

ENVIRONMENTAL SOCIOLOGY

COURSE CODE: B21SO02DE

Undergraduate Programme in Sociology
Discipline Specific Elective Course
Self Learning Material

SREENARAYANAGURU OPEN UNIVERSITY

The State University for Education, Training and Research in Blended Format, Kerala

SREENARAYANAGURU OPEN UNIVERSITY

Vision

To increase access of potential learners of all categories to higher education, research and training, and ensure equity through delivery of high quality processes and outcomes fostering inclusive educational empowerment for social advancement.

Mission

To be benchmarked as a model for conservation and dissemination of knowledge and skill on blended and virtual mode in education, training and research for normal, continuing, and adult learners.

Pathway

Access and Quality define Equity.

Environmental Sociology

Course Code: B21SO02DE

Semester - IV

Discipline Specific Elective Course

Undergraduate Programme in Sociology

Self Learning Material

(With Model Question Paper Sets)

**SREENARAYANAGURU
OPEN UNIVERSITY**

SREENARAYANAGURU OPEN UNIVERSITY

The State University for Education, Training and Research in Blended Format, Kerala

SREENARAYANAGURU
OPEN UNIVERSITY

ENVIRONMENTAL SOCIOLOGY

Course Code: B21SO02DE

Semester- IV

Discipline Specific Elective Course
Undergraduate Programme in Sociology

Academic Committee

Rakhi N.
Dr. N.K. Sunil Kumar
Dr. M.S. Jayakumar
Dr. Sarita R.
Dr. Sindhu C.A.
Dr. Rekhasree K.R.
Dr. Uthara Soman
Dr. Suba Lekshmi G.S.
Dr. Leela P.U.
Dr. Jyothi S. Nair

Development of the Content

Prof. Sobha B. Nair
Dr. K. Anoop Krishnan
Vishnu Maya T.M.

Review and Edit

Dr. A. Krishnakumar

Linguistics

Dr. Anfal M.
Dr. Anu Alphons Sebastian
Akhiles U.

Scrutiny

Dr. Abdul Razak Kunnathodi
Dr. Jan Elizabeth Joseph
Fousia Shukoor
Dr. Ahammadu Zirajuddeen
Dr. Maya Raveendran

Design Control

Azeem Babu T.A.

Cover Design

Jobin J.

Co-ordination

Director, MDDC :

Dr. I.G. Shibi

Asst. Director, MDDC :

Dr. Sajeevkumar G.

Coordinator, Development:

Dr. Anfal M.

Coordinator, Distribution:

Dr. Sanitha K.K.

Scan this QR Code for reading the SLM
on a digital device.

Edition
January 2025

Copyright
© Sreenarayanaguru Open University

ISBN 978-81-984025-6-1

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means, without permission in writing from Sreenarayanaguru Open University. Printed and published on behalf of Sreenarayanaguru Open University
by Registrar, SGOU, Kollam.

www.sgou.ac.m

Visit and Subscribe our Social Media Platforms

MESSAGE FROM VICE CHANCELLOR

Dear learner,

I extend my heartfelt greetings and profound enthusiasm as I warmly welcome you to Sreenarayanaguru Open University. Established in September 2020 as a state-led endeavour to promote higher education through open and distance learning modes, our institution was shaped by the guiding principle that access and quality are the cornerstones of equity. We have firmly resolved to uphold the highest standards of education, setting the benchmark and charting the course.

The courses offered by the Sreenarayanaguru Open University aim to strike a quality balance, ensuring students are equipped for both personal growth and professional excellence. The University embraces the widely acclaimed "blended format," a practical framework that harmoniously integrates Self-Learning Materials, Classroom Counseling, and Virtual modes, fostering a dynamic and enriching experience for both learners and instructors.

The University aims to offer you an engaging and thought-provoking educational journey. The UG programme in Sociology is designed as a coherent set of academic learning modules that generate interest in dissecting the social engineering process. Both theory and practice are covered using the most advanced tools in sociological analysis. Care has been taken to ensure a chronological progression in understanding the discipline. The curriculum provides adequate space for a linear journey through the historical concepts in sociology, catering to the needs of aspirants for the competitive examination as well. The Self-Learning Material has been meticulously crafted, incorporating relevant examples to facilitate better comprehension.

