # Output: Vehicle started

This example demonstrates single inheritance, where a child class inherits from just
one parent class. The class Car doesn’t define its own start() method but can still use it
because it’s inherited from Vehicle.

2. Multiple Inheritance in Python
In multiple inheritance, a single subclass inherits from multiple superclasses. So, the
child class can access attributes and methods from two or more parent classes.

Fig 4.4.2 Multiple Inheritance

241 SGOU - SLM - BSc - Introduction to Python Programming

However, if the parent classes have methods with the same name, the child class uses
the method from the first parent in the order they are listed.

For instance, imagine a class Father with a method work(), and another class Mother
with a method care(). A class Child can inherit from both, gaining the ability to use both
methods.

class Father:

 def work(self):

 print(“Father works”)

class Mother:

 def care(self):

 print(“Mother cares”)

class Child(Father, Mother):

 pass

c = Child()

c.work() # Output: Father works

c.care() # Output: Mother cares

3. Multilevel Inheritance

Python multilevel inheritance means a class inherits from a child class, which itself
inherits from another parent class. This forms a chain of inheritance, passing features
from one level to the next.

With multilevel inheritance in Python, we can build step-by-step class hierarchies,
allowing each level to extend or reuse the previous one.

Fig 4.4.3 Multilevel Inheritance

242 SGOU - SLM - BSc - Introduction to Python Programming

A child class inherits from a parent, which in turn inherits from a grandparent. For
example, class Grandparent has a method guide(), class Parent inherits from it and
adds teach(), and class Child inherits from Parent. The Child class can now access both
guide() and teach() methods.

class Grandparent:

 def guide(self):

 print(“Grandparent guides”)

class Parent(Grandparent):

 def teach(self):

 print(“Parent teaches”)

class Child(Parent):

 def learn(self):

 print(“Child learns”)

c = Child()

c.guide() # Output: Grandparent guides

c.teach() # Output: Parent teaches

c.learn() # Output: Child learns

4. Hierarchical Inheritance

Hierarchical inheritance is the opposite of multiple inheritance. Therefore, more than
one child class can be derived from a single-parent class.

Fig 4.4.4 Hierarchical Inheritance

Hierarchical inheritance occurs when multiple child classes inherit from the same
parent class. Suppose Dog and Cat both inherit from a class Animal that has a method
eat(). Both subclasses automatically gain access to the eat() method.

class Animal:

 def eat(self):

243 SGOU - SLM - BSc - Introduction to Python Programming

 print(“Animal eats”)

class Dog(Animal):

 def bark(self):

 print(“Dog barks”)

class Cat(Animal):

 def meow(self):

 print(“Cat meows”)

d = Dog()

c = Cat()

d.eat() # Output: Animal eats

c.eat() # Output: Animal eats

6. Hybrid Inheritance

Hybrid inheritance combines two or more types of inheritance. Hence, we can see
multiple relationships between parent and child classes across different levels. We can
say that hybrid inheritance in Python is a mixture of more than one inheritance style,
like single, multiple, or multilevel.

Fig 4.4.6 Hybrid Inheritance

4.4.1.2 Access Specifiers in Different Types of Inheritance
In Python, access specifiers (or access modifiers) control how members of a class
(variables or methods) are accessed in inheritance. There are three types:

Public (x): Can be accessed in all child classes regardless of inheritance type. Also
accessible from outside the class. Inherited and fully accessible by child classes.

Protected (_x): Meant to be accessed inside the class and its subclasses only. Inherited
and accessible in all types of inheritance, but not intended for outside use. Inherited by
child classes and accessible within them, but not recommended to access from outside.

244 SGOU - SLM - BSc - Introduction to Python Programming

Private (__x): Not inherited directly. Not accessible in child classes. Python internally
name-manages private variables (e.g., _ClassName__x), so they are effectively hidden
from Inheritance

Table 4.4.1 Accessibility of different classes

4.4.2 Polymorphism
Polymorphism in Python refers to the ability of a single function or method to operate
differently based on the object it is used with. The term polymorphism originates from
Greek, meaning many forms. In Python, this allows a method or function to adapt its
behavior depending on the type of object invoking it.

For example, consider different animal classes where each animal produces a distinct
sound. You can define a method named make_sound() that is used across all animal
types, but each animal will produce its own specific sound. This means that the same
method name can perform different actions depending on the object calling it.

class Dog:

def make_sound(self):

print(“Bark”)

class Cat:

def make_sound(self):

print(“Meow”)

dog = Dog()

cat = Cat()

dog.make_sound()

cat.make_sound()

#Output

Bark

Meow

245 SGOU - SLM - BSc - Introduction to Python Programming

Need of Polymorphism

	♦ Ensures consistent interfaces across different classes.

	♦ Allows objects to respond differently to the same method call.

	♦ Promotes loose coupling by relying on shared behavior, not specific types.

	♦ Enables writing flexible, reusable code that works across types.

	♦ Simplifies testing and future extension of code.

4.4.2.1 Types of Polymorphism

Polymorphism in object-oriented programming (OOP) can be classified into two main
types

1. Compile-time Polymorphism

2. Runtime Polymorphism

1. Compile-time Polymorphism (Static Polymorphism)

Compile-time polymorphism happens when the method to be called is determined at
compile time, before the program is run. This type of polymorphism is achieved using
method overloading or operator overloading.

Method overloading is when multiple methods have the same name but differ in
the number or type of their parameters. The correct method is chosen based on the
arguments passed when calling the method.

class MathOperations:

 def add(self, a, b):

 return a + b

 def add(self, a, b, c):

 return a + b + c

math = MathOperations()

print(math.add(5, 10, 15))

#Output

30

2. Runtime Polymorphism (Dynamic Polymorphism)
Runtime polymorphism happens when the method to be called is determined at runtime,
during the execution of the program. This type of polymorphism is achieved using
method overriding.

246 SGOU - SLM - BSc - Introduction to Python Programming

Method overriding occurs when a subclass provides its own implementation of a
method that is already defined in the parent class. The version of the method that is
called depends on the object that is used to invoke it.

class MathOperations:

 def calculate(self, a, b):

 return a + b

class AdvancedMath(MathOperations):

 def calculate(self, a, b):

 return a * b

basic = MathOperations()

advanced = AdvancedMath()

print("Basic addition:", basic.calculate(5, 3))

print("Advanced multiplication:", advanced.calculate(5, 3))

#Output:

8

15

4.4.3 Abstraction and Encapsulation
Object-Oriented Programming (OOP) is a programming paradigm that helps organize
code using objects. Two of its most essential concepts are Abstraction and Encapsulation.
These concepts allow developers to build systems that are easier to understand, maintain,
and scale.

Abstraction means hiding the complex details and showing only the essential features
of an object or system. It focuses on what an object does, rather than how it does
it. Encapsulation means binding the data (variables) and the code (methods) that
manipulate the data into a single unit called class. It also helps protect data from being
directly accessed or modified.

4.4.3.1 Abstraction
Abstraction is the concept of hiding the internal implementation details and showing
only the essential features of the object.

Purpose

	♦ Focuses on what an object does rather than how it does it.

	♦ Helps in reducing complexity by suppressing lower-level details.

247 SGOU - SLM - BSc - Introduction to Python Programming

When you drive a car, you only need to know how to operate the steering wheel,
accelerator, and brakes (what to do), not how the engine or transmission system works
(how it’s done). Achieved using abstract classes and methods from the abc module
(Abstract Base Class).

from abc import ABC, abstractmethod

class Animal(ABC):

 @abstractmethod

 def sound(self):

 pass

class Dog(Animal):

 def sound(self):

 return “Bark”

d = Dog()

print(d.sound())

Output: Bark

4.4.3.2 Encapsulation

Encapsulation is one of the fundamental principles of object-oriented programming
(OOP). It refers to the concept of hiding the internal details of how an object works and
only exposing a controlled interface to the outside world. In Python, this is achieved by
wrapping data (variables) and methods (functions) into a single unit, usually a class, and
restricting direct access to some of the object’s components. This protects the object’s
integrity by preventing unintended interference and misuse.

Encapsulation allows programmers to define access levels for class members using
public, protected, or private access modifiers. By doing so, sensitive data can be kept
hidden from direct access and only modified through well-defined interfaces like getter
and setter methods. This not only enhances data security but also makes the code more
modular, maintainable, and easier to debug.

1. Public Members

Public members are class attributes (variables) or methods (functions) that can be
accessed from anywhere, both inside and outside the class. In Python, by default, all
members of a class are public unless explicitly specified otherwise.

class Student:

def __init__(self, name, age):

248 SGOU - SLM - BSc - Introduction to Python Programming

self.name = name

self.age = age

s = Student("Helen", 23) # Create an instance of Student

print("Name:", s.name)

print("Age:", s.age)

#Output

Name: Helen

Age: 23

In the above example, name and age are public members of the Student class. They can
be accessed and modified directly using the objects.

2. Protected Members

Protected members are variables or methods that can be accessed within the class and
its subclasses, but should not be accessed directly from outside the class. In Python,
protected members are defined by prefixing the name with a single underscore
(e.g., _name).

class Student:

 def __init__(self, name, age):

 self._name = name

 self._age = age

s = Student("Bob", 21)

print("Name:", s._name)

print("Age:", s._age)

Output:

Name: Bob

Age:21

3. Private Members

Private members are variables or methods in a class that cannot be accessed directly
from outside the class. In Python, we make something private by putting two underscores
(__) in front of its name.

class Student:

249 SGOU - SLM - BSc - Introduction to Python Programming

 def __init__(self, name, marks):

 self.__name = name

 self.__marks = marks

 def display(self):

 print("Name:", self.__name)

 print("Marks:", self.__marks)

s = Student("Helen", 28)

s.display()

#Output:

Name: Alice

Marks: 28

4.4.4 Applications of OOP in Python
Object-Oriented Programming (OOP) in Python is widely used across various domains
due to its ability to model real-world entities using objects and classes. Below are major
areas where OOP is applied in Python.

1. GUI Applications (Graphical User Interfaces)

In GUI-based software, components like windows, buttons, forms, and dialog boxes are
treated as objects. OOP helps organize these components into reusable classes. Each
visual element has properties (such as size and color) and behavior (like click or drag).
Python GUI libraries like Tkinter, PyQt, and Kivy use OOP to manage and manipulate
interface elements effectively.

2. Game Development

Games involve multiple elements such as players, enemies, weapons, and levels, each
of which can be modeled as objects. OOP allows developers to define shared behaviors
using inheritance and override them where needed using polymorphism. Game
development frameworks like Pygame leverage OOP to build scalable, interactive
game environments with complex logic.

3. Web Development

In web development frameworks like Django and Flask, OOP plays a central role in
managing views, templates, and databases. In Django, each database table is represented
as a class, and each record as an object. This allows for better abstraction of backend
logic, encourages modular coding practices, and simplifies the development and
maintenance of large-scale web applications.

4. Data Science and Machine Learning

250 SGOU - SLM - BSc - Introduction to Python Programming

In data science, libraries like Pandas, NumPy, and Scikit-learn heavily utilize OOP. Data
structures like data frames and models (e.g., regression, clustering) are implemented
as classes. Objects can store data and provide methods to manipulate and analyze it.
OOP facilitates clean, reusable workflows and simplifies experimentation with machine
learning algorithms.

5. Simulation and Modelling

Simulations (e.g., financial systems, climate models, transportation systems) often
mimic real-world behavior. OOP allows developers to represent each entity like a
car, person, or account as an object. This approach provides clarity and flexibility in
designing simulations where each object can interact with others and change state over
time.

6. Enterprise Software Development

Enterprise software such as inventory systems, HR management tools, and billing
systems require complex logic and data management. OOP enables the development
of these systems in a modular way. Each business unit or functionality (like employee
management, payroll, or product tracking) can be designed as a class, promoting
separation of concerns and scalability.

7. Robotics and IoT (Internet of Things)

In robotics and IoT systems, hardware components like sensors, actuators, and motors
are treated as objects. Each device has specific attributes and functions that can be
encapsulated into a class. OOP helps in designing responsive systems where objects
communicate with one another, process real-time data, and perform tasks like sensing,
decision-making, and control.

8. Mobile Application Development

Python frameworks such as Kivy allow for mobile application development where
screens, buttons, images, and events are modeled as objects. OOP helps define behavior
and appearance consistently across different parts of the app. It supports an organized
structure where features can be updated or extended without affecting the whole appli-
cation.

9. API Development

APIs (Application Programming Interfaces), especially in RESTful web services, bene-
fit from OOP as endpoints, requests, and responses can be modeled as classes. Business
logic is encapsulated in objects, making it easier to manage routing, error handling, and
data validation. Frameworks like FastAPI and Flask encourage object-based routing
and service design.

10. Automation and Scripting
Even in automation tasks like file processing, email automation, or data extraction—
OOP is beneficial. Scripts can be structured using classes that represent files, logs,
reports, etc. This makes the script more flexible, reusable, and easier to maintain, espe-
cially as the complexity of tasks increases.

251 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ OOP models real-world entities using classes (blueprints) and objects
(instances).

	♦ Inheritance allows child classes to reuse code from parent classes, supporting
code efficiency.

	♦ Polymorphism enables the same method name to behave differently across
different classes.

	♦ Abstraction hides implementation details, exposing only necessary
functionality.

	♦ Encapsulation protects data by restricting access to internal class details.

	♦ Access specifiers (public, _protected, __private) define how class members
are accessed.

	♦ OOP is widely applied in fields like GUI development, games, web
applications, ML, and automation.

Objective Type Questions

1.	 What is the blueprint for creating objects in Python OOP?

2.	 What do you call an instance of a class?

3.	 Which OOP principle allows reuse of code from a base class?

4.	 What is the OOP concept that allows one interface to have many
implementations?

5.	 What term describes restricting access to parts of an object?

6.	 What hides internal implementation details from the user?

7.	 Which keyword is used to define a class in Python?

8.	 What symbol is used for protected members in Python?

9.	 What symbol is used to make a member private?

10.	Which module is used for abstraction in Python?

11.	Which type of polymorphism uses method overriding?

252 SGOU - SLM - BSc - Introduction to Python Programming

12.	What type of inheritance involves one class inheriting from multiple classes?

13.	Which inheritance type involves a class deriving from a class that already
inherited another?

14.	What is the default access specifier for class members in Python?

15.	Which principle ensures that sensitive data is not directly accessible?

Answers to Objective Type Questions

1.	 Class

2.	 Object

3.	 Inheritance

4.	 Polymorphism

5.	 Encapsulation

6.	 Abstraction

7.	 class

8.	 Underscore (_)

9.	 Double underscore (__)

10.	abc

11.	Runtime

12.	Multiple

13.	Multilevel

14.	Public

15.	Encapsulation

253 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

1.	 Define class, object, and constructor in Python with suitable examples.

2.	 Explain the five types of inheritance in Python with code examples.

3.	 Differentiate between compile-time and runtime polymorphism with
appropriate Python examples.

4.	 Describe abstraction and encapsulation in OOP. How are they implemented
in Python?

5.	 Discuss five real-world applications of OOP and explain how Python
supports OOP in those domains.

Reference

1.	 Downey, A. B. (2015). Think Python: How to Think Like a Computer
Scientist (2nd ed.). Green Tea Press.

2.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

3.	 Martelli, A., Ravenscroft, A., & Ascher, D. (2005). Python Cookbook (2nd
ed.). O’Reilly Media.

Suggested Reading

1.	 Sweigart, A. (2020). Automate the Boring Stuff with Python: Practical
Programming for Total Beginners (2nd ed.). No Starch Press.

2.	 Hetland, M. L. (2017). Beginning Python: From Novice to Professional (3rd
ed.). Apress.

5
Exception
Handling
and Database
Programming

Unit 1
Exception Handling

Learning Outcomes

Prerequisites

	♦ to understand the concept of errors and exceptions in Python.

	♦ to differentiate between various types of errors.

	♦ to use Python’s built-in exception handling mechanisms.

	♦ to write robust programs that gracefully handle run-time errors.

	♦ to create and raise custom exceptions.

After the successful completion of the unit, the learner will be able to:

Imagine you are using an online ticket booking system. You have entered your details
and selected your seats. When you click on the payment button, by mistake type your
card number as a string of letters instead of numbers. Suddenly, the entire website
crashes and shows a confusing error message. You are left wondering if your money
was deducted or if your seats are gone. This happens when programmers fail to handle
exceptions in their code. In real life, situations like this can damage a company’s
reputation and lead to loss of user trust. Exception handling in Python helps avoid such
issues. It provides a structured way to manage errors that happen during the execution
of a program. It ensures that programs do not crash unexpectedly and can respond
gracefully to problems like invalid input, missing files, or network failures.

Exception handling is an essential skill for anyone learning Python because it
strengthens a program’s reliability and user experience. It trains learners to write robust
code that can anticipate errors and deal with them effectively. Before studying this
topic, learners should have a good understanding of Python basics such as variables,
loops, conditionals, functions, and file operations. This topic helps in problem solving
by encouraging careful thinking about what could go wrong in a program and how to
respond. It improves code design by separating normal logic from error handling logic.
The benefits include better program stability, cleaner debugging, easier maintenance,
and a smoother experience for users. Studying exception handling makes learners more
confident developers who can build real world applications that are smart, secure, and
professional.

256 SGOU - SLM - BSc - Introduction to Python Programming

Discussion

5.1.1 Introduction to Exception Handling
Errors in a program can be broadly categorized into five types: Compile Time Errors,
which occur during the compilation of the program and prevent it from executing;
Run Time Errors, which arise while the program is running, such as division by zero,
using an undefined variable, or trying to access a non-existent file; Logical Errors,
which are mistakes in the program’s logic that do not stop the execution but lead to
incorrect results, like using the wrong operator precedence or an incorrect variable
name in a calculation; Syntax Errors, which are issues in the structure of the code
that stop it from running, including incorrect indentation, misspelled keywords, or

Exception Handling, Syntax Errors, Runtime Errors, Try and Except Blocks, Finally
Block, Raise, Assert.

Key concepts

 +---------------------+

 | try block |

 +----------+----------+

 |

 +----------v----------+

 | Error occurs? |

 +----+---------+------+

 | |

 Yes | | No

 | |

 +----------v--+ +--v------------+

 | except block | | else block |

 +-------------+ +---------------+

 |

 +--------v---------+

 | finally block |

 +------------------+

257 SGOU - SLM - BSc - Introduction to Python Programming

missing symbols like colons, parentheses, or commas; and Semantic Errors, which
are logic-related mistakes that lead to unintended or unexpected outcomes despite the
code running without interruption.

Although a statement or expression may be syntactically valid, it can still lead to an
error during program execution. For example, errors like attempting to open a non-
existent file or dividing a number by zero may occur. These types of errors interrupt the
normal flow of the program and are known as exceptions. In Python, an exception is an
object that signifies the occurrence of an error. When such an error takes place during
execution, an exception is said to be raised. It is the responsibility of the programmer to
handle these exceptions to prevent the program from crashing unexpectedly. Therefore,
while writing a program, a programmer should foresee potential issues that may arise
and include appropriate code to manage such exceptions effectively.

Imagine you’re creating a banking application where users enter the amount they wish
to withdraw from their account. Now, suppose a user accidentally types text instead of
a number like entering “two thousand” instead of 2000. The program will crash with an
error, confusing the user and potentially losing unsaved data.

Example:

amount = int(input(“Enter withdrawal amount: “))

print(“Processing withdrawal of ₹”, amount)

If the input is not an integer, the above code will raise a ValueError. The exception
handling mechanism helps to handle such unexpected events without crashing the
program.

Exception handling not only strengthens the reliability of your code but also improves
user experience by avoiding sudden crashes and offering clear, informative error
messages. Properly managed exceptions enable you to log errors, free up resources, or
provide alternative options without stopping the entire program. This is crucial in larger
applications where a single unaddressed exception might lead to significant problems.
By foreseeing potential errors and addressing them with structured exception handling,
developers can build more resilient, maintainable, and user-friendly software.

5.1.2 Difference between Syntax Errors and Exceptions
Syntax Error: As the name implies, this error results from incorrect syntax in the code.
It results in the program’s termination. A syntax error occurs when the code violates the
rules of the Python language.

initialize the amount variable

amount = 20000

if(amount > 2999)

print(“You are eligible”)

258 SGOU - SLM - BSc - Introduction to Python Programming

Output:

SyntaxError: invalid syntax

Exceptions : An exception is an error that occurs during the execution of a program. It
is detected during the runtime of the program.

Examples: ZeroDivisionError, ValueError, FileNotFoundError, etc.

When the program is syntactically sound but the code produces an error, exceptions
are raised. Although the application continues to run while experiencing this error, the
typical course of the program is altered.

marks = 10000

a = marks / 0

print(a)

Output:

ZeroDivisionError: division by zero

The attempt to divide a number by zero in the example above triggered the
ZeroDivisionError.

5.1.3 Built-in Exceptions in Python
Exception Name Description

ZeroDivisionError Raised when a number is divided by zero.

NameError Raised when a variable is not defined or is used before
declaration.

TypeError Raised when an operation or function is applied to an object of
inappropriate type.

ValueError Raised when a function receives an argument of the correct
type but with an inappropriate value.

IndexError Raised when an index is out of the range of a list, tuple, or
string.

KeyError Raised when a dictionary key is not found.

FileNotFoundError Raised when trying to open a file that does not exist.
IOError Raised when an input/output operation fails. (In Python 3,

often replaced by OSError)

AttributeError Raised when an invalid attribute reference is made, or an
attribute is not found.

ImportError Raised when an imported module cannot be found or loaded.

ModuleNotFoundError Subclass of ImportError, specifically when a module is not
found.

259 SGOU - SLM - BSc - Introduction to Python Programming

IndentationError Raised when incorrect indentation is used.

SyntaxError Raised when the Python parser encounters an incorrect syntax.

RuntimeError Raised when an error is detected that doesn't fall under any
other category.

StopIteration Raised to signal the end of an iterator.

MemoryError Raised when an operation runs out of memory.

OverflowError Raised when a numeric operation exceeds the allowed limit.

FloatingPointError Raised when a floating-point operation fails.

AssertionError Raised when an assert statement fails.

RecursionError Raised when the maximum recursion depth is exceeded.

5.1.4 Exception Handling in Python
Exception handling in Python is a powerful feature that allows developers to manage
errors without terminating the program. It provides a structured way to detect and
respond to exceptional situations that occur during runtime using the try, except, else,
and finally blocks. The code that might raise an error is placed inside the try block, and if
an exception occurs, it is caught and handled in the except block, allowing the program
to continue running or exit cleanly. Python supports both specific and general exception
handling, which means you can catch particular exceptions like ZeroDivisionError,
ValueError, or use a general Exception class to catch any unexpected error. The optional
else block executes only when no exception is raised, and the finally block is used to
define clean-up actions that must be executed under all circumstances, such as closing
a file or releasing a resource. This approach improves the reliability, readability, and
user-friendliness of programs by avoiding crashes.

Syntax:

try:

 # Block of code

except Exception1:

 # Handler for Exception1

except Exception2:

 # Handler for Exception2

else:

 # Code that runs if no exception occurs

finally:

 # Code that always runs (cleanup actions)
Program without Exception Handling

260 SGOU - SLM - BSc - Introduction to Python Programming

a=int(input(“Enter the first number”))

b=int(input(“Enter the first number”))

c=a/b

print(“Result=”,c)
Output

Program with Exception Handling

a=int(input(“Enter the first number”))

b=int(input(“Enter the first number”))

try:

	 c=a/b

	 print(“Result=”,c)

except ZeroDivisionError:

	 print(“You can not divide a number by zero....”)
Output

5.1.4.1 Try and Except Statement – Catching Exceptions
In Python, exceptions are caught and dealt with using the try and except commands.
The try and except clauses are used to contain statements that can raise exceptions and
statements that handle such exceptions.

a=[1,2,3]

try:

	 print(“Second element =$d”$(a[i]))

	 print(“Fourth element =$d”$(a[i]))

except:

print (“An error occurred”)

261 SGOU - SLM - BSc - Introduction to Python Programming

Output

The statements that could result in the error are contained inside the try statement in
the example above (second print statement in our case). The fourth entry of the list is
not accessible in the second print statement, which results in an exception. The except
statement then handles this exception.