Rest assured, the university's student support services will be at your disposal throughout your academic journey, readily available to address any concerns or grievances you may encounter. We encourage you to reach out to us freely regarding any matter about your academic programme. It is our sincere wish that you achieve the utmost success.

Regards,
Dr. Jagathy Raj V.P.

01-01-2025

Contents

Block 01	Environmental Sociology	1
Unit 1	Origins, Growth and Relevance	2
Unit 2	Basic Concepts	12
Block 02	Ideological Perspectives on Environment	29
Unit 1	Environmental Views – Buddhist, Jainist, Indigenous, Gandhian	30
Unit 2	Ecological Paradigms	40
Block 03	Sociological Perspectives on Environment	49
Unit 1	Approaches to Environmental Sociology	50
Unit 2	Theoretical Perspectives on Environment	59
Block 04	Environmental Issues	70
Unit 1	Environment: Impact and Issues	71
Unit 2	Environmental Movements	89
Block 05	Environmental Policies and Legislations	101
Unit 1	Environmental Policies and Law: Global to Local Overview	102
Block 06	Environment and Development	119
Unit 1	Development and Environmental Consequences	120
Unit 2	Environmental Degradation and Sustainable Development	136
	Model Question Paper Sets	149

BLOCK

Environmental Sociology

Origins, Growth and Relevance

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ identify the basic concepts of environmental sociology
- ◆ explore the evolution of environmental sociology as a discipline
- ◆ analyse the environment-society relationship
- ◆ summarise key theoretical perspectives on the environment
- ◆ assess major environmental policies and laws
- ◆ critically examine pressing environmental issues

Prerequisites

As we look around our surroundings, we can see beautiful and natural landscapes such as forests, rivers, mountains, desert or a combination of these. If we are living in urban areas, we know that many of the original landscapes are modified by human beings to construct multi-storied buildings or shopping malls, destroying their natural beauty. But for our daily food supply, we have to depend upon the natural landscape, such as forests, grasslands, rivers, and seashores for resources such as water for agriculture, timber for fuel, fodder and fish. Thus, our daily lives are linked to our surroundings, and we depend heavily on them. The environment can continue supporting the life of humans and other species for millions of years if left uninterrupted.

The most unstable and disruptive element in this scheme of nature is the human species. Human beings, with their modern technology, have the capacity to bring about far-reaching and irreversible changes in the environment since human needs

are never-ending. With population growth and development in human civilization, an exponential increase in the demand for materials occurred. This made man start exploiting nature without care to meet his increasing demands for comfort, to feed the increasing population and the industrial demands. This has led to the deterioration of environmental conditions. Along with natural catastrophes and calamities like floods, drought, etc., man also plays a significant role in contributing to man-made hazards, environmental pollution, as well as deforestation.

Thus, the rising population, the affluent consumption and the abundant production of goods using modern technology placed huge stress on the environment. Many resources went extinct, and wastes accumulated, which is beyond the absorptive capacity of the environment, which means the ability of the environment to absorb degradation. As a result, today, we are at the threshold of an environmental crisis. Development has dried up and polluted rivers and many aquatic species by using rivers as an economic good.

This resulted in the growth constraints in resources and rapidly accumulating evidence of critical environmental contaminations, and some sociologists started examining the relationship between modern industrial societies and their physical environments. Concerns about how contemporary societies affect their environments, as well as how these societies may be affected by changing environmental conditions, sparked societal-environmental studies and a growing recognition of the critical nature of true “environmental sociology”. In this module, we will try to understand the emergence, development, nature, significance and scope of Environmental Sociology in detail.

Keywords

Environmental, Human Society Natural Disasters, Silent Spring

Discussion

The unscientific interaction between human life and the environment has influenced each other. This unscientific interaction has led to many environmental hazards like global climate change, soil erosion, declining biodiversity, ozone layer depletion, acid rain, draught, heavy rainfalls, landslide, etc. We are currently using the equivalent of 1.6% of Earth's resources to support our way of life, which ecosystems cannot sustain. Our lifestyles contribute

to two-thirds of global greenhouse gas emissions, and studies suggest that adopting sustainable lifestyles and behaviors could cut emissions by 40-70% by 2050. Promoting sustainable consumption and production can drive economic growth, combat climate change, improve health, reduce pollution, and help alleviate poverty. It could increase incomes by 11% in low- and middle-income countries and 4% in high-income countries by 2060.

1.1.1 Environmental Sociology

The term environmental sociology was coined by Samuel Klausner in his book *On Man in His Environment* (1971). Environmental Sociology is a combination of two words – ‘Environment’ and ‘Sociology’. According to Dunlap and Catton, environmental sociology is the societal – environmental interactions. Environment maintains a close interconnection between humans and other living beings, land, water, air and all that is essential for our subsistence. Sociology, on the other hand, is a systematic study of the society in which we live. It includes people, groups, and institutions and the interactions between them. The result of which is the processes and structures in society which is essential for our social life. Hence, sociology is the study of the relationship between human societies and their physical environment. The definition of environmental sociology is the sociological study of how humans interact with the various aspects of the environment. Or how people treat the various aspects of the environment like pollution, conservation and recycling. Environmental sociology helps to find better ways of interaction between mankind and the environment.

Catton and Dunlap defined environmental sociology as “the study of the connection between the environment and society.”

Environmental sociology is thus concerned with the reciprocal interactions between the environment and society. These interactions at the interface of society and environment have a reciprocal influence on each other. Environmental problems and concerns have emerged in the world as consequences of this reciprocal influence. Some of the glaring environmental problems are global climatic change, soil degradation, ozone layer depletion, solid waste management

problem, pollution, declining biodiversity, water scarcity, soil erosion, flood, landslide and many more, which we face today.

It is also widely acknowledged that environmental sociology differs significantly from “sociology of environment”, which applies mainstream sociological concepts to environmental conflict, politics, movements, and knowledge claims. In other words, the Sociology of the environment deals with the study of the interrelationship between the biotic and abiotic components of the environment where, as Environmental Sociology focuses on the study of the environment-society interaction... [i.e.] the underlying relationship between modern industrial societies and the physical environments they inhabit. (Hannigan, 1995) According to Catton and Dunlap, environmental sociology should investigate how humans influence their environments as well as how they are affected by them. During 1970s, environmental sociology revolved around the green movement, energy issues, catastrophic issues, the attitude of public in response to environment issues, environmental policies, and environmental, social problems. This discipline is also interested in human and social factors causing environmental issues and their impact on the quality of human life and environmental degradation, natural resource depletion and the reciprocal relation between human life and its biophysical environment.

1.1.1.1 Emergence of Environmental Sociology

Environmental sociology emerged as a discipline during the 1960's and 1970s during the first Earth Day when environmental issues were intensified. During this period, a significant number of Americans were concerned about the environment, water quality, air quality, toxic chemicals, war and nuclear power. Environmental Sociology emerged mostly in the United States as

a coherent subfield of inquiry after the environmental movement of the 1960s and early 1970s.

The advancement of industrialization, and its rapid pace after the Second World War, led not only to the unsustainable encroachments on the natural environments but even to its over-exploitation through resource extraction and waste accumulation; this has gradually led to depredations and environmental degradations, which even led to destruction in some cases.

Environmental sociology as a field of study began in the 1970s in response to the growing societal awareness of environmental issues and the resulting social mobilization in support of environmental protection. Sociological research in the early twentieth century focused on the environmental movement's origins, composition, and activities; the levels and social bases of public support for environmental protection; and the dynamics of government policymaking. However, 1960s and 1970s turned out to be environmentally turbulent decades – socially, politically and economically, which compelled the intellectuals and academicians to rethink their academic standpoints in terms of the environment using sociological concepts to environmental issues.