5.1.4.2 Catching Specific Exception
To provide handlers for various exceptions, a try statement may contain more than one
except clause. We may, for instance, add IndexError to the code shown above. The
standard syntax for adding certain exceptions –
try:

 # statement(s)

except IndexError:

 # statement(s)

except ValueError:

 # statement(s)

def fun(a):

 if a<4:

 b=a/(a-3)

 if a>=4:

	 #throws NameError

 print(“value of b=”,b)

try:

 fun(3)

 fun(5)

except ZeroDivisionError:

 print(“ZeroDivisionError Occurred and Handled”)

except NameError:

 print(“NameError Occurred and Handled”)

262 SGOU - SLM - BSc - Introduction to Python Programming

Output
ZeroDivisionError Occurred and Handled

If you comment on the line fun(3), the output will be

NameError Occurred and Handled

The output above is so because as soon as python tries to access the value of b,
NameError occurs.

5.1.4.3 The else Clause
In Python’s exception handling mechanism, the else clause is an optional block that
can be added after all except blocks in a try-except structure. Its primary purpose is to
specify a block of code that should run only if no exceptions are raised in the try block.
This enhances code clarity by separating error-handling logic from normal processing
logic.

try:

 x=int(input(“Enter a number:..”))

except ValueError:

 print(“Not a number”)

else:

 print(“You entered”)

Output

5.1.4.4 Finally Keyword in Python
The finally keyword is available in Python, and it is always used after the try and except
blocks. The final block is always executed after the try block has terminated normally
or after the try block has terminated for some other reason.

Example:

try:

 k=5/0

 print(k)

263 SGOU - SLM - BSc - Introduction to Python Programming

except ZeroDivisionError:

 print(“Can’t divide by zero”)

finally:

 print(“This is always executed”)

Output:

5.1.5 Raising Exceptions Manually

Python allows you to raise exceptions using the raise keyword. Raising an exception
means intentionally causing the program to stop normal execution and instead jump
to the nearest exception-handling block (try-except). This is useful when the program
encounters invalid data, unexpected input, or any violation of predefined rules.

The user defined-exception can be created using two methods:

1. raise statement

Syntax of raise Statement:

raise ExceptionType(“Optional error message”)
………………………………………………………………………………………

ExceptionType: Any built-in or user-defined exception class.

Error message (optional): A string message that describes the reason for the
exception.

For example, if your program expects a user’s age to be a positive number, you can
raise a ValueError when a negative value is provided, even if Python itself does not
consider it a built-in error.

age=int(input(“Enter your age: “))

if age<0:

 raise ValueError(“Age cannot be negative.”)

print(“Your age is “,age)

264 SGOU - SLM - BSc - Introduction to Python Programming

2. assert statement
The assert statement in Python is used to verify whether a specific condition holds true.
If the condition evaluates to false, an exception is triggered. Typically, this statement
is placed at the start of a function or right after calling a function to ensure the input or
result is valid. The basic syntax of the assert statement is:

assert condition[, message]

When Python encounters an assert statement, it checks the condition provided right
after the assert keyword. If the condition is not satisfied (i.e., it evaluates to false),
Python raises an AssertionError, which can be caught and managed just like any other
exception.

def check_odd(n):

 assert(n%2!=0), “Not an odd number!”

 print(“It is an odd number.”)

check_odd(7)

check_odd(10)

Output

5.1.5 Advantages of exception handling in python
	♦ Prevents program crashes by handling errors without stopping execution.

	♦ Improves code clarity by separating error-handling logic from regular code.

	♦ Manages unexpected runtime errors such as division by zero or file not
found.

265 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Allows custom error messages to provide user-friendly feedback.

	♦ Supports the creation and use of custom exceptions for specific error types.

	♦ Ensures the rest of the program can continue running after an error is handled.

	♦ Helps in debugging by providing detailed error tracebacks.

	♦ Increases program robustness and reliability by handling faults effectively.

Recap

	♦ Python errors are categorized into five types: Compile Time Errors, Run
Time Errors (exceptions), Logical Errors, Syntax Errors, and Semantic
Errors. Each has distinct causes and effects on program execution.

	♦ Syntax Errors occur due to incorrect Python syntax, such as missing
colons, wrong indentation, or invalid expressions. They are detected before
program execution and stop the code from running.

	♦ Exceptions are errors that occur during the program’s execution, even if the
syntax is correct. These include situations like dividing by zero, accessing
invalid indexes, or providing incorrect input types.

	♦ Logical Errors arise from mistakes in the logic or flow of the program.
These errors don’t stop the program but result in incorrect output.

	♦ Semantic Errors are meaning-related mistakes—code that is syntactically
correct but does not do what the programmer intended.

	♦ In Python, when an error occurs during execution, an exception is raised,
which interrupts the normal flow unless it is properly handled by the
programmer.

	♦ Exception objects are created when an error occurs, and Python allows
developers to catch and respond to these exceptions using structured blocks
(try, except, etc.).

	♦ The try block is used to wrap code that might cause an exception. If an error
occurs, Python jumps to the matching except block.

	♦ Multiple except blocks can be used to handle specific exceptions, such as
IndexError, ValueError, or ZeroDivisionError, enabling more controlled and
meaningful responses to different types of errors.

	♦ The else clause, when used with try-except, runs only if no exception
occurs in the try block. It helps separate successful execution logic from
error-handling code.

	♦ The finally block runs regardless of whether an exception occurred or
not. It’s typically used for releasing resources or performing mandatory
clean-up actions.

266 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Python allows raising exceptions manually using the raise keyword. This
helps enforce specific conditions, such as raising a ValueError when the
input is not acceptable.

	♦ The assert statement checks whether a condition is True; if not, it raises an
AssertionError. It’s often used to validate assumptions during development.

	♦ Built-in exceptions in Python include ZeroDivisionError, NameError,
TypeError, ValueError, FileNotFoundError, IndexError, KeyError, and
many more, each with a specific purpose and usage.

	♦ Exception handling in Python improves program reliability, prevents
crashes, makes error messages more user-friendly, and helps in building
clean, maintainable, and professional-level software.

Objective Type Questions

1.	 What type of error occurs when the code violates Python’s grammatical
rules?

2.	 What is raised during the execution of a program when an unexpected error
occurs?

3.	 Which keyword is used in Python to handle exceptions?

4.	 What error occurs when a number is divided by zero?

5.	 Which block is always executed, whether or not an exception occurs?

6.	 Which keyword is used to raise an exception manually?

7.	 Which error is raised when an assert condition fails?

8.	 What is the correct block used to handle code that might cause an error?

9.	 Which error occurs when a specified dictionary key is not found?

10.	What error occurs when an undefined variable is accessed?

11.	What is the error called when an operation or function is applied to an object
of inappropriate type?

12.	Which error is raised when a list index is out of range?

13.	Which statement is used to check a condition and raise an error if it fails
during development?

267 SGOU - SLM - BSc - Introduction to Python Programming

14.	What error is raised when a required module cannot be found?

Answers to Objective Type Questions

1.	 SyntaxError

2.	 Exception

3.	 Except

4.	 ZeroDivisionError

5.	 Finally

6.	 Raise

7.	 AssertionError

8.	 Try

9.	 KeyError

10.	NameError

11.	TypeError

12.	IndexError

13.	Assert

14.	 ModuleNotFoundError

Assignments

1.	 Explain the different types of errors in Python programming with suitable
examples.

2.	 What are exceptions in Python? How does Python handle exceptions using
try, except, else, and finally blocks? Explain with examples.

3.	 Write a detailed note on built-in exceptions in Python. Mention at least 8
common exceptions with a brief explanation of each.

4.	 What is the difference between Syntax Errors and Exceptions in Python?
Illustrate your answer with appropriate code examples.

5.	 Explain how to raise exceptions manually in Python. What is the role of the
raise and assert statements in exception handling? Provide examples.

268 SGOU - SLM - BSc - Introduction to Python Programming

Suggested Reading

1.	 Ceder, N. (2021). The Quick Python Book (3rd ed.). Manning Publications.

2.	 Zelle, J. M. (2017). Python Programming: An Introduction to Computer
Science (3rd ed.). Franklin, Beedle & Associates.

3.	 Downey, A. (2015). Think Python: How to Think Like a Computer Scientist
(2nd ed.). O’Reilly Media.

4.	 Python Official Documentation. (n.d.). Errors and Exceptions – Python 3.x
Docs. https://docs.python.org/3/tutorial/errors.html

Reference

1.	 Clark, W. E. (2025). Python Exception Handling Made Easy: A Practical
Guide with Examples (1st ed.).

2.	 Lutz, M., & Ascher, D. (2023). Exception Basics. In Learning Python (6th
ed., Chapter 33). O’Reilly Media.

3.	 Pearson, J. (2020). Introduction to Python Programming and Data Structures
(3rd ed., Chapter 13: Files and Exception Handling). Pearson.

4.	 Bhasin, H. (2023). Python Programming Using Problem Solving (Chapter
15: Exception Handling). Mercury Learning and Information.

Unit 2
 Debugging techniques and tools

Learning Outcomes

Prerequisites

	♦ understand the importance of debugging in ensuring the correctness and
reliability of Python programs.

	♦ use the pdb module to pause program execution, inspect variables, and step
through code interactively.

	♦ identify and fix common errors such as syntax errors, logical errors, and
runtime exceptions.

	♦ apply exception handling techniques using try, except, and related blocks to
manage errors gracefully.

	♦ Compare different debugging methods such as print statements, logging,
pdb, and IDE-based tools.

After the successful completion of the unit, the learner will be able to:

Imagine a situation where a student writes a Python program to calculate grades. The
code appears to be correct, but when the program runs, it displays unexpected results,
such as showing zero percent for a student who scored well. In such cases, scanning
the code repeatedly may not help identify the problem easily. Instead of using multi-
ple print statements or making random guesses, a debugger like Python’s pdb can be
used to pause the execution, examine the values of variables, and understand the exact
flow of the program. This helps to identify the exact point of error and correct it effec-
tively. Debugging is a crucial skill that supports real-time application development and
ensures programs behave as expected.

This chapter explains the concept and importance of debugging along with various
techniques used in Python such as print statements, exception handling, logging, and
the use of the pdb module. The topic covers how to use different pdb commands like p,
n, c, and q to step through code, inspect variable values, and control the execution flow.
Learning these techniques helps to make the code more accurate, readable, and man-
ageable. Debugging improves the quality of software, prevents unexpected crashes, and
saves valuable time. After learning this topic, the skill to detect and fix errors becomes
stronger and helps in writing efficient and dependable Python programs. Debugging
also sharpens logical thinking and problem-solving ability which are essential for pro-
gramming success.

270 SGOU - SLM - BSc - Introduction to Python Programming

Debugging, Python, pdb, Breakpoints, Exception Handling, Logging

Discussion
5.2.1 Introduction to Debugging in Python
Debugging is the process of locating, understanding, and fixing errors or bugs in a
software program. In Python, debugging plays a crucial role in ensuring a program
works as intended. Rather than waiting until a user reports an issue, debugging allows
developers to detect errors early, trace their origins, and correct them while maintaining
the integrity and logic of the overall program.

5.2.1.1 Importance of debugging

	♦ Ensures that each part of the program runs correctly by validating the logic
and flow of execution.

	♦ Enhances the reliability and readability of the code by systematically
identifying and fixing both minor and critical bugs.

	♦ Helps detect and resolve issues that may cause the program to behave
unexpectedly or terminate abruptly.

	♦ Makes the codebase easier to manage, allowing future modifications,
improvements, and debugging to be performed more efficiently.

	♦ Leads to a more stable and user-friendly application by preventing common
errors and improving the overall software experience.

5.2.2 Debugging Techniques
Effective debugging is essential for identifying and fixing issues in your Python code.
Here are some commonly used debugging techniques:

5.2.2.1 Print Statements
The simplest form of debugging is by inserting print() statements in your code to trace
variable values or program flow.

def add (a,b):

 print(f”a: {a}, b:{b}”)

 return a+b

result=add(5,10)

print(f”Result: {result}”)

//This print() helps to verify that the values passed and returned are correct.

Key words

271 SGOU - SLM - BSc - Introduction to Python Programming

5.2.2.2 Using the pdb Module
pdb is Python’s built-in debugger. It allows pause execution, inspect variables, and step
through code. This is very useful, especially in large programs where bugs can be
hidden in complex logic.

Import pdb

def divide(a,b):

	 pdb.set_trace() #pause execution here

 return a/b

result=divide(10,2)

print(result)

When you run this program, Python will execute the function divide(10, 2). But inside
the divide function, we wrote pdb.set_trace(). This stops the program there and enters
the debugging mode. Now see something like this in your terminal:

> File “myfile.py”, line 4, in divide

 pdb.set_trace()

(Pdb)

This means the debugger has paused the program, and interacts with the program live.
Here are some common commands type after (Pdb):

	♦ p a → This will print the value of variable a. Output: 10

	♦ p b → This will print the value of variable b. Output: 2

	♦ n → This means the next line. It tells Python to go to the next line of code
(like return a / b)

	♦ c → Continue running the program until it finishes or hits another breakpoint.

	♦ q → Quit the debugger. It will stop the program completely.

5.2.2.3 Exception Handling
Instead of allowing the program to crash, exceptions allow graceful handling of errors.

try:

 result=10/0

except ZeroDivisionError as e:

 print(“Error: {e}”)

else:

 print(“An error occurred”)

272 SGOU - SLM - BSc - Introduction to Python Programming

finally:

print(“This block always executes.”)

Here, except catches the division error and allows the program to continue.

5.2.2.4 Logging
Logging records events during code execution. It is better than print statements for
production.

Import logging

Logging.basicConfig(level.logging.DEBUG)

def add(a,b):

 logging.debug(“Adding{a} and {b}”)

 return a+b

result=add(5,10)

logging.info(f”Result: {result}”)

5.2.2.5 Using IDE Debuggers
IDEs like PyCharm, VS Code, and Spyder come with graphical debuggers. Features
include:

	♦ Breakpoints

	♦ Step-by-step execution

	♦ Variable inspection

	♦ Call stack visualization

5.2.3 pdb (Python Debugger)
pdb (Python Debugger) is Python’s built-in interactive debugging tool. It provides

273 SGOU - SLM - BSc - Introduction to Python Programming

developers with the ability to inspect the state of a program while it is running, allowing
for efficient identification and correction of errors. The pdb (Python Debugger) is a
native debugging tool in Python, crafted to assist developers in finding and resolving
errors in their code. It offers an interactive interface to analyze the program’s state while
it is running, enabling features such as step-by-step execution, variable inspection, and
runtime code adjustments.

5.2.3.1 Key Features of pdb

	♦ Setting Breakpoints: Enables you to halt the execution of your program at
designated locations to review the current state of the application.

	♦ Stepping through code: Allows you to run code one line at a time, helping
you track the flow of execution and pinpoint where issues arise.

	♦ Inspecting Variables: Provides the ability to view the values of variables at
various stages of execution to track their changes.

	♦ Call stack view: Grants access to the call stack, letting you observe the chain
of function calls leading up to the current line of code.

	♦ Interactive Controls: Includes a set of commands to control the flow of
execution, set breakpoints, and navigate through the code interactively.

5.2.3.2 Key Concepts with examples
1. Breakpoints:

	♦ Objective: Interrupt the program at specified points to examine its state.

	♦ Application: You can set breakpoints using commands like break <line
number> or break <function name>.

import pdb

def add(a, b):

 return a + b

pdb.set_trace() # Sets a breakpoint

result = add(5, 10)

print(result)

2. Step Execution:

	♦ Objective: Execute your code one line at a time to monitor its flow and
detect issues.

	♦ Application: Use the step (or s) command to move through each line of code,
entering functions as they are called.

 def divide(a, b):

274 SGOU - SLM - BSc - Introduction to Python Programming

 import pdb; pdb.set_trace()

 return a / b

result = divide(10, 2)

print(result)

3. Variable Inspection:

	♦ Objective: Check the values of variables at different points in the program to
understand their changes.

	♦ Application: Use the print (or p) command to display the value of variables

def multiply(a, b):

 import pdb; pdb.set_trace()

 result = a * b

 return result

print(multiply(3, 4))

4. Interactive Commands:

	♦ Objective: Control the program’s execution, set and manage breakpoints,
and navigate through the code interactively.

	♦ Application: Commands like continue (or c) to resume execution, next (or n)
to step over lines, and quit (or q) to exit the debugger are used.

def main():

 import pdb; pdb.set_trace()

 x = 10

 y = 20

 result = x + y

 print(result)

main()

5.2.3.3 Basic pdb Commands

	♦ break or b: The purpose of the break command in pdb is to set a breakpoint
at a specific line number or function. For example, break 12 sets a breakpoint
at line 12, and break my_function sets it at the start of the function named
my_function.

	♦ continue or c: The purpose of the continue command in pdb is to resume the
program’s execution after it has been paused. It runs the code until the next
breakpoint is encountered or the program finishes.

275 SGOU - SLM - BSc - Introduction to Python Programming

	♦ step or s: The purpose of the step command in pdb is to move into the next
line of code, including entering into function calls. This helps to closely
observe the internal execution of functions and understand the flow in detail.

	♦ next or n: The purpose of the next command in pdb is to execute the current
line and move to the next line in the same function without stepping into any
called functions. It is useful for quickly moving through code while staying
within the current function scope.

	♦ list or l: The purpose of the list command in pdb is to display the surrounding
lines of source code to provide context for the current execution point. Using
list or list 10,20 helps in viewing specific line ranges and understanding the
code structure around the breakpoint.

	♦ print or p: The purpose of the print command in pdb is to show the current
value of a variable or the result of an expression during debugging. For
example, print my_variable or print my_variable + 5 helps to check the data
and trace logic errors.

	♦ quit or q: The purpose of the quit command in pdb is to exit the debugger and
stop the execution of the program immediately. It is used when debugging is
complete or if the user wants to terminate the session early.

	♦ where or w: The purpose of the where command in pdb is to display the
current call stack, showing the sequence of function calls that led to the
current point in the program. This helps in understanding the execution path
and identifying where the error originated.

	♦ return: The purpose of the return command in pdb is to resume execution
until the current function finishes and returns to its caller. This is useful
when the internal steps of a function are not needed for inspection, and focus
is on the result.

	♦ disable: The purpose of the disable command in pdb is to temporarily
deactivate a specified breakpoint without removing it from the list. For
example, disable 1 turns off breakpoint number 1 but allows it to be re-
enabled later.

	♦ enable: The purpose of the enable command in pdb is to reactivate a
breakpoint that was previously disabled. For example, enable 1 re-enables
breakpoint number 1 so that it becomes active again during execution.

5.2.3.4 How pdb Debugging Works in Python

pdb (Python Debugger) is a tool that provides an interactive environment for examining
and controlling the execution of Python code. Here’s a detailed explanation of how pdb
operates:

1. Inserting a Breakpoint:
To start debugging with pdb, you need to insert a breakpoint in your code. This is done
using the statement import pdb; pdb.set_trace(). When the execution reaches this point,
the debugger halts, and you enter the pdb interactive mode.

276 SGOU - SLM - BSc - Introduction to Python Programming

Example:

 def divide(a, b):

 import pdb; pdb.set_trace() # Execution will pause here

 return a / b

2. Starting the Debugging Session

Run the Python script as you normally would. The execution will pause at the line
where pdb.set_trace() is located, and you will see the pdb prompt, allowing you to
interact with the debugger.

 Running the Program:

 python myscript.py

3. Using pdb Commands

Once the debugger is active, you can use various commands to control the execution
flow and inspect the program’s state:

print (or p): Displays the current value of a variable or the result of an expression.

Example:

(Pdb) p a

10

step (or s): Executes the current line of code and steps into any called functions, allowing
you to examine each step closely.

Example:

 (Pdb) s

4. next (or n): Moves to the next line within the current function, bypassing any function
calls on the current line.

Example:

 (Pdb) n

5. continue (or c): Resumes the execution of the program until it hits the next breakpoint
or finishes.

Example:

 (Pdb) c

6. list (or l): Shows the source code around the current line to provide context.

Example:

 (Pdb) l

277 SGOU - SLM - BSc - Introduction to Python Programming

7. where (or w): Displays the call stack, showing the sequence of function calls that led
to the current point in the code.

Example:

(Pdb) w

8. quit (or q): Exits the debugger and terminates the program.

5.2.3.5 Practical Example with pdb
Import pdb

def fxn(n):

 for i in range(n):

 print(“Hello!”, i+1)

pdb.ser_tace()

fxn(5)

This program prints “Hello!” followed by a number from 1 to n.

Before calling the function fxn(5), it pauses the program using the Python Debugger
(pdb).

pdb.set_trace() lets you pause execution, inspect variables, and step through the code
before fxn(5) is executed.

This program prints “Hello!” followed by a number from 1 to n. Before calling the
function fxn(5), it pauses the program using the Python Debugger (pdb). pdb.set_trace()
lets you pause execution, inspect variables, and step through the code before fxn(5) is
executed. Function fxn(n): A simple function that loops n times (in this case, 5). On
each loop, it prints: Hello! 1, Hello! 2, ..., Hello! 5. pdb.set_trace() This is a breakpoint.
The program pauses here before calling the function. Then see the (Pdb) prompt in the
terminal. While at the (Pdb) prompt: n – Go to the next line. c – Continue until the next
breakpoint or program end. p n – Print value of the variable n (if available in scope).
q – Quit the debugger. After pressing c, the program resumes and: Enters the function
fxn(5)

Hello! 1

Hello! 2

Hello! 3

Hello! 4

Hello! 5

278 SGOU - SLM - BSc - Introduction to Python Programming

To practice basic debugging using the pdb module. To learn how to pause the program,
inspect variables, and control execution before running the main logic. It helps in
checking what happens before the function is executed. It verify that fxn(5) is called
correctly.

5.2.3.6 Advantages of using pdb debugger
	♦ It allows you to run the program line by line.

	♦ To check the values of variables during execution.

	♦ It helps you find the exact location of errors.

	♦ To pause the program at any point using pdb.set_trace().

	♦ It reduces the need for multiple print statements.

	♦ It is built into Python, so no extra installation is needed.

	♦ It helps in understanding how the code works step by step.

	♦ It is useful for debugging complex logic or large programs.

Recap

	♦ Debugging in Python is essential to ensure a program runs as intended
without unexpected behavior.

	♦ It helps in identifying logical, runtime, and syntax errors early in the
development process.

	♦ Effective debugging improves the overall quality and performance of the
software.

	♦ Using print() statements is a quick method to observe variable values and
program flow.

	♦ However, relying only on print() becomes difficult in large programs with
nested logic.

	♦ The pdb module offers an interactive way to pause execution and examine
code behavior in detail.

	♦ Developers can set breakpoints using pdb.set_trace() to stop the program at
a specific line.

	♦ At the (Pdb) prompt, commands like p (print), n (next), c (continue), and q
(quit) are used to navigate and inspect.

	♦ Variables can be inspected and expressions evaluated during a paused state,
making it easier to identify issues.

279 SGOU - SLM - BSc - Introduction to Python Programming

	♦ You can step into functions to observe how data is passed and processed
internally.

	♦ Exception handling using try-except blocks allows for graceful handling of
errors like division by zero.

	♦ This prevents the program from crashing and gives the user a proper message
or alternative outcome.

	♦ Logging is more powerful than print statements as it keeps records of events,
errors, and flow for later analysis.

	♦ Log files help debug issues even after the program has been deployed.

	♦ Modern IDEs offer built-in graphical debuggers, making debugging more
visual and intuitive.