In the early 1960s, Klausner, a sociologist and clinical psychologist, conducted studies on human behaviour under stress. In 1962, Rachel Carson's *Silent Spring* raised awareness about the ecological damage caused by agricultural pesticides. The term 'environmental sociology' was first explicitly used by Samuel Klausner in his 1971 book *On Man in His Environment* (page 4). According to Dunlap (2011:189), the 1973-1974 energy crisis, which highlighted industrialized society's dependence on fossil fuels, alongside growing concerns about water and air pollution in the 1970s, contributed to the development of environmental problems

within sociology. In the early 1970s, the combination of academic attention and the energy crisis in the United States intensified environmental concerns. Sociologists began to focus on how societies impact the environment and, in turn, how environmental factors like resource scarcity and pollution affect societies, establishing environmental sociology as a distinct field of study.

1.1.1.2 Development of Environmental Sociology

Environmental sociology is a relatively new area of inquiry that emerged largely in response to increased societal recognition of the seriousness of environmental problems. Many areas of sociology have similarly arisen as a result of societal attention to problematic conditions, like poverty, inequality, racial and gender discrimination, as well as crime and delinquency. Even though traces of environmental sociology can be seen in the whole history of sociology, its main development as a specific subject started in the second half of the 20th century. However, the 1960s and 70s turned out to be environmentally turbulent decades – socially, politically and economically. This forced academicians and intellectuals to divert their standpoints in terms of the environment. During this period, a number of sociologists started to recognize the importance of environmental issues. It started doing research in this area, giving rise to a more complex field in environmental Sociology.

Environmental Sociology as an expression first appeared in North America in the year 1971 and as a specialized subsection in the American Sociological Association in 1976. However, the advance of industrialization, especially its rapid pace after the Second World War, led to not only unsustainable encroachments on the natural environments but even over-exploitation through resource extraction and waste addition, such that

they increasingly underwent depredations and environmental degradations and even destruction in some instances.

Environmental sociology has also been established since the early 1990s in Japan and Korea. Nobuko Iijima was the first environmental researcher in Japan. She has done her Master's thesis on the Impact of Minamata disease on the local community. In 1992, she helped in the foundation of the Japanese Association for Environmental Sociology (JAES) and served as its first president. By 1999, the JAES expanded with 450 members and its own publication called the Journal of Environmental Sociology. In Korea, environmental sociology was taught from the early 1990s. Following an international conference during 1993 on Environment and Development, a Research Group for Environmental Sociology was established in 1995. This led to the founding of the Korean Association for Environmental Sociology in June 2000. In October 2001, at the Kyoto Environment Sociology Conference, a research network, the Asian Pacific Environmental Connection, was founded with the aim of solving societal and environmental problems in the Asia-Pacific region.

1.1.1.3 Nature of Environmental Sociology

Environmental Sociology is a sub-discipline within the field of Sociology that studies the interaction between the physical environment, social organization and social behaviour. Environmental sociology recognizes the fact that the physical environment has an impact on human cultures and behaviours. Hence, it emphasizes studying the social and cultural factors that cause environmental problems, the societal impact of those problems, and the efforts to solve these problems. They also examine the social processes that contribute to the socially defined environmental problems.

They give importance to understand the association between societal wellbeing and environmental quality. They recognize that environmental factors are important for sociological investigation which distinguishes environmental sociology from other fields of study.

According to Catton and Dunlap, environmental sociology is the study of connection between the environment and society. It is concerned with the reciprocal interactions between the environment and society. Since such interactions are complex and varied, environmental sociologists study a wide range of phenomena based on Duncan's concept of the ecological complex, which he developed from biologists' concept of the ecosystem in order to apply general ecology principles to sociology and human ecology.

1.1.1.4 Significance of Environmental Sociology

The significance of studying environmental sociology is to find solutions to environmental crises and to evaluate environmental reform theories. Traditionally Environmental sociology focused on describing how environmental problems are caused by society rather than solving such problems. This approach has shifted in recent decades. Today, environmental sociology primarily focuses on the development, discussions, and empirical examination of environmental reform ideas. It also deals with the potential solutions to environmental crises and the creation of conceptual frameworks for sustainability.