	♦ Features like line-by-line execution, variable watch windows, and call stack
views simplify complex debugging.

	♦ The pdb debugger is lightweight, requires no setup, and is especially useful
when a GUI debugger is not available.

	♦ Commands like break, step, next, continue, and where provide full control
over the debugging session.

	♦ A practical example with a loop demonstrated how pdb can pause before
function execution to examine logic.

	♦ This helps verify input values, function calls, and outputs before the main
logic runs.

	♦ Mastering debugging techniques improves developer efficiency and helps
maintain large codebases.

	♦ Overall, pdb is a powerful, flexible, and accessible tool for both beginners
and experienced Python developers.

Objective Type Questions

1.	 What is the process of identifying and fixing errors in a program called?

2.	 Which module in Python is used for interactive command-line debugging?

3.	 When does the program pause during pdb debugging?

4.	 How can you print the value of a variable in pdb?

5.	 Why is logging preferred over print statements in production code?

280 SGOU - SLM - BSc - Introduction to Python Programming

6.	 Where do you insert pdb.set_trace() in the program?

7.	 Who uses the debugger to step through code and inspect variables?

8.	 What command resumes program execution until the next breakpoint?

9.	 How do you exit the pdb debugger?

10.	Which command in pdb steps into a function call?

11.	What is shown using the list command in pdb?

12.	Why is exception handling important in a program?

13.	How is a breakpoint created in pdb?

14.	When should you use try-except blocks in Python?

15.	What prompt appears when the pdb debugger is active?

Answers to Objective Type Questions

1.	 Debugging

2.	 pdb

3.	 Breakpoint

4.	 print

5.	 Reliability

6.	 Code

7.	 Developer

8.	 continue

9.	 quit

10.	step

11.	Code

12.	Safety

13.	set_trace

14.	Error

15.	(Pdb)

281 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

1.	 Explain the importance of debugging in Python. How does it help in
improving program quality?

2.	 What are the different debugging techniques in Python? Describe each
technique with examples.

3.	 Describe the role of the pdb module in Python debugging.

4.	 Write a detailed note on how to use the pdb module with appropriate
examples. Include commands and their usage.

5.	 Explain the step-by-step process of debugging a Python program using pdb.
set_trace(). What happens after execution pauses?

6.	 Explain how to use basic pdb commands like break, step, next, continue,
list, and quit.

Reference

1.	 Clark, W. E. (2025). Python Exception Handling Made Easy: A Practical
Guide with Examples (1st ed.).

2.	 Lutz, M., & Ascher, D. (2023). Exception Basics. In Learning Python (6th
ed., Chapter 33). O’Reilly Media.

3.	 Pearson, J. (2020). Introduction to Python Programming and Data Structures
(3rd ed., Chapter 13: Files and Exception Handling). Pearson.

4.	 Matthes, E. (2023). Python Crash Course: A Hands-On, Project-Based
Introduction to Programming (3rd ed.). No Starch Press.

5.	 Lutz, M. (2021). Learning Python (5th ed.). O’Reilly Media.

6.	 Slatkin, B. (2020). Effective Python: 90 Specific Ways to Write Better Python
(2nd ed.). Addison-Wesley Professional.

282 SGOU - SLM - BSc - Introduction to Python Programming

Suggested Reading

1.	 Ceder, N. (2021). The Quick Python Book (3rd ed.). Manning Publications.

2.	 Slatkin, B. (2020). Effective Python (2nd ed.). Addison-Wesley Professional.

3.	 Zelle, J. M. (2017). Python Programming: An Introduction to Computer
Science (3rd ed.). Franklin, Beedle & Associates.

4.	 https://docs.python.org/3/library/logging.html

5.	 https://docs.python.org/3/library/pdb.html

6.	 https://realpython.com/python-debugging-pdb/

Unit 3
 Database Programming in Python

Learning Outcomes

Prerequisites

	♦ define what a database is and list common types of databases used with
Python.

	♦ identify the basic components of an SQL query such as SELECT, INSERT,
UPDATE, and DELETE.

	♦ explain how Python can be connected to a database using database connectors
like MySQL connector.

	♦ describe the steps involved in executing an SQL query from a Python
program.

	♦ recognize the purpose of each basic SQL operation and its role in managing
data through Python scripts.

After the successful completion of the unit, the learner will be able to:

Before starting with database programming in Python, learners should have a basic
understanding of how data is stored and organized in real-life scenarios. For example,
consider a library system where books, members, and borrowing records must be
tracked. This kind of structured data is best handled using a database, which stores
information in tables made up of rows and columns. Knowing what a database is, and
why it’s useful, helps learners understand the importance of storing, retrieving, and
managing data efficiently.

A basic knowledge of SQL (Structured Query Language) is also important. SQL is the
language used to interact with most databases. It allows you to perform operations like
retrieving data with `SELECT`, adding new data with `INSERT`, modifying records
with `UPDATE`, and removing unwanted data using `DELETE`. For instance, if
you want to find all books borrowed by a particular student, you would use an SQL
`SELECT` query to get the information from the database table.

Lastly, learners should be comfortable with Python programming fundamentals such
as variables, functions, conditionals, and loops. Since this unit focuses on connecting
Python with a database, it is important to understand how to write basic Python pro-

284 SGOU - SLM - BSc - Introduction to Python Programming

Discussion
5.3.1 Introduction to Databases in Python
Databases are essential tools in the world of software development, used to store,
manage, and retrieve data efficiently. In today’s data-driven world, applications often
rely on structured databases to organize information, such as customer details, product
inventories, or user activities. Python, being one of the most widely-used programming
languages, offers built-in libraries and modules that allow developers to interact
seamlessly with various types of databases like SQLite, MySQL, and PostgreSQL.
Understanding how to connect Python programs with databases is a critical step for
building dynamic and data-centric applications.

Python provides robust support for database programming through modules like
sqlite3, which allows developers to execute SQL commands directly from Python
scripts. With these tools, one can perform fundamental database operations such as
creating tables, inserting records, updating values, and deleting unwanted data. For
example, using Python to manage a student database system makes it easy to automate
tasks like registering new students or updating marks, all while keeping the data
organized and searchable. This integration of Python and SQL enables powerful and
flexible data manipulation capabilities for both beginners and professionals.

In real-world applications, database programming in Python is widely used in web
development, data analysis, and automation tasks. Consider a small online bookstore
where customer orders and inventory need to be tracked. By using Python to connect

MySQL, Import, Cursor, Connectors, SQLite

Key words

grams and how Python can interact with external files or systems. For example, using
Python to automatically update the stock of products in a supermarket database when-
ever a sale is made demonstrates how Python and SQL work together in real-world
applications.

285 SGOU - SLM - BSc - Introduction to Python Programming

to a database, the system can automatically update stock levels, retrieve customer order
history, and generate sales reports. Learning to work with databases in Python not only
builds a foundation for handling real data but also prepares students for more advanced
topics such as data modeling, security, and web application backends.

5.3.2 SQL basics
SQL (Structured Query Language) is a special-purpose language used to interact with
databases. It allows you to store, retrieve, update, and delete data from a relational
database. Python, a popular and easy-to-learn programming language, provides built-in
support to work with databases using SQL. Learning how to use SQL with Python helps
beginners build real-world applications that can manage and analyze data effectively.

SQL is used to perform operations on the data stored in relational databases. A relational
database stores data in tables which are like spreadsheets made up of rows and columns.
Some common SQL commands are shown in the table 5.3.1 below:

Table 5.3.1 Common SQL commands

Sql Command Purpose Example

SELECT Read data from a table SELECT * FROM students;

INSERT Add new data to a table INSERT INTO students VALUES ('John', 20);

UPDATE Modify existing data UPDATE students SET age = 21 WHERE
name = 'John';

DELETE Remove data from a table DELETE FROM students WHERE age < 18;

Python programs often need to work with stored data. For example, an app that stores
users’ names, login info, or test scores needs a database.

Understanding SQL basics in Python is an essential step for any beginner who wants to
work with data. SQL helps manage the data, and Python gives the tools to automate and
analyze it. Once you understand basic SQL commands and how to use them in Python,
you’ll be ready to build applications like student databases, address books, inventory
systems, and more.

5.3.3 Connecting Python with databases
Databases are used to store and manage large amounts of data efficiently. Python,
being a powerful and flexible programming language, can connect to different types
of databases to access and manipulate data. This connection is made using database
connectors or APIs, which act as bridges between Python and the database. Once
connected, Python can send SQL commands to create tables, insert data, retrieve data,
and much more.

Types of Databases and Connectors
To work with data effectively in Python, it is important to understand the different types

286 SGOU - SLM - BSc - Introduction to Python Programming

of databases available and how to connect to them. A database is a structured collection
of data, and Python can interact with various kinds of databases using special tools
called connectors or libraries.

Each database system has its own features, performance level, and use cases. Some
databases are lightweight and store data in a single file (like SQLite), while others
are powerful systems that support large-scale, multi-user environments (like MySQL,
PostgreSQL, and Oracle). Python provides different libraries for connecting to each of
these databases, allowing developers to run SQL queries, manage data, and build data-
driven applications.

In this section, you will learn about the most commonly used relational databases and
the Python connectors required to communicate with them. Understanding these options
will help you choose the right database and connector for your project. Python supports
connections to various relational databases using different libraries (Table 5.3.2):

Table 5.3.2 Types of Databases and Connectors

Database Type Python Library Description

SQLite sqlite3 (built-in) Lightweight, file-based database

MySQL mysql.connector, PyMySQL Popular open-source database

PostgreSQL psycopg2 Advanced open-source relational DB

Oracle cx_Oracle Connects Python to Oracle DB

SQL Server pyodbc Connects to Microsoft SQL Server

5.3.3.1 Using SQLite with Python
SQLite is a lightweight database that stores data in a local file. It requires no separate
server setup, making it perfect for beginners and small projects. The step-by-step
procedure are:

1. Import the database library: To use a database in Python, you first need to import
the appropriate library. For SQLite, Python provides a built-in module called sqlite3,
so there is no need to install anything extra.

import sqlite3

2. Connect to the Database: This line creates a connection to a database file named
school.db. If the file doesn’t exist, it will be created automatically. The conn object
now acts as a link between your Python program and the database.

conn = sqlite3.connect(‘school.db’) # Creates ‘school.

db’ if it doesn’t exist

3. Create a Cursor: A cursor is used to send SQL commands to the database and fetch

287 SGOU - SLM - BSc - Introduction to Python Programming

results. You need a cursor object to execute queries like SELECT, INSERT, UPDATE, etc.
cursor = conn.cursor()

4. Execute SQL Commands: This SQL command creates a table named students
if it doesn’t already exist. The table will store each student’s ID, name, and age. The
execute() function is used to send this SQL statement to the database.

cursor.execute(‘’’

CREATE TABLE IF NOT EXISTS students (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 name TEXT,
 age INTEGER
)
‘ ‘ ‘)

5. Insert Data into the Table: This command adds a new record to the students table.
The question marks ? are placeholders used in parameterized queries to safely insert
values and prevent SQL injection attacks.

cursor.execute(“INSERT INTO students (name, age) VALUES (?, ?)”, (‘Alice’,
20))

6. Fetch Data: This command retrieves all records from the students table. The
fetchall() function returns all the rows, which can be printed or processed further in
the program.

cursor.execute(“SELECT * FROM students”)
print(cursor.fetchall())

7. Commit changes: After making changes like inserting or updating records, you need
to commit those changes to the database. This makes sure your changes are saved.

conn.commit()

8. Close the Connection: Closing the connection releases the resources and ensures
that no more commands are sent to the database. It’s a good practice to always close the
connection when you’re done.

conn.close()

Connecting Python to databases is a vital step in building real-world applications that
rely on data storage and retrieval. SQLite is ideal for learning and simple projects,
while other databases like MySQL or PostgreSQL are used in larger systems. With
basic knowledge of database connections, you can create robust Python programs that
interact with data efficiently.

5.3.3.2 Using MySQL with Python
MySQL is a popular open-source relational database management system used in many

288 SGOU - SLM - BSc - Introduction to Python Programming

web and enterprise applications. It is known for its speed, reliability, and ability to
handle large volumes of data. Python can easily connect to a MySQL database using
special libraries that allow the execution of SQL commands directly from Python
programs. This helps in building real-world applications where data storage and retrieval
are essential. Before connecting to MySQL from Python, make sure the following are
installed:

1.	 MySQL Server: You need MySQL installed on your system or use a remote
MySQL server.

2.	 MySQL Connector for Python: This is the official library provided by
Oracle to connect Python with MySQL.

Steps to Use MySQL with Python

Connecting Python to a MySQL database (Table 5.3.3) involves a series of straightforward
steps. These steps help you establish communication between your Python program and
the MySQL server so that you can send SQL commands, retrieve data, and manage your
database efficiently.

Starting with importing the right library, you will learn how to create a connection,
execute SQL queries using a cursor, insert and retrieve data, and properly close the
connection when finished. Each step builds upon the previous one to form a complete
workflow that makes database programming with Python simple and effective.

In the following section, you will explore these essential steps in detail with examples,
helping you gain confidence to work with MySQL databases in your Python applications.
Below are the basic steps to connect Python with a MySQL database:

1. Import the MySQL Connector: This imports the mysql.connector module which
contains all the functions needed to connect and interact with a MySQL database.

import mysql.connector

2. Establish a Connection: To work with a MySQL database in Python, the first
important step is to establish a connection between your Python program and the
MySQL server. This connection acts as a bridge that allows your program to send SQL
commands and receive data from the database. Python uses the mysql.connector
library to create this connection. When establishing the connection, you need to provide
some key information:

	♦ host: The location of the MySQL server (use “localhost” for your
computer).

	♦ user: Your MySQL username (commonly “root”).

	♦ password: The password for your MySQL account.

	♦ database: The name of the database you want to use.

289 SGOU - SLM - BSc - Introduction to Python Programming

conn = mysql.connector.connect(

 host=”localhost”,

 user=”root”,

 password=”your_password”,

 database=”school”

)

Make sure the database school already exists. If the connection is successful, the
variable conn will hold the connection object, which you can use to interact with the
database. If there is any problem (like wrong password or database name), an error will
be raised.

3. Create a Cursor: The cursor is used to send SQL commands and fetch data from
the database.

cursor = conn.cursor()

4. Create a Table: This SQL command creates a students table with id, name, and age
columns.

cursor.execute(‘’’

CREATE TABLE IF NOT EXISTS students (

 id INT AUTO_INCREMENT PRIMARY KEY,

 name VARCHAR(50),

 age INT

)
‘’’)

5. Insert Data: The %s placeholders are used for parameterized queries, which help
prevent SQL injection.

sql = “INSERT INTO students (name, age) VALUES (%s, %s)”

val = (“Alice”, 20)

cursor.execute(sql, val)

6. Retrieve Data: This code retrieves all records from the students table and prints
each one.

cursor.execute(“SELECT * FROM students”)

result = cursor.fetchall()

for row in result:

print(row)

290 SGOU - SLM - BSc - Introduction to Python Programming

7. Commit and Close: commit() saves any changes made to the database and close()
safely ends the connection.

conn.commit()

conn.close()

Table 5.3.3 Summary Table of Steps to Use MySQL with Python

Step Action Function

1 Import MySQL library import mysql.connector

2 Connect to MySQL mysql.connector.connect()

3 Create a cursor conn.cursor()

4 Execute SQL (create, insert) cursor.execute()

5 Fetch data cursor.fetchall()

6 Commit changes conn.commit()

7 Close connection conn.close()

Using MySQL with Python allows you to build robust applications with powerful data
storage and retrieval capabilities. By following simple steps connecting, writing SQL,
and managing data you can create systems such as inventory apps, school databases,
employee records, and more.

5.3.4 Executing SQL queries using Python
After successfully connecting to a database, the next step is to execute SQL queries to
manage and manipulate data. This includes tasks such as inserting new records, reading
data, updating existing values, and deleting unwanted entries.

In Python, SQL queries are executed using a cursor object, which is created from the
database connection. The cursor acts as a control point to issue SQL commands and
retrieve data from the database. Python’s built-in or third-party database connectors
(such as sqlite3 or mysql.connector) provide the required functions to perform
these operations. The general syntax for executing SQL queries using Python is:

Step 1: Create a cursor object

cursor = connection.cursor()

Step 2: Execute an SQL query

cursor.execute(sql_query, parameters)

Step 3: Commit changes (if data is modified)

connection.commit() # Only for INSERT, UPDATE, DELETE

Step 4: Fetch results (for SELECT queries)

291 SGOU - SLM - BSc - Introduction to Python Programming

rows = cursor.fetchall() # or cursor.fetchone()

Here,

	♦ cursor() – Creates a cursor to execute SQL statements.

	♦ execute() – Executes an SQL command; parameters can be passed securely.

	♦ commit() – Saves changes to the database (not required for SELECT).

	♦ fetchall() – Retrieves all results from a SELECT query.

	♦ fetchone() – Retrieves only the first result from a SELECT query.

5.3.4.1 SELECT- Retrieving Data from the Table

The SELECT statement in SQL is used to retrieve data from a table. In Python, this is
done using the cursor.execute() function followed by a query such as SELECT *
FROM table_name. The * symbol means “all columns,” so the query will return every
column and row from the specified table. After executing the query, you use methods
like fetchall() to retrieve all the matching rows or fetchone() to get just a single
row. The result is typically returned as a list of tuples, where each tuple represents a
row in the table.

Syntax:

cursor.execute(“SELECT * FROM table_name”)

result = cursor.fetchall()

Example: Retrieving All Students from the Table

Assume we have a table named students with columns id, name, and age.
import mysql.connector

Step 1: Connect to the database

conn = mysql.connector.connect(

 host=”localhost”,

 user=”root”,

 password=”your_password”,

 database=”school”

)

Step 2: Create cursor object

cursor = conn.cursor()

292 SGOU - SLM - BSc - Introduction to Python Programming

Step 3: Execute SELECT query

cursor.execute(“SELECT * FROM students”)

Step 4: Fetch all rows

result = cursor.fetchall()

Step 5: Print each row

for row in result:

 print(row)

Step 6: Close the connection

cursor.close()

conn.close()

To retrieve data from a MySQL database in Python, you first connect to the database
and create a cursor object. Then, using the cursor.execute() function, you run a
SELECT query. The returned result can be stored in a variable and looped through using
a for loop to display or process each row. For example, retrieving all students from
a students table can be done with the query SELECT * FROM students, and the
output can be printed row by row. This operation is read-only, so you don’t need to
call commit() after a SELECT query. Retrieving data is a fundamental part of database
interaction, allowing Python programs to access and work with stored information in a
dynamic way.

5.3.4.2 INSERT- Adding Data to the Table
The INSERT statement in SQL is used to add new data into a table. When working with
Python and MySQL, this operation is carried out using the cursor.execute() function
along with an INSERT INTO SQL query. The INSERT command specifies the table name
and the columns where data should be placed, followed by the VALUES clause that holds
the data to be inserted. In Python, it is a best practice to use parameterized queries
with placeholders (%s) instead of hardcoding the values directly into the SQL string.
This approach helps protect the database from SQL injection attacks and ensures safe
handling of user input.

Syntax:

cursor.execute(“INSERT INTO table_name (col1, col2) VALUES (%s, %s)”, (val1,
val2))

Example: Add new student

Let’s add a new student to the students table with the fields: name and age.

import mysql.connector

Step 1: Connect to the database

293 SGOU - SLM - BSc - Introduction to Python Programming

conn = mysql.connector.connect(

 host=”localhost”,

 user=”root”,

 password=”your_password”,

 database=”school”

)

Step 2: Create a cursor

cursor = conn.cursor()

Step 3: Prepare the INSERT statement

sql = “INSERT INTO students (name, age) VALUES (%s, %s)”

val = (“Alice”, 20)

Step 4: Execute the statement

cursor.execute(sql, val)

Step 5: Commit the transaction

conn.commit()

Step 6: Confirmation message

print(“1 record inserted successfully.”)

To perform an insert operation, you first create a connection to the database using
mysql.connector.connect(), then create a cursor object using conn.cursor().
You then define the SQL insert query and provide the values in a tuple. The cursor.
execute() function runs the command, and conn.commit() is called to save the
changes permanently to the database. If commit() is not called, the inserted data will
not be saved. This process is essential for adding new rows into tables such as adding
a new student record with their name and age into a students table. After execution,
you can optionally print a confirmation message or run a SELECT query to verify that
the data has been added successfully.

5.3.4.3 UPDATE- Modifying Existing Data
The UPDATE statement in SQL is used to modify existing records in a table. In Python,
this is achieved by executing an UPDATE SQL command using the cursor.execute()
function. You can change one or more columns for selected rows by specifying a WHERE
condition to target the desired records. If you omit the WHERE clause, all rows in the
table will be updated - so it’s important to use it carefully.

294 SGOU - SLM - BSc - Introduction to Python Programming

Syntax:

sql = “UPDATE table_name SET column1 = %s WHERE condition_column = %s”

val = (value1, condition_value)

cursor.execute(sql, val)

connection.commit()

Here,

	♦ cursor.execute() runs the SQL update command.

	♦ commit() is necessary to save the changes to the database.

	♦ %s is used as a placeholder for values to prevent SQL injection.

Example: Updating a Student’s Age

Suppose we want to update the age of a student named “Alice” from 20 to 21 in the
students table.

import mysql.connector

Step 1: Connect to the database

conn = mysql.connector.connect(

 host=”localhost”,

 user=”root”,

 password=”your_password”,

 database=”school”

)

Step 2: Create a cursor object

cursor = conn.cursor()

Step 3: Prepare the SQL update query

sql = “UPDATE students SET age = %s WHERE name = %s”

val = (21, “Alice”)

Step 4: Execute the update query

cursor.execute(sql, val)

Step 5: Commit the changes

conn.commit()

Step 6: Confirmation message

295 SGOU - SLM - BSc - Introduction to Python Programming

print(cursor.rowcount, “record(s) updated.”)

Step 7: Close the connection

cursor.close()

conn.close()

In this example, we update the age of a student named “Alice” in the students table.
First, we establish a connection to the MySQL database using the mysql.connector.
connect() function and create a cursor object to execute SQL commands. The UPDATE
query is prepared using placeholders %s for the values to be substituted, which helps
prevent SQL injection. The SQL command “UPDATE students SET age = %s WHERE
name = %s” is designed to change the age column to 21 only for the student whose
name is “Alice”. These values are passed as a tuple (21, “Alice”) to the cursor.
execute() function. After executing the query, conn.commit() is called to apply the
changes permanently in the database. Finally, the program prints the number of rows
affected using cursor.rowcount, which confirms that one record was successfully
updated. This operation demonstrates how to safely and efficiently modify data in a
MySQL database using Python.

5.3.4.4 DELETE- Removing Data from the Table
The DELETE statement in SQL is used to remove one or more records from a table. In
Python, you execute a DELETE query using the cursor object. It is very important to
include a WHERE clause in your DELETE statement to specify which rows to remove;
otherwise, all rows in the table will be deleted, which can lead to data loss.

Syntax:

sql = “DELETE FROM table_name WHERE column_name = %s”

val = (value,)

cursor.execute(sql, val)

connection.commit()

Here,

	♦ The %s is a placeholder for the value used in the condition.

	♦ The value should be provided as a tuple, even if there is only one item.

	♦ Always call commit() to save the changes.

Example: Deleting a Student Record

Suppose we want to delete the record of a student named “Alice” from the students
table.

import mysql.connector

Step 1: Connect to the database

296 SGOU - SLM - BSc - Introduction to Python Programming

conn = mysql.connector.connect(

 host=”localhost”,

 user=”root”,

 password=”your_password”,

 database=”school”

)

Step 2: Create cursor

cursor = conn.cursor()

Step 3: Prepare the DELETE query

sql = “DELETE FROM students WHERE name = %s”

val = (“Alice”,)

Step 4: Execute the query

cursor.execute(sql, val)

Step 5: Commit the transaction

conn.commit()

Step 6: Confirmation message

print(cursor.rowcount, “record(s) deleted.”)

Step 7: Close the connection

cursor.close()

conn.close()

In this example, the program deletes the record of the student named “Alice” from
the students table. After connecting to the database and creating a cursor object, the
SQL DELETE statement is prepared with a placeholder %s to specify the name. The
value (“Alice”) is passed as a tuple to safely fill the placeholder. The cursor.exe-
cute() method runs the delete command, and conn.commit() saves the changes to the
database. Finally, the program prints how many records were deleted using cursor.
rowcount. Including the WHERE clause ensures only the targeted record is removed,
preventing accidental deletion of the entire table.

297 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ A database is a structured collection of data stored electronically for easy
access and management.

	♦ SQL (Structured Query Language) is the standard language used to
communicate with relational databases.

	♦ Python can interact with databases using modules such as sqlite3 and
mysql.connector.

	♦ To work with a database in Python, you first establish a connection using the
appropriate connector module.

	♦ The cursor object is used to execute SQL commands and fetch results.

	♦ The SELECT statement retrieves data from a database table.

	♦ Using SELECT * fetches all columns and rows from a table.

	♦ Data retrieved by SELECT queries can be fetched using fetchall() or
fetchone() methods.

	♦ The INSERT INTO statement adds new records to a table.

	♦ It is important to use parameterized queries (using %s placeholders) to
prevent SQL injection.

	♦ After executing INSERT, UPDATE, or DELETE queries, always call commit()
to save changes.

	♦ The UPDATE statement modifies existing records based on specified
conditions.

	♦ The WHERE clause in UPDATE and DELETE statements restricts the operation
to specific rows.

	♦ The DELETE FROM statement removes records from a table.

	♦ Omitting the WHERE clause in UPDATE or DELETE will affect all rows in the
table.

	♦ The cursor.execute() method runs an SQL query from Python.

	♦ The connection should be closed using conn.close() after database
operations are complete.

	♦ Exception handling is recommended to manage database errors and ensure
clean connection closure.

	♦ Working with databases enables Python programs to become dynamic and
data-driven.

	♦ Mastery of basic SQL commands (SELECT, INSERT, UPDATE, DELETE)
is essential for effective database programming in Python.

298 SGOU - SLM - BSc - Introduction to Python Programming

Objective Type Questions

1.	 What is a database?

2.	 Which language is primarily used to interact with relational databases?

3.	 Which Python module is used to connect with SQLite databases?

4.	 What function is used to establish a connection to a MySQL database in
Python?

5.	 What is the purpose of a cursor in database programming?

6.	 Which SQL command is used to retrieve data from a table?

7.	 What does the SQL command INSERT INTO do?

8.	 Why should parameterized queries be used in Python SQL operations?

9.	 Which Python method saves changes made to the database?

10.	What SQL statement is used to change existing data in a table?

11.	How do you delete records from a table using SQL?

12.	What does fetchall() do in Python database programming?

13.	What happens if you omit the WHERE clause in an UPDATE statement?

14.	How do you safely pass values to an SQL query in Python?

15.	What Python statement is used to close a database connection?

16.	Which SQL keyword retrieves all columns from a table?

17.	In Python, which method fetches only the first row of a query result?

18.	What is the first step in interacting with a database in Python?

19.	What Python module can be used to connect to MySQL databases?

20.	Why is commit() important after executing INSERT, UPDATE, or DELETE?

Answers to Objective Type Questions

1.	 A structured collection of data stored electronically.

2.	 SQL (Structured Query Language).

3.	 sqlite3.

299 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

1.	 Explain the process of connecting Python to a MySQL database. Write a
Python program that connects to a MySQL database named school.

2.	 Write a Python program to insert three new student records into a table named
students with columns id, name, and age. Make sure to use parameterized
queries.

3.	 Using Python, write a program to retrieve and display all records from
the students table. Explain how the data fetched by the program can be
processed.

4.	 Write a Python script to update the age of a student in the students table
based on their name. Also, write a program to delete a student record based
on the student’s name.

4.	 mysql.connector.connect().

5.	 To execute SQL queries and fetch data from the database.

6.	 SELECT.

7.	 Adds new records into a table.

8.	 To prevent SQL injection attacks and ensure safe data handling.

9.	 connection.commit().

10.	UPDATE.

11.	Using the DELETE FROM statement with a WHERE clause.

12.	Retrieves all rows of a query result.

13.	All records in the table will be updated.

14.	Using placeholders like %s and passing values as a tuple.

15.	connection.close().

16.	SELECT *.

17.	fetchone().

18.	Establishing a connection to the database.

19.	mysql.connector.

20.	It saves the changes permanently to the database.

300 SGOU - SLM - BSc - Introduction to Python Programming

Suggested Reading

1.	 W3Schools. (n.d.). SQL Tutorial. https://www.w3schools.com/sql/

2.	 Real Python. (2021). Working With Databases in Python. https://realpython.
com/python-database-sqlite/

3.	 MySQL. (n.d.). MySQL Connector/Python Developer Guide. https://dev.
mysql.com/doc/connector-python/en/

4.	 TutorialsPoint. (n.d.). Python MySQL Tutorial. https://www.tutorialspoint.
com/python/python_mysql.html

5.	 GeeksforGeeks. (2022). Python MySQL Database Access. https://www.
geeksforgeeks.org/python-mysql-database-access/

Reference

1.	 Beighley, L., & Morrison, M. (2017). Head First SQL: Your Brain on SQL –
A Learner’s Guide (1st ed.). O’Reilly Media.

2.	 Sweigart, A. (2019). Automate the Boring Stuff with Python: Practical
Programming for Total Beginners (2nd ed.). No Starch Press.

3.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

4.	 Grinberg, M. (2018). Flask Web Development: Developing Web Applications
with Python (2nd ed.). O’Reilly Media.

5.	 Ramalho, L. (2015). Fluent Python: Clear, Concise, and Effective
Programming (1st ed.). O’Reilly Media.

Unit 4
Applications of Database Programming

in Python

Learning Outcomes

Prerequisites

	♦ recall the basic SQL commands (SELECT, INSERT, UPDATE, DELETE)
used in CRUD operations with Python’s sqlite3 module.

	♦ explain how menu-driven applications simplify database interaction using
command-line or GUI interfaces.

	♦ develop a Python application using sqlite3 to perform basic CRUD operations

	♦ differentiate between console-based and GUI-based database applications in
Python

	♦ examine the structure and flow of a Python program that integrates Tkinter
with SQLite to manage forms and generate reports.

After the successful completion of the course, the learner will be able to:

Managing information is a key part of any organization. For example, a college needs
to keep records of many students, including their names, courses, and grades. When a
new student joins or updates are needed, the system must handle the data quickly and
correctly. Database programming helps in doing this. Using Python with a database like
SQLite allows the creation of applications that can add, view, update, or delete data.
These are called CRUD operations. These tasks can be done through simple menus
or graphical windows using Tkinter. This topic is important because it connects basic
coding with real-world data use, helping in building useful applications.

Some basic knowledge is needed to learn this topic. It is important to understand Python
programming such as variables, loops, and functions. Knowing database terms like
tables, rows, and simple SQL commands (SELECT, INSERT, UPDATE, DELETE) is
also helpful. A basic idea of object-oriented programming and Tkinter makes it easier to
create visual applications. Learning this topic builds skills to make systems like student
records or inventory tools. It also improves thinking and coding ability and prepares
learners to build larger software projects in the future.

302 SGOU - SLM - BSc - Introduction to Python Programming

Discussion
5.4.1 Applications of Database Programming
Database programming plays an essential role in building robust, efficient, and secure
data-driven systems. It involves integrating programming languages like Python with
databases to facilitate effective data management, querying, storage, and processing.
Python provides versatile modules such as sqlite3, mysql-connector-python, and
SQLAlchemy, making it a preferred language for database development across different
sectors.

5.4.2 Creating Menu-Driven Database Applications
Menu-driven applications offer a user-friendly way to interact with a database through a
series of options. These options allow users to perform operations like adding, viewing,
editing, or deleting records without directly interacting with SQL queries. Creating
menu-driven database applications in SQLite using Python involves designing an
interactive program that allows users to perform database operations such as Create,
Read, Update, and Delete (CRUD) through a command-line or GUI menu interface.
Below are the step-by-step guidelines to build such an application using the built-in
sqlite3 module in Python.

Step 1: Import sqlite3 Module

import sqlite3

Step 2: Connect to Database

conn = sqlite3.connect(“student.db”)

cursor = conn.cursor()

Step 3: Create a Table (If Not Exists)

cursor.execute(“””

CREATE TABLE IF NOT EXISTS student (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 name TEXT NOT NULL,

 age INTEGER,

 grade TEXT

GUI Programming, Tkinter, Forms, Reports, Treeview, Data Storage, Data Retrieval,
Database Programming, SQLite, CRUD Operations

Key words

303 SGOU - SLM - BSc - Introduction to Python Programming

)

“””)

conn.commit()

 Step 4: Define CRUD Operation Functions

// Insert Function

def insert_student(name, age, grade):

 cursor.execute(“INSERT INTO student (name, age, grade) VALUES (?, ?, ?)”,
(name, age, grade))

 conn.commit()

 print(“Student added successfully!”)

//Display All Records

def display_students():

 cursor.execute(“SELECT * FROM student”)

 records = cursor.fetchall()

 for row in records:

 print(row)

// Search by ID

def search_student(student_id):

 cursor.execute(“SELECT * FROM student WHERE id=?”, (student_id,))

 record = cursor.fetchone()

 if record:

 print(record)

 else:

 print(“Student not found.”)

//Update a Record

def update_student(student_id, name, age, grade):

 cursor.execute(“UPDATE student SET name=?, age=?, grade=? WHERE id=?”,
(name, age, grade, student_id))

304 SGOU - SLM - BSc - Introduction to Python Programming

 conn.commit()

 print(“Student record updated.”)

// Delete a Record

def delete_student(student_id):

 cursor.execute(“DELETE FROM student WHERE id=?”, (student_id,))

 conn.commit()

 print(“Student record deleted.”)

Step 5: Create the Menu

def menu():

 while True:

 print(“\n--- Student Database Menu ---”)

 print(“1. Add Student”)

 print(“2. Display All Students”)

 print(“3. Search Student by ID”)

 print(“4. Update Student”)

 print(“5. Delete Student”)

 print(“6. Exit”)

 choice = input(“Enter your choice: “)

 if choice == ‘1’:

 name = input(“Enter name: “)

 age = int(input(“Enter age: “))

 grade = input(“Enter grade: “)

 insert_student(name, age, grade)

 elif choice == ‘2’:

 display_students()

 elif choice == ‘3’:

 student_id = int(input(“Enter student ID to search: “))

305 SGOU - SLM - BSc - Introduction to Python Programming

 search_student(student_id)

 elif choice == ‘4’:

 student_id = int(input(“Enter student ID to update: “))

 name = input(“Enter new name: “)

 age = int(input(“Enter new age: “))

 grade = input(“Enter new grade: “)

 update_student(student_id, name, age, grade)

 elif choice == ‘5’:

 student_id = int(input(“Enter student ID to delete: “))

 delete_student(student_id)

 elif choice == ‘6’:

 print(“Exiting program.”)

 break

 else:

 print(“Invalid choice. Please try again.”)

 Step 6: Call the Menu Function

menu()

Step 7: Close the Connection

conn.close()

Output

--- Student Database Menu ---

1. Add Student

2. Display All Students

3. Search Student by ID

4. Update Student

5. Delete Student

6. Exit

306 SGOU - SLM - BSc - Introduction to Python Programming

Enter your choice: 1

Enter name: Alice

Enter age: 20

Enter grade: A

Student added successfully!

Example: A Simple Inventory Management System using SQLite

import sqlite3

conn = sqlite3.connect(‘inventory.db’)

cursor = conn.cursor()

def create_table():

 “””Initializes the database table if it doesn’t exist.”””

 cursor.execute(‘’’

 CREATE TABLE IF NOT EXISTS products (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 name TEXT NOT NULL,

 quantity INTEGER NOT NULL,

 price REAL NOT NULL

)

 ‘’’)

 conn.commit()

def add_product():

 “””Adds a new product to the database.”””

 name = input(“Enter product name: “)

 quantity = int(input(“Enter quantity: “))

 price = float(input(“Enter price: “))

 cursor.execute(“INSERT INTO products (name, quantity, price) VALUES (?, ?,
?)”, (name, quantity, price))

307 SGOU - SLM - BSc - Introduction to Python Programming

 conn.commit()

 print(“Product added successfully.”)

def view_products():

 “””Displays all products in the database.”””

 cursor.execute(“SELECT * FROM products”)

 products = cursor.fetchall()

 if not products:

 print(“No products in the inventory.”)

 return

 print(“\n--- Current Inventory ---”)

 for product in products:

 print(f”ID: {product[0]}, Name: {product[1]}, Quantity: {product[2]}, Price:
${product[3]:.2f}”)

 print(“-------------------------”)

def main_menu():

 “””The main loop for the menu-driven application.”””

 create_table() # Ensure the table exists

 while True:

 print(“\n--- Inventory Management System ---”)

 print(“1. Add a new product”)

 print(“2. View all products”)

 print(“3. Exit”)

 choice = input(“Enter your choice: “)

 if choice == ‘1’:

 add_product()

 elif choice == ‘2’:

 view_products()

308 SGOU - SLM - BSc - Introduction to Python Programming

 elif choice == ‘3’:

 print(“Exiting...”)

 conn.close()

 break

 else:

 print(“Invalid choice. Please try again.”)

if __name__ == “__main__”:

 main_menu()

Output

--- Inventory Management System ---

1. Add a new product

2. View all products

3. Exit

Product added successfully.

--- Inventory Management System ---

1. Add a new product

2. View all products

3. Exit

--- Current Inventory ---

ID: 1, Name: book, Quantity: 10, Price: $300.00

--- Inventory Management System ---

1. Add a new product

2. View all products

3. Exit

Invalid choice. Please try again.

--- Inventory Management System ---

309 SGOU - SLM - BSc - Introduction to Python Programming

1. Add a new product

2. View all products

3. Exit

Exiting...

5.4.3 Designing simple forms and reports in python
Designing simple forms and reports in Python involves collecting user input (forms)
and presenting structured data output (reports). Below is a structured approach to create
console-based forms and reports, which can be further enhanced with GUI (e.g.,
Tkinter) or web frameworks (e.g., Flask).

Tkinter-based Python application- A form to input employee data A report
window to display stored employee data from SQLite database

import sqlite3

from tkinter import *

from tkinter import messagebox, ttk

Database Setup

conn = sqlite3.connect(“employee.db”)

cursor = conn.cursor()

cursor.execute(“””

CREATE TABLE IF NOT EXISTS employee (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 name TEXT NOT NULL,

 department TEXT,

 salary REAL

)

“””)

conn.commit()

Save Employee Function

def save_employee():

 name = name_entry.get()

310 SGOU - SLM - BSc - Introduction to Python Programming

 dept = dept_entry.get()

 try:

 salary = float(salary_entry.get())

 except ValueError:

 messagebox.showerror(“Input Error”, “Please enter a valid salary”)

 return

 if name and dept:

 cursor.execute(“INSERT INTO employee (name, department, salary) VALUES
(?, ?, ?)”,

 (name, dept, salary))

 conn.commit()

 messagebox.showinfo(“Success”, “Record Saved!”)

 name_entry.delete(0, END)

 dept_entry.delete(0, END)

 salary_entry.delete(0, END)

 else:

 messagebox.showwarning(“Missing Info”, “Please fill all fields”)

View Report Function

def show_report():

 report_win = Toplevel(root)

 report_win.title(“Employee Report”)

 report_win.geometry(“500x300”)

 tree = ttk.Treeview(report_win, columns=(“ID”, “Name”, “Department”,
“Salary”), show=’headings’)

 tree.heading(“ID”, text=”ID”)

 tree.heading(“Name”, text=”Name”)

 tree.heading(“Department”, text=”Department”)

 tree.heading(“Salary”, text=”Salary”)

311 SGOU - SLM - BSc - Introduction to Python Programming

 cursor.execute(“SELECT * FROM employee”)

 rows = cursor.fetchall()

 for row in rows:

 tree.insert(“”, END, values=row)

 tree.pack(fill=BOTH, expand=True)

Main Window

root = Tk()

root.title(“Employee Entry Form”)

root.geometry(“400x300”)

Form Labels and Entries

Label(root, text=”Employee Name:”).pack(pady=5)

name_entry = Entry(root, width=30)

name_entry.pack()

Label(root, text=”Department:”).pack(pady=5)

dept_entry = Entry(root, width=30)

dept_entry.pack()

Label(root, text=”Salary:”).pack(pady=5)

salary_entry = Entry(root, width=30)

salary_entry.pack()

Buttons

Button(root, text=”Save Record”, command=save_employee, bg=”green”,
fg=”white”).pack(pady=10)

Button(root, text=”Show Report”, command=show_report, bg=”blue”,
fg=”white”).pack(pady=5)

root.mainloop()

Close database when GUI ends

conn.close()

312 SGOU - SLM - BSc - Introduction to Python Programming

5.4.4 Implementing CRUD operations in real time scenarios
CRUD stands for Create, Read, Update, and Delete, the four basic functions of
persistent storage. These operations form the foundation of database programming
in real-time applications such as web apps, desktop apps, mobile apps, and enterprise
systems. Let’s consider a Student Management System for a college. The following
system is an example of real time scenario:

	♦ Create new student records.

	♦ Read (view) student details.

	♦ Update existing student information.

	♦ Delete records when a student leaves or is no longer valid.

Setup:

import sqlite3

Connect to SQLite database (creates a new one if it doesn’t exist)

conn = sqlite3.connect(‘college.db’)

cursor = conn.cursor()

Create student table

cursor.execute(‘’’

CREATE TABLE IF NOT EXISTS students (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 name TEXT NOT NULL,

 age INTEGER,

 course TEXT

)

‘’’)

conn.commit()

CREATE Operation (Insert a New Student)

def create_student(name, age, course):

 cursor.execute(“INSERT INTO students (name, age, course) VALUES (?, ?, ?)”,
(name, age, course))

 conn.commit()

 print(“Student record created.”)

313 SGOU - SLM - BSc - Introduction to Python Programming

Example usage

create_student(“Anjali”, 21, “MCA”)

READ Operation (View All Students)

def read_students():

 cursor.execute(“SELECT * FROM students”)

 records = cursor.fetchall()

 for row in records:

 print(row)

Example usage

read_students()

UPDATE Operation (Modify Student Details)

def update_student(student_id, new_course):

 cursor.execute(“UPDATE students SET course = ? WHERE id = ?”, (new_course,
student_id))

 conn.commit()

 print(“Student record updated.”)

Example usage

update_student(1, “Data Science”)

DELETE Operation (Remove Student Record)

def delete_student(student_id):

 cursor.execute(“DELETE FROM students WHERE id = ?”, (student_id,))

 conn.commit()

 print(“Student record deleted.”)

Example usage

delete_student(1)

314 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ Database programming involves integrating Python with databases for
efficient data storage, querying, and management.

	♦ Python provides useful modules for database development such as sqlite3,
mysql-connector-python, and SQLAlchemy.

	♦ It helps build robust, secure, and scalable data-driven applications used in
various domains.

	♦ Menu-driven applications provide a user-friendly interface to perform
database operations without writing SQL queries.

	♦ A menu-driven student database application can be created using Python and
SQLite with CRUD functionalities.

	♦ The application allows users to add, view, search, update, and delete student
records through a simple text menu.

	♦ Each database operation is written as a separate Python function using SQL
commands.

	♦ A loop-based menu system lets users repeatedly choose actions until they
exit the program.

	♦ Designing forms and reports in Python involves taking user inputs and
displaying stored data in a readable format.

	♦ Tkinter is used to design a simple GUI form to input employee details such
as name, department, and salary.

	♦ The GUI also includes a report window that displays all saved records using
a Treeview table layout.

	♦ CRUD stands for Create, Read, Update, and Delete, which are the four
basic operations for managing data in a database.

	♦ These operations are essential for building interactive and dynamic
applications such as web apps, desktop software, and mobile apps.

	♦ Python with SQLite is commonly used to perform CRUD operations
efficiently in real-time systems.

	♦ Create operation allows inserting new records into the database (e.g., adding
a new student in a college system).

	♦ Read operation retrieves and displays data from the database (e.g., viewing
student details or product list).

315 SGOU - SLM - BSc - Introduction to Python Programming

Objective Type Questions

1.	 Which module in Python is commonly used to interact with SQLite
databases?

2.	 What does the acronym CRUD stand for?

3.	 Which SQL command is used to retrieve data from a table?

4.	 Which function in Python is used to execute SQL statements?

5.	 What keyword is used in SQL to add new records to a table?

6.	 What Python method is used to save changes to a SQLite database?

7.	 Which method is used to close the database connection in Python?

8.	 What SQL command is used to modify existing records?

9.	 What SQL command is used to remove records from a database?

10.	Which clause is used in SQL to specify conditions for selection or
modification?

11.	What keyword is used to create a table only if it does not exist?

12.	Which Python module is used to create GUI forms in desktop applications?

13.	Which data structure is used in Tkinter to display tabular data as reports?

14.	What is the extension of an SQLite database file created by Python?

	♦ Update operation modifies existing records (e.g., changing a student’s course
or updating inventory quantity).

	♦ Delete operation removes records that are no longer needed (e.g., deleting a
student record when they leave).

	♦ Each operation is implemented using SQL commands (INSERT, SELECT,
UPDATE, DELETE) in Python functions.

	♦ These operations ensure data integrity, user interaction, and dynamic content
management in applications.

316 SGOU - SLM - BSc - Introduction to Python Programming

Answers to Objective Type Questions

1.	 sqlite3

2.	 Create

3.	 SELECT

4.	 execute

5.	 INSERT

6.	 commit

7.	 close

8.	 UPDATE

9.	 DELETE

10.	WHERE

11.	IF NOT EXISTS

12.	Tkinter

13.	Treeview

14.	.db

Assignments

1.	 Explain the concept of CRUD operations in database programming with
suitable examples.

2.	 Describe the step-by-step process of creating a menu-driven database
application in Python using SQLite.

3.	 Discuss the role of the sqlite3 module in Python. How does it support
database programming?

4.	 Explain the process of designing and displaying database reports in a Python GUI
application

317 SGOU - SLM - BSc - Introduction to Python Programming

Reference

1.	 Grinberg, M. (2023). Flask web development: Developing web applications
with Python (2nd ed.). O’Reilly Media.

2.	 Zelle, J. M. (2022). Python programming: An introduction to computer
science (4th ed.). Franklin, Beedle & Associates.

3.	 Slatkin, B. (2020). Effective Python: 90 specific ways to write better Python
(2nd ed.). Addison-Wesley Professional.

4.	 Stewart, R. (2021). Python GUI Programming with Tkinter: Design and
build functional and user-friendly GUI applications. Packt Publishing.

5.	 Owain, G. (2023). Mastering SQLite for Python Developers. Independently
published.

Suggested Reading

1.	 Pillai, B. (2022). Python GUI development with Tkinter: Design responsive
and robust GUI applications. Independently published.

2.	 Lutz, M. (2021). Learning Python (5th ed.). O’Reilly Media.

3.	 Sarkar, D. (2021). Python GUI programming with Tkinter and SQLite. BPB
Publications.

4.	 Zelle, J. M. (2017). Python Programming: An Introduction to Computer
Science (3rd ed.). Franklin, Beedle & Associates.

5.	 Downey, A. (2015). Think Python: How to Think Like a Computer Scientist
(2nd ed.). O’Reilly Media.

6.	 Python Official Documentation. (n.d.). Errors and Exceptions – Python 3.x
Docs. https://docs.python.org/3/tutorial/errors.html

Familiarizing
NumPy, Matplotlib
and Pandas6

Unit 1
Familiarizing NumPy

Learning Outcomes

Prerequisites

	♦ define NumPy and its role in Python programming.