Climate change is the biggest problem that humanity faces today. The severity and urgency of the climate crisis stem from the bleak reality of the impact it will have on the lives of today's youth and future generations to come. There will be irreversible damage caused to every habitat and ecosystem of our

planet. The rate or speed at which changes are taking place in our global atmosphere and on Earth is the primary cause of concern (Lindsey, 2019).

1.1.1.5 Scope of Environmental Sociology

After its emergence during 1970, as an aftermath of public awareness and concern for environmental protection, environment Sociology aimed at understanding the interconnection between human society and the natural environment. It has concentrated its attention on the green movement, energy issues, catastrophic risks, as well as public attitudes towards environmental questions, environmental policies and the quality of the environment as a social problem. As an academic discipline, Environmental sociology has undertaken four major areas of research.

First, environmental Sociologists study the societal causes of environmental problems. Scholars have developed many theoretical frameworks to describe how social factors like demographical, political, cultural and economic factors generate environmental problems. Many empirical studies have also been conducted to support the hypotheses derived from such theoretical frameworks (Knight, 2018). It concentrates its attention on how these various factors, including technological dynamics, generate environmental impacts and problems.

Second, Environmental Sociology is concerned with the natural environment's impact on society. Early sociologists emphasized that the field required the study of how environment shapes society in addition to how society impacts its environment. This area includes investigation of the consequences of natural disasters, especially in terms of environmental justice (Knight, 2018), as well as the social consequences of natural disasters and the inequalities in

the distribution of environmental hazards along racial and socio-economic lines.

Third, Environmental Sociology examines the social reactions and responses of society to environmental issues and threats. Researchers focus on identifying patterns and trends in environmental attitudes such as varied attitudes and behaviours like recycling of waste as well as various aspects of the environment movement towards global climate change (Knight, 2018).

Fourth, environmental sociologists are mainly concerned with learning social processes that could help to advance environmental sustainability. Scholarly activity in this area revolves around finding solutions to environmental crises and assessing theories of environmental reform (Knight, 2018).

One of the most important substantive topics studied by Environmental Sociologists is the human dimensions of global climate change. Environmental Sociology studies how people react to environmental issues. While the research studies in the area of Sociology focused mainly on the relationship between societal well-being and environmental quality, Sociological research investigates the effects of natural disasters, particularly in terms of environmental justice, on society. Researchers are focusing their attention on identifying patterns and trends in environmental attitudes, such as divergent views on global climate change.

Environmental sociology focuses its attention on the relationship between the physical environment, social structures and social behavior. Their research area centers on the social factors that contribute to environmental problems, as well as the social consequences. They also initiate steps to address such problems. Environmental sociology also examines the social processes that contribute to the classification of environmental conditions as social problems.

During 1970s, environmental sociology was dominated by the study of green movement, energy issues, disaster risks, public attitudes towards environmental quality, policies and environmental issues as social issues.

Environmental sociology also examines the social determinants of environmental pollution, as well as the social consequences of pollution leading to the depletion of natural resources which means the study of the reciprocal relationship between human societies and their biophysical environment. It encompasses a broad range of issues, like environmental attitudes and the environmental movement, social impact analysis, risk assessment, toxic siting and natural hazard responses, and research. Another critical area in which environmental sociology conducts research is the inequitable social distribution of environmental hazards. It contributes to the establishment of long-term human-environment relationships and the formulation of equitable methods for addressing environmental degradation.

Environmental sociology focuses mainly on how society causes environmental problems while paying less attention to potential solutions. But recently, a major shift in the foci has taken place, giving more attention to the development, discussion and empirical assessment of theories of environment reform, analysis of potential solutions to environmental crisis, and drafting of conceptual frameworks for sustainability. Another major area of research is the human dimensions of global climate change, which has become one of the main substantive issues.

Thus, Environmental sociologists conduct research on a variety of topics, including agricultural systems, environmentalism as a social movement, societal members' perceptions of environmental problems, the origins of human-induced environmental decline, the relationship between population

dynamics, health and the environment, and the role of elites in creating environmental harm.