	♦ list the methods to create NumPy arrays from existing data and built-in
functions.

	♦ describe array operations like indexing, slicing, reshaping, and sorting.

	♦ explain mathematical and statistical functions used in NumPy.

After the successful completion of the course, the learner will be able to:

If you have already learned how to use lists and loops in Python, you have taken the
first step toward working with data in programming. You might have written small pro-
grams to store numbers in a list and used loops to add or print them. While this works
well for simple tasks, it can become slow and complicated when the data gets larger
or more complex. This is where NumPy becomes useful. NumPy builds on what you
already know about Python lists, but it helps you do morefaster and more efficiently. In
this unit, we will learn how to use NumPy arrays to perform mathematical operations
easily, handle large datasets, and write cleaner programs. This knowledge will help you
move from basic programming to more advanced data analysis and scientific comput-
ing.

NumPy, arrays, indexing, slicing, statistical operations

Key words

320 SGOU - SLM - BSc - Introduction to Python Programming

Discussion
6.1.1 What is NumPy?
NumPy stands for Numerical Python. It is a tool (called a library) used in Python
programming to work with numbers and data more efficiently. It helps us perform
mathematical and scientific calculations quickly and easily. The main feature of NumPy
is something called an array, which helps to store and work with many numbers easily.
An array is just a special kind of list where we can store many numbers together.

6.1.1.1 Why is NumPy Important?
1. Faster Calculations

Normally, when we use loops (like for loops) in Python to do math on many numbers,
it can be slow. NumPy uses a technique called vectorization that allows it to do all the
calculations much faster, without writing loops.

2. Used in Many Other Tools

NumPy is not just useful by itself, many popular Python tools like Pandas (for data
tables), Matplotlib (for graphs), SciPy (for scientific computing), and TensorFlow (for
machine learning) are built on top of NumPy. So, learning NumPy helps you use all
these tools better.

3. Good for Big Data

When we deal with a lot of data, like thousands or millions of numbers, NumPy can
handle it efficiently. It saves memory and time, which is very important in areas like
research, finance, and engineering.

4. No Need for Loops

In regular Python, you often write loops to go through lists and do calculations. With
NumPy, you can perform the same task in just one line, making your code cleaner and
faster.

6.1.2 Arrays in NumPy
Arrays in NumPy are the foundation of numerical computing in Python. Unlike normal
Python lists, NumPy arrays (called ndarrays) have special features like fixed size, the
ability to handle multiple dimensions, and support for many fast and memory-efficient
mathematical operations. They allow you to perform calculations on entire datasets
at once, without using loops. This makes NumPy a key tool for tasks in data analysis,
machine learning, scientific research, and engineering.

6.1.2.1 Array attributes
NumPy arrays, also known as ndarray objects, include several built-in attributes that
allow users to easily inspect and work with their structure and data. These attributes
provide important information about the array, such as its shape, size, and number of
dimensions. One of the most commonly used attributes is:

321 SGOU - SLM - BSc - Introduction to Python Programming

1. Number of Dimensions (.ndim)

This attribute returns the number of axes (dimensions) in a NumPy array. For example,
a 1D array has one dimension, a 2D array (like a matrix) has two dimensions, and so on.

Example:

import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6]])

print(a.ndim)

Output:

2

The array a has two lists inside it, each with three elements. So, it is a 2-dimensional
array (2D), and .ndim returns 2.

2. Dimensions of the Array (.shape)

The .shape attribute returns a tuple that shows the size of the array in each dimension.
It tells us how many elements are present along each axis such as the number of rows
and columns in a 2D array.

Example:

import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6]])

print(a.shape)

Output:

(2, 3)

The array a has 2 rows and 3 columns, so the shape of the array is represented as the
tuple (2, 3).

3. Total Number of Elements (.size)

The .size attribute gives the total number of elements stored in the array. It is calculated
by multiplying the size of each dimension.

Example:

import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6]])

print(a.size)

322 SGOU - SLM - BSc - Introduction to Python Programming

Output:

6

There are 2 rows and 3 columns, making a total of 2 × 3 = 6 elements in the array.

4. Data Type of Elements (.dtype)

The .dtype attribute displays the data type of the elements stored in a NumPy array.
NumPy automatically assigns a suitable data type based on the values in the array, but
it can also be specified manually when creating the array.

Example:

import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6]])

print(a.dtype)

Output:

int64

The array a contains integer values, so NumPy has assigned the data type as int64
(64-bit integer). Note that the exact data type may vary depending on your system
architecture for example, it might show as int32 on some systems.

6.1.3 Creating and Manipulating NumPy Arrays
Before we can use any functions from the NumPy library, we need to import it into our
Python program. This means we are telling Python to make the NumPy tools available
for use.

To do this, we use the following line of code:

	 import numpy as np

In this line of code:

	♦ The word import tells Python to bring in extra tools from outside.

	♦ numpy is the name of the tool (library) we want to use.

	♦ as np means we are giving NumPy a short name (np) so it’s easier to use
later.

Let us now look at a basic example to understand the difference between using regular
Python and using NumPy. Suppose we have two lists of numbers, and we want to add
the numbers in the same positions from both lists. We will see how this is done first
without NumPy, and then using NumPy to show how NumPy makes it easier and faster.

Without NumPy:

a = [1, 2, 3]

323 SGOU - SLM - BSc - Introduction to Python Programming

b = [4, 5, 6]

result = []

for i in range(len(a)):

 result.append(a[i] + b[i])

print(result)

With NumPy:

import numpy as np

a = np.array([1, 2, 3])

b = np.array([4, 5, 6])

print(a + b)

6.1.3.1 One-Dimensional Array
A one-dimensional array (Fig 6.1.1) in NumPy is essentially a sequence or list of
elements, all of which are of the same type. It is a type of linear array. It is similar to
a Python list, but offers the benefit of faster operations and a more compact memory
footprint. A 1D array as a vector, where each element is accessed by its index.

 Fig 6.1.1 One Dimensional Array

Sample Program:

import numpy as np

arr = np.array([10, 20, 30, 40])

print(“Array:”, arr)

Ouput:

Array: [10 20 30 40]

This example demonstrates how to create a one-dimensional array using NumPy.

324 SGOU - SLM - BSc - Introduction to Python Programming

6.1.3.2 Two-Dimensional Array
A two-dimensional array (2D array) in NumPy is essentially a grid or matrix, where
elements are arranged in rows and columns as shown in Fig 6.1.2. This structure can
represent things like images, tables of data, and more complex mathematical objects.
Data is stored in tabular form.

 Fig 6.1.2 Two Dimensional Array

Let’s see how a two-dimensional array is created and printed using NumPy.

Sample Program:

import numpy as np

arr2d = np.array([[1, 2, 3], [4, 5, 6]])

print(“2D Array:\n”, arr2d)

Output:

2D Array:

[[1 2 3]

[4 5 6]]

6.1.3.3 N- Dimensional Array
ndarray (short for N-dimensional array) is a core object in NumPy. It is a homogeneous
array which means it can hold elements of the same data type. An N-dimensional array
(or ndarray) in NumPy is an array with N dimensions, where N can be any non-negative
integer. While 1D and 2D arrays are the most commonly used, NumPy allows you to
work with arrays of higher dimensions (3D, 4D, etc.) to represent more complex data
structures like tensors, volumetric data, or time-series data in multiple dimensions as
shown in Fig 6.1.3.

The key advantage of using N-dimensional arrays is that they allow you to work

325 SGOU - SLM - BSc - Introduction to Python Programming

efficiently with large datasets in various fields such as image processing, machine
learning, and scientific simulations.

 Fig 6.1.3 : N-dimensional Array

Example:

import numpy as np

#1D array

arr1 = np.array([1, 2, 3, 4, 5])

#2D array

arr2 = np.array([[1, 2, 3], [4, 5, 6]])

#3D array

arr3 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

print(arr1)

print(arr2)

print(arr3)

Ouput:

[1 2 3 4 5]

[[1 2 3]

[4 5 6]]

[[[1 2]

326 SGOU - SLM - BSc - Introduction to Python Programming

 [3 4]]

 [[5 6]

 [7 8]]]

6.1.3.4 Creating NumPy Arrays from Existing Data
NumPy allows you to create arrays from existing data structures like lists, tuples,
or even raw bytes. This is useful in data analysis and scientific computations. Some
common methods include:

1. Using numpy.asarray()

Converts lists, tuples, or other array-like objects into NumPy arrays.

Syntax:
	 numpy.asarray(a, dtype=None, order=None)

	♦ a: Input data (list, tuple, etc.)

	♦ dtype: (Optional) Desired data type

	♦ order: (Optional) Memory layout (C for row-major, F for column-major).
Default is None, which means NumPy decides based on the input.

Example:

import numpy as np

list = [1, 2, 3, 4, 5]

arr_list = np.asarray(list)

print(“Array from list:”, arr_list)

Output:

[1 2 3 4 5]

2. Using numpy.frombuffer()

The numpy.frombuffer() function creates an array from a buffer object, such as bytes
objects or byte arrays.

Syntax:

	 numpy.frombuffer(buffer, dtype=float, count=-1, offset=0)

Where
	♦ buffer − It is the buffer object containing the data to be interpreted as an

array.

	♦ dtype (optional) − It is the desired data type of the elements in the resulting
array. Default is float.

327 SGOU - SLM - BSc - Introduction to Python Programming

	♦ count (optional) − It is the number of items to read from the buffer. Default
is -1, which means all data is read.

	♦ offset (optional) − It is the starting position within the buffer to begin reading
data. Default is 0.

Example:

bytes = b’hello world’

arr_bytes = np.frombuffer(bytes, dtype=’S1’)

print(“Array from bytes object:”, arr_bytes)

Output:

[b’h’ b’e’ b’l’ b’l’ b’o’ b’ ‘ b’w’ b’o’ b’r’ b’l’ b’d’]

3. From Python Lists

Lists can be converted to arrays using np.array() or np.asarray().

Example:

list = [1, 2, 3, 4, 5]

arr = np.array(list)

print(“Array from list:”, arr)

Output:

[1 2 3 4 5]

4. From Python Tuples

Tuples can also be converted using np.array().

Example:

tuple = (1, 2, 3, 4, 5)

arr = np.array(tuple)

print(“Array from tuple:”, arr)

Output:

[1 2 3 4 5]

6.1.3.5 Creating Arrays Using Built-in Functions
NumPy provides several built-in functions to quickly create arrays without manually
specifying each element. These functions are especially helpful when we want arrays
filled with zeros, ones, or a sequence of numbers for testing or initialization. Let us
explore four common built-in array creation functions in NumPy: zeros(), ones(),
arange(), and linspace().

328 SGOU - SLM - BSc - Introduction to Python Programming

Sample Program:

import numpy as np

a = np.zeros((2, 3))

b = np.ones((2, 2))

c = np.arange(0, 10, 2)

d = np.linspace(0, 1, 5)

print(“Zeros:\n”, a)

print(“Ones:\n”, b)

print(“Arange:\n”, c)

print(“Linspace:\n”, d)

Output:

Zeros:

[[0. 0. 0.]

 [0. 0. 0.]]

Ones:

[[1. 1.]

 [1. 1.]]

Arange:

[0 2 4 6 8]

Linspace:

[0. 0.25 0.5 0.75 1.]

1. np.zeros((2, 3)):

This creates a table (or array) with 2 rows and 3 columns, and fills all the places with
the number 0. It is helpful when you want to start with an empty array and add values
to it later.

2. np.ones((2, 2)):

This makes a 2 by 2 table where all the values are 1. It is useful when you need an array
with the same value everywhere, like in some math problems or computer programs.

3.np.arange(0, 10, 2):

This gives you a list of numbers starting from 0 and going up to (but not including) 10,

329 SGOU - SLM - BSc - Introduction to Python Programming

with a gap of 2 between each number. So, the result will be: [0, 2, 4, 6, 8]. It’s useful
when you want numbers at regular steps.

4. np.linspace(0, 1, 5):

This gives you 5 numbers that are spaced equally between 0 and 1. The result will be:
[0. 0.25 0.5 0.75 1.]. It helps when you want to divide a range into equal parts, like for
graphs or measurements.

6.1.4 Array Operations in NumPy
Arrays are the core of NumPy, and once they are created, various operations can be
performed on them. These operations make it easy to work with data efficiently and
effectively.

6.1.4.1 Indexing
Indexing means accessing individual elements in the array by their position. In NumPy,
each element in an array is assigned a specific index value, which represents its location.

Example: Indexing a 1D Array

import numpy as np

arr = np.array([5, 10, 15, 20, 25])

print(“First element:”, arr[0])

print(“Last element:”, arr[-1])

Output:

First element: 5

Last element: 25

6.1.4.2 Slicing
Slicing means selecting multiple elements from an array using a range of indices.
Instead of accessing elements one by one, slicing allows you to extract a subset or
section of an array in a concise way. This is particularly useful when you want to work
with or analyze a portion of the data.

In NumPy, slicing uses the colon (:) operator to specify the start index, stop index, and
an optional step size. The syntax generally follows:

	 array[start:stop:step]

Where,

	♦ start: the index where the slice begins (inclusive)

	♦ stop: the index where the slice ends (exclusive)

	♦ step: the spacing between indices (default is 1)

330 SGOU - SLM - BSc - Introduction to Python Programming

Example:

import numpy as np

arr = np.array([0, 10, 20, 30, 40, 50, 60])

print(“arr[2:5] =”, arr[2:5])

print(“arr[:4] =”, arr[:4])

print(“arr[::2] =”, arr[::2])

Output:

arr[2:5] = [20 30 40]

arr[:4] = [0 10 20 30]

arr[::2] = [0 20 40 60]

6.1.4.3 Reshaping Arrays
Reshaping means changing the arrangement of data in rows and columns without
changing the actual values. For example, 6 values in a single row can be reshaped into
2 rows and 3 columns. In NumPy, this is done using the reshape() function.

Example:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])

reshaped = arr.reshape((2, 3))

print(“Reshaped array:\n”, reshaped)

Output:

Reshaped array:

[[1 2 3]

 [4 5 6]]

In this example, the shape of the array is changed from one-dimensional (1D), which
contains 6 values, to a two-dimensional (2D) array with 2 rows and 3 columns. This
process is called reshaping.

6.1.4.4 Sorting Arrays
Sorting means arranging the values in an array in a specific order, usually from smallest
to largest (increasing order). In NumPy, you can use the sort() function to sort the
elements.

Example:
import numpy as np

331 SGOU - SLM - BSc - Introduction to Python Programming

arr = np.array([30, 10, 40, 20])

sorted_arr = np.sort(arr)

print(“Sorted array:”, sorted_arr)

Output:

Sorted array: [10 20 30 40]

Sorting a 2D Array by Row

In a 2D array (like a table with rows and columns), sorting by row means arranging
the values in each row in increasing order, one row at a time. NumPy’s sort() function
automatically sorts each row individually when used on a 2D array.

Example:

import numpy as np

matrix = np.array([[3, 1, 2], [9, 5, 6]])

print(np.sort(matrix))

Output:

[[1 2 3]

 [5 6 9]]

6.1.4.5 Mathematical and Statistical Operations

NumPy allows you to perform fast mathematical operations on whole arrays, without
using loops. You can add, subtract, multiply, or divide arrays directly.

a. Example of mathematical operation:

import numpy as np

a = np.array([1, 2, 3])

b = np.array([4, 5, 6])

print(“Addition:”, a + b)

print(“Multiplication:”, a * b)

Output:

Addition: [5 7 9]

Multiplication: [4 10 18]

In this example, each element from array a is added to the corresponding element in
array b. This means the first element of a (which is 1) is added to the first element of b
(which is 4), the second element of a (2) is added to the second element of b (5), and the

332 SGOU - SLM - BSc - Introduction to Python Programming

third element of a (3) is added to the third element of b (6). The result of this addition is
a new array: [5, 7, 9]. In the same way, multiplication is also done element by element.

b. Example of statistical operation:

import numpy as np

arr = np.array([10, 20, 30, 40, 50])

print(“Mean:”, np.mean(arr))

print(“Median:”, np.median(arr))

print(“Standard Deviation:”, np.std(arr))

Output:

Mean: 30.0

Median: 30.0

Standard Deviation: 14.142135

In this example, NumPy is used to perform basic statistical calculations on an array of
numbers. The np.mean() function calculates the average of all the numbers in the array.
It adds them together and divides by the total count, giving a mean of 30. The np.me-
dian() function finds the middle value in the sorted list, which is also 30 in this case. The
np.std() function calculates the standard deviation, which tells us how much the values
in the array vary or spread out from the mean.

Recap
	♦ NumPy is a Python library used for working with numbers and data efficiently.

	♦ It performs calculations faster than regular Python lists.

	♦ The main feature of NumPy is the array, which stores multiple values of the
same type.

	♦ Arrays can be one-dimensional, two-dimensional, or multi-dimensional.

	♦ Important attributes of arrays include the number of dimensions (ndim),
shape (shape), total number of elements (size), and data type (dtype).

	♦ Arrays can be created from lists, tuples, or using functions like zeros(),
ones(), arange(), and linspace().

	♦ Indexing and slicing help in accessing and selecting parts of an array.

	♦ Arrays can be reshaped to change their structure and sorted to arrange values
in order.

	♦ Mathematical operations such as addition and multiplication can be
performed directly on arrays.

333 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Statistical functions like mean, median, and standard deviation are used to
analyze array data.

Objective Type Questions

1.	 What does NumPy stand for?

2.	 What is the core data structure used in NumPy?

3.	 Which NumPy attribute returns the number of dimensions of an array?

4.	 Which attribute gives the total number of elements in a NumPy array?

5.	 Which attribute shows the shape of an array in terms of rows and columns?

6.	 What attribute is used to check the data type of elements in a NumPy array?

7.	 Which NumPy function is used to create an array filled with zeros?

8.	 What function creates an array with a range of numbers and a given step
size?

9.	 Which function returns evenly spaced numbers over a range?

10.	What operation is used to access a specific element in an array by its position?

11.	What operation selects a portion or subsection of an array?

12.	What NumPy function is used to change the shape of an array?

13.	What operation arranges the elements of an array in ascending order?

Answers to Objective Type Questions

1.	 Numerical Python

2.	 Array

3.	 ndim

4.	 size

5.	 shape

6.	 dtype

7.	 zeros

334 SGOU - SLM - BSc - Introduction to Python Programming

8.	 arange

9.	 linspace

10.	Indexing

11.	Slicing

12.	reshape

13.	sort

Assignments

1.	 Explain the features and importance of NumPy in Python programming.

2.	 Write a Python program to create a one-dimensional NumPy array and
display its attributes like shape, size, and data type. Explain the output.

3.	 What is array slicing in NumPy? Explain with a suitable Python example.

4.	 Write a Python program using NumPy to find the mean, median, and standard
deviation of a given array. Explain the result.

5.	 Describe the different ways to create NumPy arrays using functions like
zeros(), ones(), and arange(). Provide one example for each.

Reference

1.	 https://www.w3schools.com/python/numpy/default.asp

2.	 https://www.geeksforgeeks.org/numpy/python-numpy/

Suggested Reading

1.	 Brown, Martin C. Python: The complete reference. Osborne/McGraw-Hill,
2001.

2.	 Jose, Jeeva. Taming Python by Programming. KHANNA PUBLISHING
HOUSE.

3.	 Lutz, Mark. Learning python: Powerful object-oriented programming. “
O’Reilly Media, Inc.”, 2013.

Unit 2
 Data Analysis with Pandas

Learning Outcomes

Prerequisites

	♦ define what Pandas is and describe its primary purpose in data analysis.

	♦ list the main data structures in Pandas

	♦ identify key characteristics of a Pandas Series and a DataFrame.

	♦ recall common methods for handling missing data in Pandas

	♦ familiarise several advantages of using Pandas for data manipulation and
analysis.

After the successful completion of the course, the learner will be able to:

Imagine you are a teacher who needs to keep track of your students’ exam scores in
multiple subjects. You have a list of students with their scores in Math, English, and
Science. The data is messy: some scores are missing because students missed exams,
and some records are incomplete. You want to organize this data so you can quickly
find a student’s scores, calculate averages, and identify who needs extra help.

How can you efficiently handle, clean, and analyze this data without manually sorting
through spreadsheets?

This is where Pandas, a powerful Python library, comes in handy. Pandas provides
easy-to-use data structures like Series and DataFrames that help you organize, clean,
and analyze your students’ scores quickly and effectively. With Pandas, you can fill
missing scores, filter students by performance, and merge new data—all with just a few
lines of code!

Series, DataFrame, Dictionary, List, Index, Missing Data, Data Cleaning

Key words

336 SGOU - SLM - BSc - Introduction to Python Programming

6.2.1 Introduction to Pandas
Pandas is a widely used package in Python that simplifies data analysis and manipulation.
It offers intuitive and efficient ways to handle, process, and transform data. With its
powerful data structures, such as Series and DataFrames, Pandas allows users to easily
create, manage, and perform a variety of operations on datasets. This makes it a valuable
tool for data wrangling and analytical tasks.

Pandas efficiently manages missing data and offers versatile data structures like Series
for one-dimensional data and DataFrame for handling multi-dimensional datasets. It
allows for quick and effective slicing of data and supports flexible operations such as
merging, concatenating, and reshaping, making it a powerful tool for structured data
manipulation.

Pandas works with three main data structures

1.	 Series

2.	 DataFrame

6.2.2 Series
A Series is a one-dimensional array-like structure designed for handling and
manipulating data. What sets it apart is its powerful and flexible index, which allows
for efficient data access and labeling.

A Series consists of two main components as in Fig 6.2.1.

1.	 Data – the array containing the actual values.

2.	 Index – an array of labels corresponding to the data values.

Fig 6.2.1 Components of Series

In essence, a Series is a labeled, one-dimensional array that can store any data type.

Key characteristics include:

	♦ The data within a Series is mutable, meaning its values can be modified.

Discussion

337 SGOU - SLM - BSc - Introduction to Python Programming

	♦ The size of the Series is immutable, so the number of elements cannot be
changed after creation.

	♦ A Series functions as a data structure composed of two arrays: one for the
data and the other for its labels or index.

	♦ The labels used to identify rows in a Series are referred to as the Index.

6.2.2.1 Creating a Pandas Series
A pandas Series can be created using the following constructor

class pandas.Series(data, index, dtype, name, copy)

Parameters of Constructor are

1.	 data-The input can be in different formats such as an ndarray, a list, or a
single constant value.

2.	 index-The index must contain unique, hashable values and must match the
length of the data. If not provided, it defaults to np.arange(n).

3.	 dtype-Refers to the data type. If not specified, pandas will automatically
detect it.

4.	 copy-Indicates whether to create a copy of the input data. The default setting
is False.

Create an Empty Series

An empty Series object can be created by calling the pandas.Series() constructor without
passing any data.

import pandas as pd #import the pandas library and aliasing as pd

s = pd.Series()

print(‘Resultant Empty Series:\n’,s) # Display the result

Create a Series from Python Dictionary
You can create a Series by passing a dictionary to the pd.Series() constructor. If no
index is provided, the keys of the dictionary will be sorted and used as the Series index.
If an index is specified, only the values that match the given labels will be extracted
from the dictionary.

import pandas as pd

import numpy as np

data = {‘a’ : 0., ‘b’ : 1., ‘c’ : 2.}

s = pd.Series(data)

print(s)

338 SGOU - SLM - BSc - Introduction to Python Programming

6.2.3 DataFrame
A DataFrame is a two-dimensional structure as in Fig 6.2.2 ideal for organizing data
in rows and columns, much like a spreadsheet or SQL table. It is the most widely used
object in pandas. After loading data into a DataFrame, a variety of operations can be
performed to explore, analyze, and interpret the data effectively.

Fig 6.2.2 DataFrames

6.2.3.1 Properties of DataFrames

1.	 A DataFrame has two axes: the row axis (axis=0) and the column axis
(axis=1).

2.	 It resembles a spreadsheet, where the row identifiers are called indices and
the column identifiers are called column names.

3.	 It can store heterogeneous data, meaning different data types in different
columns.

4.	 The size of a DataFrame is mutable, meaning rows and columns can be
added or removed.

5.	 The data within a DataFrame is also mutable, so values can be changed
after creation.

6.2.3.2 Creating a Pandas DataFrame
Create an Empty DataFrame

An empty DataFrame by calling the DataFrame constructor without passing any
arguments.

import pandas as pd

df = pd.DataFrame()

339 SGOU - SLM - BSc - Introduction to Python Programming

print(df)

Create a DataFrame from Lists
A DataFrame can be constructed from a single list or from multiple lists organized
within a list (i.e., a list of lists).

import pandas as pd

data = [1,2,3,4,5]

df = pd.DataFrame(data)

print(df)

Creating DataFrame from dict of ndarray/lists

A DataFrame can be constructed using a dictionary, where each key represents a column
name and the corresponding value is a list or array of data.

	♦ All lists or arrays used must be of equal length.

	♦ If you specify an index, its length must also match the length of the data.

	♦ If no index is given, Pandas will automatically assign a default integer index
starting from 0.

import pandas as pd

data = {‘Name’:[‘Tom’, ‘nick’, ‘krish’, ‘jack’],

 ‘Age’:[20, 21, 19, 18]}

df = pd.DataFrame(data)

print(df)

6.2.3.3 DataFrame Operations
1. Selection

Selecting specific rows or columns from a DataFrame using labels (loc[]) or index
positions (iloc[]).

import pandas as pd

data = {‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’],

 ‘Age’: [25, 30, 35],

 ‘City’: [‘NY’, ‘LA’, ‘Chicago’]}

df = pd.DataFrame(data)

print(df[‘Name’]) # Selecting a single column

print(df[[‘Name’, ‘City’]]) # Selecting multiple columns

340 SGOU - SLM - BSc - Introduction to Python Programming

print(df.loc[1]) # Bob’s row # Selecting a row by index

Filtering

 Extracting rows that meet specific conditions using boolean expressions.

import pandas as pd

data = {‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’],

 ‘Age’: [25, 30, 35],

 ‘Salary’: [50000, 60000, 70000]}

df = pd.DataFrame(data)

filtered_df = df[df[‘Age’] > 28] # Filtering rows where Age > 28

print(filtered_df)

Sorting

Arranging rows in ascending or descending order based on column values.

import pandas as pd

data = {‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’],

 ‘Age’: [25, 30, 35]}

df = pd.DataFrame(data)

print(df.sort_values(by=’Age’)) # Sorting by Age (ascending)

print(df.sort_values(by=’Age’, ascending=False)) # Sorting by Age (descending)

Merging

Combining two DataFrames using a common column or key.

import pandas as pd

df1 = pd.DataFrame({

 ‘ID’: [1, 2, 3],

 ‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’]

})

df2 = pd.DataFrame({

 ‘ID’: [1, 2, 3],

 ‘Salary’: [50000, 60000, 70000]

})

341 SGOU - SLM - BSc - Introduction to Python Programming

merged_df = pd.merge(df1, df2, on=’ID’) # Merging both DataFrames on ID

print(merged_df)

6.2.4 Handling Missing Data and Basic Data Cleaning
Missing data arises when information is unavailable for one or more elements, or even
for an entire row or column. In Pandas, this is represented as NaN (Not a Number).
In real-world datasets, incomplete data is common and can cause issues. Fortunately,
Pandas offers various methods to manage and handle missing data efficiently.

The purpose of data cleaning is to correct or remove problematic data to ensure the
dataset is accurate, consistent, and usable. Common issues that require cleaning include:

	♦ Empty cells (missing values)

	♦ Incorrect data formats (e.g., text instead of numbers)

	♦ Duplicate records

	♦ Logically incorrect data (e.g., negative age or future birthdate)

Cleaning this “bad data” is crucial because uncleaned data can result in flawed analyses,
incorrect models, and misleading outputs.

1. Checking for Missing Values with isnull() and notnull()

To identify missing values (represented as NaN), Pandas provides two helpful functions:

	♦ isnull(): Returns True for missing (NaN) entries and False for all others.

	♦ notnull(): Returns True for non-missing values and False where data is
missing.

import pandas as pd

import numpy as np

dict = {‘First Score’:[100, 90, np.nan, 95],

 ‘Second Score’: [30, 45, 56, np.nan],

 ‘Third Score’:[np.nan, 40, 80, 98]}

df = pd.DataFrame(dict)

df.isnull()

2. Filling Missing Values using fillna(), replace() and interpolate()

To handle missing (null) values in a dataset, Pandas offers functions like fillna(),
replace(), and interpolate(). These functions allow you to substitute NaN values
with appropriate alternatives. While fillna() and replace() typically use specific
values to fill the gaps, the interpolate() function uses different interpolation methods
to estimate and fill missing data, rather than assigning a fixed value directly. These tools

342 SGOU - SLM - BSc - Introduction to Python Programming

are essential for managing null values within a DataFrame.

import pandas as pd

import numpy as np

dict = {‘First Score’:[100, 90, np.nan, 95],

 ‘Second Score’: [30, 45, 56, np.nan],

 ‘Third Score’:[np.nan, 40, 80, 98]}

df = pd.DataFrame(dict)

df.fillna(0)

3. Dropping Missing Values using dropna()

To eliminate rows or columns containing missing data, we can use the dropna() method.
This method is versatile and can be configured to remove either rows or columns based
on specific criteria.

import pandas as pd

import numpy as np

dict = {‘First Score’:[100, 90, np.nan, 95],

 ‘Second Score’: [30, np.nan, 45, 56],

 ‘Third Score’:[52, 40, 80, 98],

 ‘Fourth Score’:[np.nan, np.nan, np.nan, 65]}

df = pd.DataFrame(dict)

df.dropna()

6.2.5 Advantages of Pandas
1. Easy Data Handling

Pandas provides a simple and intuitive way to load, manipulate, and analyze data using
concise and readable syntax.

2. Efficient Data Structures

Pandas offers powerful data structures such as Series (for one-dimensional data) and
DataFrame (for two-dimensional tabular data), which are flexible and well-suited for
handling structured data.

3. Handles Missing Data

Pandas has built-in methods to detect, remove, and fill missing values, allowing users
to manage incomplete data effectively.

343 SGOU - SLM - BSc - Introduction to Python Programming

4. Powerful Data Selection and Filtering

Pandas makes it easy to select specific rows and columns, apply conditions, and filter
data using functions like .loc[], .iloc[], and boolean indexing.

5. Supports Data Alignment and Reshaping

With Pandas, data can be automatically aligned during operations, and reshaping
functions allow flexible reorganization of the data layout.

6. Data Aggregation and Grouping

Pandas allows users to efficiently group and summarize data for analysis.

7. High Performance

Built on top of NumPy, Pandas is optimized for performance, especially for large
datasets and numerical computations.

8. Rich I/O Support

Pandas supports reading from and writing to various file formats including CSV, Excel,
JSON, SQL databases, and more, making it versatile for data import and export.

9. Integration with Other Libraries

Pandas integrates seamlessly with other popular Python libraries such as NumPy,
Matplotlib, Scikit-learn, and TensorFlow, making it a core tool in the data science
ecosystem.

10. Open Source and Actively Maintained

As an open-source library with a large and active community, Pandas is continuously
improved and supported with regular updates and extensive documentation.

Recap

	♦ Pandas is a powerful Python library for data analysis and manipulation.

	♦ It provides two core data structures: Series (1D) and DataFrame (2D).

	♦ A Series is a one-dimensional labeled array; data is mutable, size is fixed.

	♦ A DataFrame is a two-dimensional table with rows and columns, like a
spreadsheet.

	♦ DataFrames can be created from lists, dictionaries, or arrays.

	♦ Data can be selected using labels (loc[]) or positions (iloc[]).

	♦ Filtering and sorting are easily done using conditions and sort_values().

	♦ DataFrames can be merged using merge() on common keys.

344 SGOU - SLM - BSc - Introduction to Python Programming

	♦ Missing data is represented as NaN and can be detected using isnull() and
notnull().

	♦ Missing values can be filled with fillna(), replaced with replace(), or
estimated using interpolate().

	♦ Rows or columns with missing values can be removed using dropna().

	♦ Pandas supports essential data cleaning tasks like removing duplicates and
fixing formats.

	♦ It is fast, flexible, and integrates well with other Python libraries.

Objective Type Questions

1.	 Which Python library is commonly used for data analysis and manipulation?

2.	 What data structure in Pandas represents one-dimensional labeled data?

3.	 What Pandas structure resembles a spreadsheet or SQL table?

4.	 Which function is used to detect missing values in a DataFrame?

5.	 What value is used in Pandas to represent missing data?

6.	 Which method replaces missing values using interpolation techniques?

7.	 Which method is used to merge two DataFrames?

8.	 Which method removes rows or columns with missing data?

9.	 What constructor is used to create an empty Series?

10.	Which method is used to sort data in a DataFrame?

Answers to Objective Type Questions

1.	 Pandas

2.	 Series

3.	 DataFrame

4.	 isnull

5.	 NaN

345 SGOU - SLM - BSc - Introduction to Python Programming

6.	 interpolate

7.	 merge

8.	 dropna

9.	 Series

10.	sort_values

Assignments

1.	 Explain the difference between Series and DataFrame in Pandas with
examples.

2.	 Write a Python program to create a DataFrame using a dictionary of lists and
display its structure.

3.	 Demonstrate how to detect and handle missing data using isnull(),
fillna(), and dropna() methods.

4.	 Write a program to create a Series from a dictionary and access elements
using labels.

5.	 How can you filter rows in a DataFrame based on a condition? Provide code
to demonstrate filtering.

Reference

1.	 VanderPlas, J. (2016). Python data science handbook. O’Reilly Media.

2.	 Chen, D. Y. (2017). Pandas for everyone: Python data analysis. Addison-
Wesley.

3.	 Molin, S. (2019). Hands-on data analysis with Pandas. Packt Publishing.

4.	 Kazil, J., & Jarmul, K. (2016). Data wrangling with Pandas. O’Reilly
Media.

5.	 McKinney, W. (2017). Python for data analysis (2nd ed.). O’Reilly Media.

346 SGOU - SLM - BSc - Introduction to Python Programming

Suggested Reading

1.	 https://numpy.org/doc/

2.	 https://www.w3schools.com/python/pandas/default.asp

3.	 https://www.geeksforgeeks.org/python-pandas-tutorial/

Unit 3
 Data Visualization with Matplotlib

Learning Outcomes

Prerequisites

	♦ familiarize with the basic components of Matplotlib including Figure, Axes,
and plot types.

	♦ explore methods to create line charts, bar charts, and pie charts using Python
code.

	♦ describe how to customize plots by adding titles, labels, legends, colors, and
markers.

After the successful completion of the course, the learner will be able to:

In your earlier programming journey, you might have worked with numerical and textual
data - storing them in variables, processing them through logic, and even organizing them
using structures like lists or arrays. You’ve likely learned how to perform operations
using tools like NumPy or simple Python loops to analyze or transform this data. But
after reaching a certain point, especially when dealing with large sets of values or time-
based trends, a natural question arises: How do we make sense of all this information at
a glance? That’s where data visualization becomes essential.

You may also have seen tables or raw output printed on the screen and realized that
while it’s informative, it’s not always intuitive. Visual representation helps us quickly
interpret relationships, detect patterns, and make comparisons. This is particularly
important in data science, business analysis, or any field involving decision-making.
Just imagine trying to spot a trend in monthly sales or understand user growth by only
reading a table - it’s not impossible, but it’s not easy either.

To bridge this gap, we now introduce Matplotlib - a powerful library in Python that
allows us to turn numbers into visuals. By learning how to create line graphs, bar charts,
and pie charts, you’ll be able to give life to your data, making your analyses not just
functional but also visually compelling. Let’s now step into the world of plotting, where
numbers meet narratives.

Matplotlib, Data Visualization, Line Chart, Bar Chart, Pie Chart, Axes

Key words

348 SGOU - SLM - BSc - Introduction to Python Programming

Discussion
6.3.1 Introduction to Data Visualization
Data visualization is the graphical representation of information and data. By using
visual elements like charts, graphs, and maps, data visualization tools provide an
accessible way to see and understand trends, outliers, and patterns in data.

Matplotlib is one of the most popular Python libraries used for data visualization. It
allows users to create a wide range of static, animated, and interactive plots with simple
commands.

6.3.2 Introduction to Matplotlib
Matplotlib is a comprehensive library in Python that enables users to create static,
animated, and interactive visualizations with ease. It was created by John Hunter in
2003 with the aim of providing a plotting tool for Python users that closely resembled
MATLAB in style and functionality. This design choice made it familiar and accessible
to users who were already experienced with MATLAB. Matplotlib integrates seamlessly
with other scientific computing libraries like NumPy and Pandas, making it a powerful
tool for data analysis and visualization in the Python ecosystem.

Before using Matplotlib, you need to install it in your system. This is done using the
Python package installer pip.

To install:

1.	 Open your command prompt (Windows) or terminal (Mac/Linux).

2.	 Type the below command and press Enter.

pip install matplotlib

This tells Python to download and install the latest version of the Matplotlib library
from the Python Package Index (PyPI). Make sure you have internet access while
running this command.

To import:

Once the installation is successful, you need to import the library into your Python
script to use it.

import matplotlib.pyplot as plt

	♦ matplotlib.pyplot is a module within Matplotlib that provides a MATLAB-
like interface for plotting.

	♦ plt is a commonly used alias that makes it easier to refer to the module
throughout your code.

	♦ After importing, you can use plt to call functions like plt.plot(), plt.title(),
plt.show(), etc., to create and display plots.

349 SGOU - SLM - BSc - Introduction to Python Programming

6.3.3 The pyplot Module
pyplot is a collection of functions that make Matplotlib work like MATLAB. Each
function makes some change to a figure.

Example:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4]

y = [10, 20, 25, 30]

plt.plot(x, y)

plt.show()

This code plots a simple line chart.

Explanation:

	♦ x = [1, 2, 3, 4]: These are the x-axis values.

	♦ y = [10, 20, 25, 30]: These are the y-axis values.

	♦ plt.plot(x, y): This draws a line connecting the points (1,10), (2,20), (3,25),
and (4,30).

	♦ plt.show(): This displays the plot in a window.

Fig. 6.3.1 Graph of the points (1,10), (2,20), (3,25), and (4,30), displayed as a line chart
with markers on each point.

350 SGOU - SLM - BSc - Introduction to Python Programming

6.3.4 The Axes Class Methods
In Matplotlib, the Axes is the part of the figure where the actual data is drawn — such as
lines, bars, or pies. Think of a figure as a piece of paper, and an axes as the rectangular
area on that paper where the chart appears.

Using the Axes class, we can create detailed and customized plots by controlling how
data appears inside that plotting area.

You usually create Axes using functions like plt.subplots() or fig.add_subplot().

Common Axes Methods and Their Usage

Let’s explore some of the frequently used Axes methods:

	♦ ax.plot() — Draws Line Charts

This method is used to draw line plots.

Example:

ax.plot([1, 2, 3], [4, 5, 6])

This draws a line connecting the points (1,4), (2,5), and (3,6).

	♦ ax.bar() — Draws Bar Charts

This method creates vertical bars for categorical data.

Example:

ax.bar([‘A’, ‘B’, ‘C’], [10, 20, 15])

This draws bars labeled A, B, and C with heights 10, 20, and 15 respectively.

	♦ ax.pie() — Draws Pie Charts

Used to create circular pie charts to show percentage or proportional data.

Example:

ax.pie([30, 40, 30], labels=[‘A’, ‘B’, ‘C’])

This creates a pie chart divided into three labeled parts.

	♦ ax.set_title() — Adds a Title

Sets the title at the top of the plot.

Example:

ax.set_title(“Sales Over Time”)

	♦ ax.set_xlabel() — Labels the X-axis

Adds a label below the x-axis.

351 SGOU - SLM - BSc - Introduction to Python Programming

Example:

ax.set_xlabel(“Months”)

	♦ ax.set_ylabel() — Labels the Y-axis

Adds a label beside the y-axis.

Example:

ax.set_ylabel(“Revenue in USD”)

6.3.5 The Figure Class Methods
In Matplotlib, a Figure is like a blank canvas or an entire page where one or more
plots (called Axes) can be drawn. Think of it as the outer frame that holds everything
- including axes, labels, legends, titles, and possibly multiple plots arranged in a grid.

Each figure can have one or more Axes (plots), and each Axes represents a single chart
area where data is actually plotted.

 Commonly Used Figure Methods

	♦ figure()

This method creates a new empty figure object.

Usage:

fig = plt.figure()

Now, fig represents the entire canvas.

	♦ add_subplot()

This adds a subplot (Axes) to the figure. You can arrange subplots in a grid layout using
three numbers: rows, columns, and position.

Usage:

ax1 = fig.add_subplot(1, 1, 1)

This means: “Add one subplot in a 1-row, 1-column grid — and this is the first one.”

	♦ savefig()

This saves the current figure as an image file (like PNG, JPG, PDF, etc.).

Usage:

plt.savefig(“plot.png”)

This saves the entire figure - not just one plot - as “plot.png” in the current working
directory.

352 SGOU - SLM - BSc - Introduction to Python Programming

6.3.6 Creating Line Charts
Line charts are one of the most commonly used visualizations in data analysis. They are
especially useful for:

	♦ Showing trends over time

	♦ Tracking changes in values

	♦ Comparing one or more series of data

Each point in a line chart is connected by a line, making it easy to see upward or
downward trends.

Example:

	 import matplotlib.pyplot as plt

Data

months = [‘January’, ‘February’, ‘March’, ‘April’]

sales = [1500, 1800, 1700, 2100]

Basic line chart

plt.plot(months, sales)

Show the plot

plt.show()

Output:

Fig 6.3.7 Creating Bar Charts

353 SGOU - SLM - BSc - Introduction to Python Programming

A bar chart is used to display categorical data with rectangular bars. Each bar’s height
(or length) represents the value of that category. It’s ideal for comparing values across
different groups.

	♦ Use Cases:

	♦ Comparing sales across different products

	♦ Displaying counts of items in categories

	♦ Visualizing survey results

Example:

	 import matplotlib.pyplot as plt

Data

x = [‘Apples’, ‘Bananas’, ‘Cherries’, ‘Dates’]

y = [120, 150, 90, 70]

Create bar chart

plt.bar(x, y)

Show the plot

plt.show()

Output:

What You See:

354 SGOU - SLM - BSc - Introduction to Python Programming

	♦ A vertical bar chart with 4 bars.

	♦ Each bar represents a type of fruit.

	♦ The height of each bar corresponds to the sales quantity:

•	 Apples: 120 units

•	 Bananas: 150 units (tallest bar)

•	 Cherries: 90 units

•	 Dates: 70 units (shortest bar)

	♦ The x-axis shows the fruit names, and the y-axis shows numerical values
(automatically scaled based on the data)

6.3.8 Creating Pie Charts
Example:
import matplotlib.pyplot as plt

Data

labels = [‘Work’, ‘Exercise’, ‘Sleep’, ‘Leisure’]

sizes = [8, 2, 8, 6]

Create pie chart

plt.pie(sizes, labels=labels)

Show the plot

plt.show()

Output:

355 SGOU - SLM - BSc - Introduction to Python Programming

What You See:

	♦ A circular pie chart divided into 4 slices.

	♦ Each slice is labeled with an activity: Work, Exercise, Sleep, and Leisure.

	♦ The size of each slice reflects the number of hours spent per day:

•	 Work and Sleep have equal, larger slices (8 hours each).

•	 Leisure is slightly smaller (6 hours).

•	 Exercise is the smallest (2 hours).

	♦ The chart starts from the right and proceeds counterclockwise (default
behavior)

6.3.9 Plot Customization
Customization helps make your plots clearer, more informative, and visually
appealing. You can control how the chart looks by modifying titles, labels, colors, and
styles.

6.3.9.1 Adding Titles and Axis Labels
Titles and labels make it easier to understand what the chart is showing.

plt.title(“Custom Title”) # Adds a title at the top of the plot

plt.xlabel(“X Label”) # Adds a label below the x-axis

plt.ylabel(“Y Label”) # Adds a label beside the y-axis

Example:

plt.plot([1, 2, 3], [4, 5, 6])

plt.title(“Simple Line Plot”)

plt.xlabel(“Time (s)”)

plt.ylabel(“Distance (m)”)

6.3.9.2 Adding a Legend
When you plot multiple lines, a legend helps identify which line represents which
dataset.

plt.plot(x, y, label=”My Line”) # Label this line

plt.legend() # Show the legend box

Example:

x = [1, 2, 3]

y = [4, 5, 6]

356 SGOU - SLM - BSc - Introduction to Python Programming

plt.plot(x, y, label=”Experiment A”)

plt.legend()

6.3.9.3 Changing Colors

You can change the color of the line or markers using the color parameter.

plt.plot(x, y, color=’green’) # Changes the line color to green

Common Colors:

	♦ ‘red’, ‘blue’, ‘green’, ‘orange’, ‘purple’

	♦ You can also use short codes: ‘r’ for red, ‘b’ for blue, etc.

6.3.9.4 Changing Line Styles and Markers
You can make lines dashed or dotted, and use markers (symbols) for each data point.

plt.plot(x, y, linestyle=’--’, marker=’o’, color=’blue’)

Parameters:

	♦ linestyle=’--’ → Dashed line

	♦ marker=’o’ → Circles at each data point

	♦ color=’blue’ → Blue color for the line

Other Marker Options:

‘o’: Circle

‘s’: Square

‘^’: Triangle

‘*’: Star

Other Line Styles:

	♦ ‘-’: Solid line (default)

	♦ ‘--’: Dashed

	♦ ‘:’: Dotted

	♦ ‘-.’: Dash-dot

Example using all Customizations
import matplotlib.pyplot as plt

Sample data

x = [1, 2, 3, 4, 5]

357 SGOU - SLM - BSc - Introduction to Python Programming

y = [100, 120, 90, 140, 160]

Create a customized line chart

plt.plot(x, y, label=”Product A”, color=’blue’, linestyle=’--’, marker=’o’)

Add title and axis labels

plt.title(“Sales Trend Over 5 Days”)

plt.xlabel(“Day”)

plt.ylabel(“Units Sold”)

Show legend

plt.legend()

Add grid

plt.grid(True)

Show the plot

plt.show()

Output:

	

What you will see:

	♦ A blue dashed line with circular markers

	♦ A legend showing the label “Product A”

	♦ A title at the top: “Sales Trend Over 5 Days”

	♦ Labels on both the x-axis (“Day”) and y-axis (“Units Sold”)

358 SGOU - SLM - BSc - Introduction to Python Programming

	♦ A grid to make reading values easier

Saving Figures

You can save any figure using:

plt.savefig(“my_plot.png”)

You can also specify file formats like .jpg, .svg, .pdf, etc.

Recap

	♦ Matplotlib is used for data visualization in Python

	♦ Created by John Hunter in 2003

	♦ Works well with NumPy and Pandas

	♦ Designed to mimic MATLAB-style plotting

Basic Plot Types

	♦ plt.plot() → Line chart

	♦ plt.bar() → Bar chart

	♦ plt.pie() → Pie chart

Line Chart

	♦ Shows trends over time or sequences

	♦ x and y values required

	♦ Basic: plt.plot(x, y)

	♦ Add marker, linestyle, color for customization

Bar Chart

	♦ Used for comparing categories

	♦ plt.bar(x, y) → vertical bars

	♦ Categories on x-axis, values on y-axis

Pie Chart

	♦ Used for showing parts of a whole

	♦ Needs values and labels

359 SGOU - SLM - BSc - Introduction to Python Programming

	♦ plt.pie(values, labels=labels)

Figure and Axes

	♦ plt.figure() → creates a figure (canvas)

	♦ fig.add_subplot() → adds subplot (Axes)

	♦ plt.savefig() → saves the figure to a file

Axes Class Methods

	♦ ax.plot() → Line plot on axes

	♦ ax.set_title() → Title

	♦ ax.set_xlabel(), ax.set_ylabel() → Axis labels

Plot Customization

	♦ plt.title(), plt.xlabel(), plt.ylabel()

	♦ label= → used in plot() for legends

	♦ plt.legend() → displays legend box

	♦ color= → changes line color

	♦ linestyle= → solid, dashed, dotted, etc.

	♦ marker= → marks data points (circle, square, triangle, etc.)

	♦ plt.grid(True) → adds background grid

Objective Type Questions

1.	 Which Python library is commonly used for plotting graphs?

2.	 What function is used to draw a line chart?

3.	 Which method saves a figure to a file?

4.	 What chart type is best to show a whole divided into parts?

5.	 Which method is used to add a title to the plot?

6.	 What argument in plot() changes the color of the line?

7.	 What type of chart uses vertical bars to represent data?

8.	 What keyword in plot() adds a label for the legend?

360 SGOU - SLM - BSc - Introduction to Python Programming

9.	 Which function is used to display the plot window?

10.	What method is used to add a subplot to a figure?

11.	Which argument is used to mark data points in a line chart?

12.	Which keyword enables background gridlines?

13.	What is the method to create a new figure in Matplotlib?

14.	What attribute of a plot is set using xlabel()?

15.	What does plt.pie() require in addition to values?

Answers to Objective Type Questions

1.	 Matplotlib

2.	 plot

3.	 savefig

4.	 Pie

5.	 title

6.	 color

7.	 Bar

8.	 label

9.	 show

10.	add_subplot

11.	marker

12.	grid

13.	figure

14.	X-axis label

15.	labels

361 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

1.	 Plot a line chart showing temperature change over a week.

2.	 Create a bar chart comparing the number of students in four different
departments.

3.	 Make a pie chart representing budget allocation for an event.

4.	 Customize a chart with labels, title, and legend.

5.	 Create a subplot with one line chart and one bar chart.

6.	 Explain the structure of Matplotlib’s figure and axes hierarchy with a
program that uses figure() and add_subplot() methods.

7.	 Create a customized line chart using Matplotlib. Include title, axis labels, grid,
legend, color, line style, and markers. Explain how each customization affects the
chart.

Reference

1.	 Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in
Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

2.	 VanderPlas, J. (2016). Python Data Science Handbook. O’Reilly Media.

3.	 McKinney, W. (2017). Python for Data Analysis (2nd ed.). O’Reilly Media.

4.	 Matplotlib Developers. (2024). Matplotlib Documentation. Retrieved from
https://matplotlib.org/stable/

Suggested Reading

1.	 Swaroop, C. H. (2019). Python Programming: A Modern Approach. Oxford
University Press.

2.	 Downey, A. B. (2015). Think Python: How to Think Like a Computer
Scientist (2nd ed.). O’Reilly Media.

3.	 Ascher, D., & Lutz, M. (2003). Learning Python (2nd ed.). O’Reilly Media.

4.	 Yadav, T. (2021). Data Science with Python. BPB Publications.

Unit 4
 Data Aggregation and Advanced

Visualization

Learning Outcomes

Prerequisites

	♦ recall basic data aggregation functions in Pandas.

	♦ identify differences between aggregation and transformation.

	♦ construct simple scatter plots and histograms.

	♦ label visualization components accurately.

After the successful completion of the course, the learner will be able to:

In today’s data-driven world, the ability to make sense of vast datasets is a superpower.
Raw data, in its unaggregated form, can often be overwhelming—a sea of individual
transactions, measurements, or events with little immediate meaning. This is where the
crucial skills of data aggregation and analysis come in. By learning to group, summa-
rize, and transform raw data, you gain the power to uncover hidden patterns, identify
key trends, and extract the insights that drive business decisions. These assignments are
designed to be your first step in mastering this process, teaching you how to turn a large,
complex spreadsheet into a concise, powerful report that tells a clear story.

As you work through these problems, you will become proficient with the indispens-
able tools of the trade: Pandas’ groupby(), pivot_table(), and crosstab(). These are not
just functions; they are the fundamental building blocks for any data analyst or data sci-
entist. They provide you with the means to effortlessly slice and dice your data, whether
you need to find total sales per product, average price per customer, or the frequency
of purchases across different categories. This hands-on experience will solidify your
understanding and prepare you to tackle real-world data challenges with confidence.

Finally, you will move beyond simple numbers and learn to visualize your findings.
After you have aggregated the data, visualization is the most effective way to commu-
nicate your discoveries. The scatter plot assignments will teach you how to visually
represent relationships between variables, allowing you to spot correlations and outliers
that would be invisible in a raw table of numbers. Completing these assignments will
equip you with a foundational toolkit for both crunching numbers and presenting your
results in a clear, compelling way.

363 SGOU - SLM - BSc - Introduction to Python Programming

6.4.1 Introduction to Data Aggregation
Data aggregation is the fundamental process of gathering raw data and summarizing
it into a more concise and meaningful form. In the realm of data science, this process
is indispensable for transforming large, complex datasets into actionable insights. By
reducing the volume of data while preserving its essential characteristics, aggregation
facilitates easier analysis, identification of trends, and decision-making. Imagine trying
to analyze individual sales transactions for an entire year across thousands of stores;
it would be an overwhelming task. Data aggregation allows us to summarize these
transactions by region, product category, or even hourly sales, making the information
digestible and revealing overall patterns.

Example:

Consider a dataset containing individual customer transactions at an online retail store.
Each row represents a single purchase and includes information like CustomerID,
ProductID, PurchaseDate, Quantity, and Price.

CustomerID ProductID PurchaseDate Quantity Price

1001 A101 2024-07-01 2 25.00

1002 B205 2024-07-01 1 50.00

1001 C303 2024-07-02 1 10.00

1003 A101 2024-07-02 3 25.00

1002 A101 2024-07-03 1 25.00

Without aggregation, analyzing total sales per day or identifying the most popular
products would require manual summation, which is prone to error and highly
inefficient for large datasets. Data aggregation techniques allow us to quickly calculate,
for instance, the total revenue generated each day or the total quantity sold for each
product.

6.4.2 Understanding Data Grouping in Pandas
Pandas, a powerful open-source data analysis and manipulation library for Python,
provides highly optimized tools for data grouping. The groupby() method is central
to this process. It allows you to split a DataFrame into groups based on one or more
criteria, typically the unique values within a column or set of columns. Once grouped,

Discussion

Pandas, Data Aggregation, Pivot Table, Cross-tabulation, Scatter Plot

Key words

364 SGOU - SLM - BSc - Introduction to Python Programming

you can apply various operations to each group independently.

The groupby() operation involves three main steps:

1.	 Splitting: The data is divided into groups based on the specified keys (e.g.,
column values).

2.	 Applying: A function (an aggregation, transformation, or filtration) is applied
to each group.

3.	 Combining: The results of the applied function are combined into a new data
structure.

Example:

Let’s continue with our retail sales data. We want to understand the total sales for each
ProductID.

import pandas as pd

data = {

 ‘CustomerID’: [1001, 1002, 1001, 1003, 1002, 1001, 1004],

 ‘ProductID’: [‘A101’, ‘B205’, ‘C303’, ‘A101’, ‘A101’, ‘B205’, ‘C303’],

 ‘PurchaseDate’: [‘2024-07-01’, ‘2024-07-01’, ‘2024-07-02’, ‘2024-07-02’, ‘2024-
07-03’, ‘2024-07-03’, ‘2024-07-04’],

 ‘Quantity’: [2, 1, 1, 3, 1, 2, 1],

 ‘Price’: [25.00, 50.00, 10.00, 25.00, 25.00, 50.00, 10.00]

}

df = pd.DataFrame(data)

Group by ‘ProductID’

grouped_by_product = df.groupby(‘ProductID’)

print(“Type of grouped_by_product:”, type(grouped_by_product))

print(“\nGroups in grouped_by_product:”)

for name, group in grouped_by_product:

 print(f”\nProduct: {name}”)

 print(group)

Output (conceptual, as printing the GroupBy object directly shows memory address):

365 SGOU - SLM - BSc - Introduction to Python Programming

This output shows that grouped_by_product is a DataFrameGroupBy object, which
conceptually holds separate DataFrames for each unique ProductID.

6.4.3 Aggregation Functions in Pandas
Once data is grouped using groupby(), various aggregation functions can be applied to
each group to summarize the data. Pandas provides a rich set of built-in functions that
are commonly used for this purpose.

Common aggregation functions include:

1.	 sum(): Calculates the sum of values in each group.

2.	 mean(): Computes the average of values in each group.

3.	 count(): Counts the number of non-null values in each group.

4.	 min(): Finds the minimum value in each group.

5.	 max(): Finds the maximum value in each group.

6.	 median(): Calculates the median of values in each group.

7.	 std(): Computes the standard deviation of values in each group.

8.	 var(): Computes the variance of values in each group.

These functions are applied directly to the GroupBy object, and Pandas intelligently
applies them to the appropriate numeric columns within each group.

Example:

Continuing with our sales data, let’s calculate the total Quantity sold and the mean Price
for each ProductID.

Calculate total quantity sold for each product

366 SGOU - SLM - BSc - Introduction to Python Programming

total_quantity_per_product = grouped_by_product[‘Quantity’].sum()

print(“\nTotal Quantity Sold per Product:”)

print(total_quantity_per_product)

Calculate average price per product (note: average price of items sold, not product
price)

average_price_per_product = grouped_by_product[‘Price’].mean()

print(“\nAverage Price of Transactions per Product:”)

print(average_price_per_product)

We can also apply directly to the grouped object, which aggregates all applicable
columns

summary_stats_per_product = grouped_by_product.sum() # Sums all numeric columns

print(“\nSummary Statistics (Sum) per Product:”)

print(summary_stats_per_product)

Example of counting transactions per product

transactions_per_product = grouped_by_product[‘CustomerID’].count()

print(“\nNumber of Transactions per Product:”)

print(transactions_per_product)

Output:

367 SGOU - SLM - BSc - Introduction to Python Programming

These results clearly show aggregated insights, such as ProductID ‘A101’ having the
highest total quantity sold (6 units) and ProductID ‘B205’ having an average transaction
price of $50.00.

6.4.4 GroupBy Object and its Operations
The result of a groupby() call is not a DataFrame itself, but a special GroupBy object.
This object is an intermediate structure that efficiently stores information about how
the original DataFrame has been split into groups. It’s a “lazy” object, meaning the
actual computations (like aggregation) are not performed until an aggregation function
is called on it.

The GroupBy object supports several powerful operations:

	♦ Iteration: You can iterate over the GroupBy object to access each group as a
tuple of (name, group_dataframe), where name is the group key and group_
dataframe is a DataFrame containing the data for that group.

	♦ Column Access: You can select one or more columns from the GroupBy
object before applying an aggregation. This allows you to apply functions to
specific columns only.

	♦ Chaining: GroupBy operations can be chained with aggregation functions,
making the code more concise and readable.

Example:

Let’s demonstrate iterating through the GroupBy object and accessing specific columns.

Accessing a specific group (e.g., product ‘A101’)

product_a101_group = grouped_by_product.get_group(‘A101’)

print(“\nData for Product A101:”)

print(product_a101_group)

Chaining operations: calculate the sum of ‘Quantity’ for each product directly

chained_sum = df.groupby(‘ProductID’)[‘Quantity’].sum()

print(“\nChained Sum of Quantity per Product:”)

print(chained_sum)

Chaining operations with multiple columns

chained_sum_price_quantity = df.groupby(‘ProductID’)[[‘Quantity’, ‘Price’]].sum()

print(“\nChained Sum of Quantity and Price per Product:”)

print(chained_sum_price_quantity)

368 SGOU - SLM - BSc - Introduction to Python Programming

Output:

Understanding the GroupBy object is crucial because it clarifies how Pandas manages
and processes grouped data efficiently, enabling flexible and powerful data manipulation.

6.4.5 Applying Multiple Aggregations
Often, you’ll need to compute several different aggregate statistics for the same grouped
data. Pandas’ .agg() method is specifically designed for this purpose, allowing you to
apply multiple aggregation functions simultaneously to one or more columns. This is
far more efficient and concise than applying each aggregation function separately.

The .agg() method can take:

	♦ A string or list of strings representing the names of the aggregation functions
(e.g., ‘sum’, ‘mean’).

	♦ A dictionary mapping column names to a single function or a list of functions
to apply to that column.

Example:

Let’s find the total Quantity sold, the average Price, and the number of distinct
CustomerIDs for each ProductID.

import pandas as pd

Sample data

data = {

 ‘ProductID’: [101, 101, 102, 102, 103, 103, 103],

369 SGOU - SLM - BSc - Introduction to Python Programming

 ‘Quantity’: [2, 4, 1, 3, 5, 2, 1],

 ‘Price’: [100, 150, 200, 250, 300, 280, 270],

 ‘CustomerID’: [1, 2, 1, 3, 2, 3, 4]

}

df = pd.DataFrame(data)

1. Apply multiple aggregations using a list of strings

multi_agg_list = df.groupby(‘ProductID’).agg([‘sum’, ‘mean’, ‘count’])

print(“\nMultiple Aggregations (sum, mean, count) per Product:”)

print(multi_agg_list)

2. Apply different aggregations to different columns using a dictionary

multi_agg_dict = df.groupby(‘ProductID’).agg({

 ‘Quantity’: ‘sum’,

 ‘Price’: ‘mean’,

 ‘CustomerID’: pd.Series.nunique # You can also use ‘nunique’ as a string

})

multi_agg_dict.columns = [‘TotalQuantity’, ‘AveragePrice’, ‘NumCustomers’]

print(“\nCustom Multiple Aggregations per Product:”)

print(multi_agg_dict)

3. Combining aggregation and custom names (only one column at a time)

multi_agg_custom_names = df.groupby(‘ProductID’).agg(

 total_qty=(‘Quantity’, ‘sum’),

 average_qty=(‘Quantity’, ‘mean’),

 min_qty=(‘Quantity’, ‘min’),

 max_qty=(‘Quantity’, ‘max’)

)

print(“\nMultiple Aggregations with Custom Names for Quantity:”)

print(multi_agg_custom_names)

Output:

370 SGOU - SLM - BSc - Introduction to Python Programming

The first output using a list of strings ([‘sum’, ‘mean’, ‘count’]) results in a MultiIndex
column, which can be useful but sometimes complex to work with. The second output,
using a dictionary, is generally preferred as it allows for clear, custom names for the
resulting aggregated columns, making the output much more readable and easier to use
in subsequent analyses. Notice how CustomerID mean is inf in the first example; this
is because CustomerID is not a meaningful numerical column for mean calculation in
this context.

6.4.6 Pivot Tables in Pandas
Pivot tables are powerful tools for summarizing and reorganizing data in a tabular form,
providing a multi-dimensional view of your dataset. They allow you to transform rows
into columns, and vice versa, while performing aggregations on the data. The pivot_
table() function in Pandas is highly versatile and widely used for data exploration and
reporting.
Key parameters of pd.pivot_table():

	♦ data: The DataFrame to be pivoted.

	♦ values: The column(s) to aggregate.

	♦ index: The column(s) to use as new row labels.

	♦ columns: The column(s) to use as new column labels.

	♦ aggfunc: The aggregation function(s) to apply (e.g., ‘sum’, ‘mean’, or a list
of functions).

	♦ fill_value: Value to replace missing values (NaNs) in the pivot table.

371 SGOU - SLM - BSc - Introduction to Python Programming

	♦ margins: If True, adds row/column subtotals/grand totals.

Example:
Let’s create a pivot table to see the total Quantity sold per ProductID for each
PurchaseDate.

import pandas as pd

Sample data

data = {

 ‘ProductID’: [101, 101, 102, 102, 103, 103, 103],

 ‘Quantity’: [2, 4, 1, 3, 5, 2, 1],

 ‘Price’: [100, 150, 200, 250, 300, 280, 270],

 ‘CustomerID’: [1, 2, 1, 3, 2, 3, 4],

 ‘PurchaseDate’: [‘2023-08-01’, ‘2023-08-01’, ‘2023-08-02’, ‘2023-08-02’, ‘2023-
08-03’, ‘2023-08-03’, ‘2023-08-04’]

}

df = pd.DataFrame(data)

Convert ‘PurchaseDate’ to datetime

df[‘PurchaseDate’] = pd.to_datetime(df[‘PurchaseDate’])

1. Pivot table: total quantity sold by product and date

pivot_table_qty = pd.pivot_table(df,

 values=’Quantity’,

 index=’PurchaseDate’,

 columns=’ProductID’,

 aggfunc=’sum’,

 fill_value=0)

print(“\nPivot Table: Total Quantity Sold per Product by Date:”)

print(pivot_table_qty)

2. Pivot table: average price per product by customer

pivot_table_avg_price = pd.pivot_table(df,

 values=’Price’,

 index=’CustomerID’,

 columns=’ProductID’,

 aggfunc=’mean’,

 fill_value=0)

372 SGOU - SLM - BSc - Introduction to Python Programming

print(“\nPivot Table: Average Price per Product by Customer:”)

print(pivot_table_avg_price)

3. Pivot table with margins (grand totals)

pivot_table_margins = pd.pivot_table(df,

 values=’Quantity’,

 index=’PurchaseDate’,

 columns=’ProductID’,

 aggfunc=’sum’,

 fill_value=0,

 margins=True,

 margins_name=’Grand Total’)

print(“\nPivot Table with Margins:”)

print(pivot_table_margins)

Output:

The pivot tables present summarized data that is easy to read and interpret. For example,
the first pivot table clearly shows that on 2024-07-02, ProductID ‘A101’ had 3 units
sold, while ProductID ‘C303’ had 1 unit sold, and ProductID ‘B205’ had none. The
margins provide quick grand totals for both rows and columns.

373 SGOU - SLM - BSc - Introduction to Python Programming

6.4.7 Cross-tabulation with pd.crosstab()
Cross-tabulation (often referred to as a “contingency table”) is a specialized form of
tabulation that displays the joint distribution of two or more categorical variables. It’s
used to count the frequency of occurrences for combinations of different categories.
Pandas provides the pd.crosstab() function specifically for this purpose, making it an
essential tool for categorical data analysis and understanding relationships between
discrete variables.

Key parameters of pd.crosstab():

	♦ index: The values to group by in the rows.

	♦ columns: The values to group by in the columns.

	♦ values: Optional, an array of values to aggregate according to the factors. If
None, crosstab will count the frequencies.

	♦ aggfunc: Optional, aggregate function if values is specified.

	♦ margins: If True, adds row/column subtotals/grand totals.

	♦ normalize: If True, normalizes by all (sum to 1), by row, or by column.

Example:

Let’s examine the relationship between CustomerID and ProductID by counting how
many times each customer purchased each product.

Python

Cross-tabulation of CustomerID and ProductID

crosstab_customer_product = pd.crosstab(index=df[‘CustomerID’],

 columns=df[‘ProductID’])

print(“\nCross-tabulation: Customer Purchases by Product:”)

print(crosstab_customer_product)

Cross-tabulation with margins

crosstab_margins = pd.crosstab(index=df[‘CustomerID’],

 columns=df[‘ProductID’],

 margins=True, # Add row/column totals

 margins_name=’Total’)

print(“\nCross-tabulation with Margins:”)

print(crosstab_margins)

Cross-tabulation showing the sum of Quantity for each combination

374 SGOU - SLM - BSc - Introduction to Python Programming

crosstab_sum_qty = pd.crosstab(index=df[‘CustomerID’],

 columns=df[‘ProductID’],

 values=df[‘Quantity’],

 aggfunc=’sum’,

 fill_value=0) # Fill missing combinations with 0

print(“\nCross-tabulation: Total Quantity by Customer and Product:”)

print(crosstab_sum_qty)

Output:

Cross-tabulation: Customer Purchases by Product:

ProductID A101 B205 C303

CustomerID

1001 1 1 1

1002 1 1 0

1003 1 0 0

1004 0 0 1

Cross-tabulation with Margins:

ProductID A101 B205 C303 Total

CustomerID

1001 1 1 1 3

1002 1 1 0 2

1003 1 0 0 1

1004 0 0 1 1

Total 3 2 2 8

Cross-tabulation: Total Quantity by Customer and Product:

ProductID A101 B205 C303

CustomerID

1001 2 2 1

1002 1 1 0

1003 3 0 0

1004 0 0 1

375 SGOU - SLM - BSc - Introduction to Python Programming

The first cross-tabulation shows the count of transactions. For instance, CustomerID
1001 has purchased ProductID ‘A101’ once, ProductID ‘B205’ once, and ProductID
‘C303’ once. The second crosstab with margins indicates CustomerID 1001 made a
total of 3 purchases across all products. The third crosstab shows the sum of quantities
rather than just the count of transactions, revealing that CustomerID 1001 bought 2
units of A101 (from one transaction), 2 units of B205, and 1 unit of C303.

6.4.8 Advanced Visualizations: Introduction
While basic charts like bar charts and line plots are excellent for presenting simple
trends and comparisons, they often fall short when dealing with complex datasets or
when the goal is to uncover deeper patterns, distributions, and relationships. Advanced
visualization methods provide more sophisticated ways to represent data, allowing for
richer insights and a more comprehensive understanding.

These advanced techniques go beyond merely showing aggregated numbers; they help
to:

	♦ Identify correlations between variables.

	♦ Understand the distribution of data points.

	♦ Spot outliers or anomalies.

	♦ Explore multi-dimensional relationships.

	♦ Compare multiple groups or variables simultaneously.

In the following sections, we will delve into commonly used advanced visualizations
using Matplotlib, a fundamental plotting library in Python.

6.4.8.1 Scatter Plots in Matplotlib
Scatter plots are a fundamental and highly effective visualization tool used to display
the relationship between two continuous (numeric) variables. Each point on a scatter
plot represents an observation, with its position determined by its values on the x and y
axes. They are particularly useful for:

	♦ Identifying correlations: Visually determine if there’s a positive, negative, or
no correlation between the variables.

	♦ Detecting clusters: Observe if data points tend to group together.

	♦ Spotting outliers: Identify individual points that deviate significantly from
the overall pattern.

Matplotlib’s plt.scatter() function is used to create scatter plots.
Key parameters of plt.scatter():

	♦ x, y: The data positions (coordinates of the points).

	♦ s: Marker size (can be a single value or an array).

	♦ c: Marker color (can be a single color or an array to color-encode points
based on a third variable).

376 SGOU - SLM - BSc - Introduction to Python Programming

	♦ marker: The style of the markers (e.g., ‘o’ for circle, ‘x’ for cross, ‘s’ for
square).

	♦ alpha: Transparency of the markers (0.0 fully transparent, 1.0 fully opaque).

Example:
Let’s generate some sample data to visualize a relationship between Feature1 and
Feature2, and then add a third variable, Category, for color encoding.

import matplotlib.pyplot as plt

import numpy as np

Generate sample data

np.random.seed(42)

data_points = 100

feature1 = np.random.rand(data_points) * 100

feature2 = 2 * feature1 + np.random.randn(data_points) * 20 + 50

categories = np.random.choice([‘A’, ‘B’, ‘C’], data_points)

Create a DataFrame for convenience

scatter_df = pd.DataFrame({

 ‘Feature1’: feature1,

 ‘Feature2’: feature2,

 ‘Category’: categories

})

Basic Scatter Plot

plt.figure(figsize=(8, 6))

plt.scatter(scatter_df[‘Feature1’], scatter_df[‘Feature2’])

plt.title(‘Basic Scatter Plot of Feature1 vs Feature2’)

plt.xlabel(‘Feature 1’)

plt.ylabel(‘Feature 2’)

plt.grid(True)

plt.show()

Scatter Plot with Color Encoding by Category and varying sizes

plt.figure(figsize=(10, 7))

colors = {‘A’: ‘red’, ‘B’: ‘blue’, ‘C’: ‘green’}

sizes = {‘A’: 50, ‘B’: 100, ‘C’: 150} # Varying sizes for demonstration

for category in scatter_df[‘Category’].unique():

377 SGOU - SLM - BSc - Introduction to Python Programming

 subset = scatter_df[scatter_df[‘Category’] == category]

 plt.scatter(subset[‘Feature1’], subset[‘Feature2’],

 color=colors[category],

 s=sizes[category],

 label=category,

 alpha=0.7, # Add some transparency

 edgecolors=’w’, # White edges for better visibility

 marker=’o’ if category == ‘A’ else (‘s’ if category == ‘B’ else ‘^’)) # Different
markers

plt.title(‘Scatter Plot of Feature1 vs Feature2 by Category’)

plt.xlabel(‘Feature 1’)

plt.ylabel(‘Feature 2’)

plt.legend(title=’Category’)

plt.grid(True, linestyle=’--’, alpha=0.6)

plt.show()

Output :

378 SGOU - SLM - BSc - Introduction to Python Programming

A basic scatter plot will show a general positive linear relationship between Feature1
and Feature2, albeit with some noise.The second scatter plot will display points colored
and sized according to their Category, with different marker shapes, allowing visual
assessment of whether the relationship differs across categories.

For example, you might observe that Category ‘A’ points (red circles) tend to have
lower values of Feature1 and Feature2, while Category ‘C’ points (green triangles)
have higher values, even if the overall positive trend holds for all categories. This visual
distinction helps in identifying potential sub-patterns within the data.

6.4.8.2 Histograms in Matplotlib
Histograms are powerful graphical representations used to display the distribution of
a single continuous (numeric) variable. They divide the data into a series of intervals
(called bins) and then count how many data points fall into each bin. The height of each
bar in the histogram represents the frequency (or proportion) of data points within that
bin.

Histograms are crucial for:

	♦ Understanding data distribution: Symmetrical, skewed (left or right),
bimodal, uniform.

	♦ Identifying central tendency: Where most of the data lies.

	♦ Detecting spread/variability: How dispersed the data is.

	♦ Spotting outliers or unusual observations.

Matplotlib’s plt.hist() function is used to create histograms.

379 SGOU - SLM - BSc - Introduction to Python Programming

Key parameters of plt.hist():

x: The input data (a single array or list of values).

bins: The number of bins or a sequence of bin edges.

range: The lower and upper range of the bins.

density: If True, the histogram will be normalized to form a probability density, i.e., the
area under the bars sums to 1.

color: Color of the histogram bars.

edgecolor: Color of the bin edges.

alpha: Transparency of the bars.

Example:

Let’s generate data for two features with different distributions and visualize them using
histograms.

Generate sample data for histograms

np.random.seed(42)

data1 = np.random.normal(loc=50, scale=10, size=1000) # Normally distributed

data2 = np.random.exponential(scale=20, size=1000) # Exponentially distributed

Histogram for data1 (Normal Distribution)

plt.figure(figsize=(8, 6))

plt.hist(data1, bins=30, color=’skyblue’, edgecolor=’black’, alpha=0.7)

plt.title(‘Histogram of Data1 (Normal Distribution)’)

plt.xlabel(‘Value’)

plt.ylabel(‘Frequency’)

plt.grid(True, linestyle=’--’, alpha=0.6)

plt.show()

Histogram for data2 (Exponential Distribution)

plt.figure(figsize=(8, 6))

plt.hist(data2, bins=50, color=’lightcoral’, edgecolor=’black’, alpha=0.7)

plt.title(‘Histogram of Data2 (Exponential Distribution)’)

plt.xlabel(‘Value’)

plt.ylabel(‘Frequency’)

380 SGOU - SLM - BSc - Introduction to Python Programming

plt.grid(True, linestyle=’--’, alpha=0.6)

plt.show()

Overlapping Histograms for comparison

plt.figure(figsize=(10, 7))

plt.hist(data1, bins=30, color=’blue’, edgecolor=’black’, alpha=0.5, label=’Data1
(Normal)’)

plt.hist(data2, bins=50, color=’green’, edgecolor=’black’, alpha=0.5, label=’Data2
(Exponential)’)

plt.title(‘Overlapping Histograms of Data1 and Data2’)

plt.xlabel(‘Value’)

plt.ylabel(‘Frequency’)

plt.legend()

plt.grid(True, linestyle=’--’, alpha=0.6)

plt.show()

Output :

381 SGOU - SLM - BSc - Introduction to Python Programming

The first histogram will show a bell-shaped curve, typical of a normal distribution,
centered around 50.The second histogram will display a skewed distribution, with a
high frequency of low values and a long tail to the right, characteristic of an exponential
distribution.The third plot will show both distributions overlaid, allowing for a direct
visual comparison of their shapes and ranges.

Interpreting these shapes helps in understanding the underlying processes that generate
the data. For instance, a normal distribution might suggest a stable process, while a
skewed distribution could indicate an asymmetry, such as income distribution where
most people earn less and a few earn significantly more.

6.4.8.3 Creating Subplots
When presenting multiple related visualizations, displaying them in a single figure often
enhances comparability and narrative flow. Subplots allow you to arrange multiple plots
within a single figure. Matplotlib’s plt.subplots() function is the recommended way to
create a figure and a set of subplots.

plt.subplots() returns two objects:

	♦ fig: The Figure object, which is the top-level container for all plot elements.

	♦ ax (or axes): The Axes object(s), which is the actual plot area where data is
drawn. If creating multiple subplots, ax will be an array of Axes objects.

Key parameters of plt.subplots():

	♦ nrows: Number of rows in the subplot grid.

382 SGOU - SLM - BSc - Introduction to Python Programming

	♦ ncols: Number of columns in the subplot grid.

	♦ figsize: A tuple (width, height) in inches for the figure size.

	♦ sharex, sharey: Boolean or ‘all’, ‘row’, ‘col’ to share x- or y-axis properties
among subplots.

Example:

Let’s create a figure with two subplots: a scatter plot on one side and a histogram on the
other, using our previously generated data.

Create sample data for subplots

np.random.seed(42)

x_data = np.random.rand(50) * 10

y_data = np.sin(x_data) + np.random.randn(50) * 0.5

hist_data = np.random.normal(loc=100, scale=15, size=200)

Create a figure with 1 row and 2 columns of subplots

fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6))

Plot 1: Scatter plot on the first Axes object (axes[0])

axes[0].scatter(x_data, y_data, color=’purple’, alpha=0.7)

axes[0].set_title(‘Scatter Plot of X vs Y’)

axes[0].set_xlabel(‘X Value’)

axes[0].set_ylabel(‘Y Value’)

axes[0].grid(True, linestyle=’:’, alpha=0.6)

Plot 2: Histogram on the second Axes object (axes[1])

axes[1].hist(hist_data, bins=20, color=’teal’, edgecolor=’black’, alpha=0.8)

axes[1].set_title(‘Histogram of Sample Data’)

axes[1].set_xlabel(‘Value’)

axes[1].set_ylabel(‘Frequency’)

axes[1].grid(True, linestyle=’:’, alpha=0.6)

Adjust layout to prevent overlapping titles/labels

plt.tight_layout()

plt.show()

383 SGOU - SLM - BSc - Introduction to Python Programming

Example with a 2x2 grid, sharing x-axis

fig2, axes2 = plt.subplots(nrows=2, ncols=2, figsize=(12, 10), sharex=True)

Flatten the axes array for easier iteration

axes2 = axes2.flatten()

Plotting different types of plots in each subplot

axes2[0].plot(x_data, y_data, color=’blue’)

axes2[0].set_title(‘Line Plot’)

axes2[1].scatter(x_data, y_data, color=’red’)

axes2[1].set_title(‘Scatter Plot’)

axes2[2].hist(hist_data, bins=15, color=’green’, alpha=0.7)

axes2[2].set_title(‘Histogram’)

axes2[3].bar([‘A’, ‘B’, ‘C’], [10, 20, 15], color=[‘cyan’, ‘magenta’, ‘orange’])

axes2[3].set_title(‘Bar Plot’)

Set common X label for the bottom row

for i in [2, 3]:

 axes2[i].set_xlabel(‘Category/Value’)

plt.suptitle(‘Various Plots in a 2x2 Subplot Grid’, fontsize=16) # Super title for the
entire figure

plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust layout to make space for suptitle

plt.show()

Output:

The first figure will display two plots side-by-side: a scatter plot showing a sinusoidal
relationship with noise, and a histogram illustrating a normal distribution.The second
figure will show a 2x2 grid of different plot types (line, scatter, histogram, bar),
demonstrating how diverse visualizations can be combined and managed within a
single figure using shared axes for better comparison.

Subplots are invaluable for comparative analysis, allowing viewers to easily spot trends
or differences across different data views without flipping between multiple individual
plots.

384 SGOU - SLM - BSc - Introduction to Python Programming

385 SGOU - SLM - BSc - Introduction to Python Programming

Recap

	♦ Data aggregation is the process of summarizing raw data into a more concise,
meaningful form.

	♦ It’s crucial for transforming large datasets into actionable insights and
identifying trends.

	♦ The groupby() method in Pandas is central to data grouping, splitting a
DataFrame based on one or more criteria.

	♦ The groupby() process follows three steps: Splitting, Applying a function,
and Combining the results.

	♦ Common Pandas aggregation functions include sum(), mean(), count(),
min(), and max().

	♦ A groupby() operation returns a “lazy” GroupBy object, not a DataFrame,
with computations performed only when an aggregation function is called.

	♦ The GroupBy object allows for chaining operations to write concise code,
such as df.groupby(‘ProductID’)[‘Quantity’].sum().

	♦ The .agg() method enables you to apply multiple aggregation functions to
one or more columns simultaneously.

	♦ Using a dictionary with .agg() is often preferred as it allows for custom,
readable names for the output columns.

	♦ pd.pivot_table() is a powerful function for summarizing and reorganizing
data into a multi-dimensional table.

	♦ Key parameters of pivot_table() include values, index, columns, and aggfunc.

	♦ The margins=True parameter in a pivot table adds a grand total for rows and
columns.

	♦ pd.crosstab() is a specialized function used for cross-tabulation, which
counts the frequency of combinations between categorical variables.

	♦ Scatter plots are a fundamental visualization for displaying the relationship
between two continuous variables.

	♦ Scatter plots are useful for identifying correlations, detecting clusters, and
spotting outliers.

386 SGOU - SLM - BSc - Introduction to Python Programming

Objective Type Questions

1.	 Which Pandas method groups data?

2.	 What kind of object does groupby() return?

3.	 What function calculates a group’s total?

4.	 Which method applies many aggregations?

5.	 What summarizes data into a reshaped table?

6.	 Which function creates frequency tables?

7.	 What plot shows relationships between two numbers?

8.	 What displays a variable’s distribution?

9.	 What Matplotlib function makes multiple plots in one figure?

10.	What is the term for improving visuals?

Answers to Objective Type Questions

1.	 groupby

2.	 GroupBy

3.	 sum

4.	 agg

5.	 PivotTable

6.	 crosstab

7.	 Scatter

8.	 Histogram

9.	 subplots

10.	Customization

387 SGOU - SLM - BSc - Introduction to Python Programming

Assignments

For each question, write a Python script using pandas and matplotlib to solve the
problem. You can use the provided sample DataFrame for questions 1-6.

import pandas as pd

import numpy as np

Sample DataFrame for Questions 1-6

data = {

 ‘OrderID’: [101, 102, 103, 104, 105, 106, 107, 108],

 ‘CustomerID’: [1001, 1002, 1001, 1003, 1002, 1004, 1003, 1001],

 ‘ProductID’: [‘A101’, ‘B205’, ‘C303’, ‘A101’, ‘B205’, ‘A101’, ‘C303’,
‘B205’],

 ‘Category’: [‘Electronics’, ‘Books’, ‘Electronics’, ‘Electronics’, ‘Books’,
‘Electronics’, ‘Electronics’, ‘Books’],

 ‘Quantity’: [2, 1, 1, 3, 1, 2, 1, 4],

 ‘UnitPrice’: [150.00, 25.00, 50.00, 150.00, 25.00, 150.00, 50.00, 25.00],

 ‘PurchaseDate’: [‘2023-08-01’, ‘2023-08-01’, ‘2023-08-02’, ‘2023-08-02’,
‘2023-08-03’, ‘2023-08-03’, ‘2023-08-04’, ‘2023-08-04’]

}

df = pd.DataFrame(data)

df[‘PurchaseDate’] = pd.to_datetime(df[‘PurchaseDate’])

df[‘TotalPrice’] = df[‘Quantity’] * df[‘UnitPrice’]

1.	 Basic Grouping and Aggregation: Using the sample DataFrame, find the
total quantity sold for each Category. Print the result.

2.	 Multiple Aggregations: Using the groupby() and .agg() methods, calculate
the sum of TotalPrice and the mean of Quantity for each ProductID. Rename
the resulting columns to ‘TotalRevenue’ and ‘AverageQuantity’ respectively.
Print the final DataFrame.

3.	 Creating a Pivot Table: Create a pivot table to show the total Quantity sold
for each ProductID on each PurchaseDate. Fill any missing values with 0.

388 SGOU - SLM - BSc - Introduction to Python Programming

4.	 Pivot Table with Margins: Recreate the pivot table from Question 3, but this
time include row and column totals by using the margins=True parameter.
Name the totals ‘Grand Total’.

5.	 Basic Cross-tabulation: Use pd.crosstab() to create a frequency table that
shows the number of transactions for each combination of CustomerID and
Category.

6.	 Cross-tabulation with Aggregation: Use pd.crosstab() to create a table that
shows the sum of the TotalPrice for each combination of CustomerID and
Category. Use fill_value=0 to handle missing combinations.

7.	 Basic Scatter Plot: Generate a DataFrame with two columns of random
numbers, x and y, each with 100 data points. Create and display a basic
scatter plot to visualize the relationship between x and y. Make sure to add
a title and axis labels.

8.	 Advanced Scatter Plot: Create a new DataFrame with three columns: Size,
Weight, and Type (where Type is a categorical variable, e.g., ‘Small’,
‘Medium’, ‘Large’). Generate 150 random data points for each column.
Create a scatter plot where the marker size is determined by the Size column,
and the color of the points is determined by the Type column. Include a
legend for the Type variable.

Reference

1.	 Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in
Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

2.	 VanderPlas, J. (2016). Python Data Science Handbook. O’Reilly Media.

3.	 McKinney, W. (2017). Python for Data Analysis (2nd ed.). O’Reilly Media.

4.	 Matplotlib Developers. (2024). Matplotlib Documentation. Retrieved from
https://matplotlib.org/stable/

389 SGOU - SLM - BSc - Introduction to Python Programming

Suggested Reading

1.	 Swaroop, C. H. (2019). Python Programming: A Modern Approach. Oxford
University Press.

2.	 Downey, A. B. (2015). Think Python: How to Think Like a Computer
Scientist (2nd ed.). O’Reilly Media.

3.	 Ascher, D., & Lutz, M. (2003). Learning Python (2nd ed.). O’Reilly Media.

4.	 Yadav, T. (2021). Data Science with Python. BPB Publications.

 SREENARAYANAGURU OPEN UNIVERSITY

QP CODE: ……… Reg. No :

 Name : ……............

Model Question Paper- set-I

End Semester Examination

BSc. Data Science and Analytics

B24DS05DC:DATA STRUCTURES

(CBCS - UG)

2024-25 - Admission Onwards

Time: 2 Hours Max Marks: 45

Section A
Answer any 10 questions. Each carries one mark (10 x 1 = 10)

1.	 What keyword is used to define a constant in C?

2.	 Which of the following is a non-primitive data structure?

a.	 Char

b.	 Float

c.	 Queue

d.	 Boolean

3.	 Name one application of a linked list.

4.	 A binary tree in which every node has 0 or 2 children?

5.	 What is heap?

6.	 Write the classifications of non-premitive data types.

7.	 Which statement allows multi-way branching?

8.	 What is the index of the first element in an array?

9.	 Name two basic operations performed on a linked list.

390 SGOU - SLM - BSc - Introduction to Python Programming

10.	What is the main data structure used in hashing?

11.	What is trie data structure?

12.	List different types of Queue.

13.	What keyword is used to define a structure in C?

14.	Which collision method uses a second hash function?

15.	Which type of linked list has its last node pointing back to the first node?

Section B

Answer any 5 questions. Each carries two marks (5 x 2= 10)

16.	What is Dynamic Memory Allocation ?

17.	What is a one-dimensional array?

18.	What is meant by traversal in a linked list?

19.	What is an undirected graph?

20.	Explain any two Properties of Hash Functions.

21.	Explain the advantages of Red Black Tree?

22.	What is a pointer to an array?

23.	Explain any two applications of stack in briefly.

24.	What is a self-referential structure?

25.	What is the degree of a vertex in a graph?

Section C

Answer any 5 questions. Each carries four marks (5 x 4 = 20)

26.	Explain the different representations of heap.

27.	Explain the process of balancing a Red-Black Tree after deletion with a
suitable case.

28.	Differentiate between entry-controlled and exit-controlled loops.

29.	Define a linear data structure with an example.

391 SGOU - SLM - BSc - Introduction to Python Programming

30.	Explain the representation and basic operations of a stack using a linked list.

31.	Draw a binary tree of height 3 and label root, internal, and leaf nodes.

32.	Distinguish between min-priority queue and max-priority queue

33.	Describe a circular queue.

34.	Explain any 4 operators used in C

35.	Explain any two primary operations of a stack.

Section D

Answer any 2 questions. Each carries fifteen mark (2 x 15 = 30)

36.	Explain the heap data structure in detail ?	 Differentiate between min-
heap and max-heap with suitable examples and diagrams.

37.	Write a C program to define a structure called Student with members: roll_
no, name, and marks. Create an array of 5 students, accept details from the
user, and display the student with the highest marks.

38.	Explain the Queue data structure in detail. Include its basic operations, and
explain how the FIFO principle works with an example.

39.	Explain different collision resolution techniques in hashing and explain its
advantages and disadvantages.

392 SGOU - SLM - BSc - Introduction to Python Programming

 SREENARAYANAGURU OPEN UNIVERSITY

QP CODE: ……… Reg. No :

 Name : ……............

Model Question Paper- set-I

End Semester Examination

BSc. Data Science and Analytics

B24DS05DC:DATA STRUCTURES

(CBCS - UG)

2024-25 - Admission Onwards

Time: 2 Hours Max Marks: 45

Section A

Answer any 10 questions. Each carries one mark (10 x 1 = 10)

1.	 The expression a ? b : c is an example of which operator?

2.	 What does LIFO stand for?

3.	 Name the data structure used to represent a queue using a linked list.

4.	 Binary tree filled from left to right is?

5.	 What is Hashing?

6.	 What is the use of peek operation in stack?

7.	 In a doubly linked list, which pointer points to the previous node?

8.	 What type of queue allows insertion and deletion from both ends?

9.	 What is the pointer called that refers to the first node in a linked list?

10.	Traversal visiting nodes in Left-Root-Right order?

11.	Which collision resolution technique uses a linked list at each index of a
hash table?

12.	Which type of data structure is Queue?

393 SGOU - SLM - BSc - Introduction to Python Programming

13.	In a linked stack, which operation adds an element?

14.	What is the total number of elements in a 2D array declared as int arr[4][5];?

15.	Identify the data structure where insertion happens at one end and deletion
happens at the other.

Section B

Answer any 5 questions. Each carries two marks (5 x 2= 10)

16.	What are Nested loops?

17.	Differentiate between array and linked list.

18.	Name two types of linked lists and state one feature of each.

19.	Define a tree and explain its basic terminology.

20.	Write any two applications of trie.

21.	Write about enqueue and dequeue operations.

22.	Mention any two advantages of functions.

23.	What is the difference between static and dynamic memory allocation?

24.	Mention two advantages of using a circular linked list.

25.	What is an AVL tree?

Section C

Answer any 5 questions. Each carries four marks (5 x 4 = 20)

26.	Explain advantages and disadvantages of heap.

27.	Write about any two advantages and disadvantages of heap.

28.	Differentiate Static and Dynamic memory.

29.	Describe the Tower of Hanoi problem and explain how stacks can be used
to solve it.

30.	Define B-tree. Explain its basic properties.

31.	Define a graph and explain types of graphs with examples.

32.	Explain the different methods used to represent priority queues.

394 SGOU - SLM - BSc - Introduction to Python Programming

33.	What is a Circular linked list? Explain the basic operations of a circular
linked list.

34.	Why break,continue and goto statements are used?

35.	Write a short note on application of queues.

Section D

Answer any 2 questions. Each carries fifteen mark (2 x 15 = 30)

36.	Draw a binary tree of height 4 and show all traversals.

37.	Discuss advantages of BST over a linear data structure like linked list.

38.	Explain basic and advanced data structures, and compare their differences.

39.	Explain about the implementation of priority queues using array, linked list
and heap.

395 SGOU - SLM - BSc - Introduction to Python Programming

kÀ-Æ-I-e-m-i-m-e-m-K-o-X-w

þ-þ

h-n-Z-y-b-mÂ k-z-X-{-´-c-m-I-W-w

h-n-i-z-]-u-c-c-m-b-n a-m-d-W-w

{-K-l-{-]-k-m-Z-a-m-b-v-- h-n-f-§-W-w

K-p-c-p-{-]-I-m-i-t-a \-b-n-¡-t-W

I-q-c-n-c-p-«-nÂ \-n-¶-p R-§-s-f

k-q-c-y-h-o-Y-n-b-nÂ s-X-f-n-¡-W-w

k-v-t-\-l-Z-o-]-v-X-n-b-m-b-v---- h-n-f-§-W-w

\-o-X-n-s-s-h-P-b-´-n]-m-d-W-w

i-m-k-v-{-X-h-y-m-]-v-X-n-s-b-¶-p-t-a-I-W-w

P-m-X-n-t-`-Z-a-m-s-I a-m-d-W-w

t-_-m-[-c-i-v-a-n-b-nÂ X-n-f-§-p-h-m³

Ú-m-\-t-I-{-µ-t-a P-z-e-n-¡-t-W

I-p-c-o-¸-p-g- {-i-o-I-p-a-mÀ

SREENARAYANAGURU OPEN UNIVERSITY

kÀ-Æ-I-e-m-i-m-e-m-K-o-X-w

þ-þ

h-n-Z-y-b-mÂ k-z-X-{-´-c-m-I-W-w

h-n-i-z-]-u-c-c-m-b-n a-m-d-W-w

{-K-l-{-]-k-m-Z-a-m-b-v-- h-n-f-§-W-w

K-p-c-p-{-]-I-m-i-t-a \-b-n-¡-t-W

I-q-c-n-c-p-«-nÂ \-n-¶-p R-§-s-f

k-q-c-y-h-o-Y-n-b-nÂ s-X-f-n-¡-W-w

k-v-t-\-l-Z-o-]-v-X-n-b-m-b-v---- h-n-f-§-W-w

\-o-X-n-s-s-h-P-b-´-n]-m-d-W-w

i-m-k-v-{-X-h-y-m-]-v-X-n-s-b-¶-p-t-a-I-W-w

P-m-X-n-t-`-Z-a-m-s-I a-m-d-W-w

t-_-m-[-c-i-v-a-n-b-nÂ X-n-f-§-p-h-m³

Ú-m-\-t-I-{-µ-t-a P-z-e-n-¡-t-W

I-p-c-o-¸-p-g- {-i-o-I-p-a-mÀ

SREENARAYANAGURU OPEN UNIVERSITY