Silent Spring (1962)

Silent Spring, written by Rachel Carson, is an environmental science book that emerged after nearly a decade of research on the harmful effects of indiscriminate use of synthetic pesticides, such as DDT. These pesticides not only disrupt natural ecosystems by eliminating pests but also pose significant risks to human health. The book not only raised environmental concerns among the American public but also spurred numerous policy changes and played a key role in the establishment of the U.S. Environmental Protection Agency (EPA).

Love Canal Debacle

Love Canal, a neighbourhood in Niagara Falls, New York, became infamous following an environmental disaster that affected the local community. In the 1940s, the canal was used as a landfill for chemical waste by Hooker Chemical Company. As the population grew, the landfill area was repurposed for housing. After heavy rainfall, the chemicals began seeping into homes, severely impacting the health and well-being of residents.

Minamata Disease is a neurological disorder caused by severe methyl mercury poisoning. Symptoms include ataxia, numbness in the hands and feet, muscle weakness, narrowed vision, and damage to hearing and speech, among others, depending on the severity. This disease is caused by the consumption

of large amounts of fish and shellfish, which were heavily contaminated with methyl mercury. The mercury was a toxic byproduct of chemical factories producing acetaldehyde, a raw material for octanol used in polyvinyl chloride manufacturing, and was dumped into the sea.

The first Minamata epidemic occurred in the 1950s in the Yasuhiro Sea coastal area of Minamata Bay, Japan, followed by a second epidemic in the 1960s in the Agana River basin, Japan. Minamata disease is a direct result of industrial pollution. (Noriyuki Hachiya, 2006)

Recap

- ◆ Environmental sociology studies the reciprocal relationship between human societies and their physical environment.
- ◆ It emerged in the 1960s and 1970s, driven by growing environmental awareness and social movements.
- ◆ Irreversible damage is being caused to every habitat and ecosystem on our planet.
- ◆ Research in environmental sociology has focused on the green movement, energy issues, catastrophic risks, public attitudes towards environmental policies, and the quality of the environment as a social issue.
- ◆ The field examines how social factors contribute to environmental problems and how environmental issues affect society.
- ◆ It analyses social reactions to environmental threats, including public attitudes and environmental movements.
- ◆ Environmental sociology seeks to advance environmental sustainability by studying reform theories and solutions.
- ◆ Key events like the publication of “Silent Spring” and environmental disasters like Love Canal and Minamata disease spurred its development.
- ◆ It distinguishes itself from the “sociology of environment” by focusing on the interaction between society and environment.
- ◆ The discipline covers a wide range of topics, including climate change, resource depletion, and environmental justice.
- ◆ It acknowledges the impact of industrialization and technological advancements on environmental degradation.
- ◆ Environmental sociology aims to understand and address the human dimensions of environmental issues.

Objective Questions

1. Who coined the term Environmental sociology?
2. Which book raised awareness about the dangers of pesticides?
3. Environmental sociology emerged primarily in which decade?
4. What is a key focus of environmental sociology?
5. Who wrote the book *Silent Spring*?
6. What is the main goal of environmental sociology regarding environmental problems?
7. Who wrote the book *on man in his environment*?

Answers

1. Samuel Klausner
2. Silent Spring
3. 1960s-1970s
4. Analysing social interactions with the environment
5. Rachel Carson
6. To develop and assess theories of environmental reform
7. Samuel Klausner

Assignments

1. Discuss the historical context that led to the emergence of environmental sociology as a distinct field of study.
2. Compare and contrast “environmental sociology” and “sociology of environment,” providing examples to illustrate the differences.

3. Discuss the nature and scope of environmental sociology.
4. Evaluate the role of environmental sociology in addressing climate change and promoting sustainable development.

Suggested Reading

1. O'Riordan, T. (1976). *Environmentalism*. Pion Limited.
2. Catton, W. R., & Dunlap, R. E. (1980). A new ecological paradigm for post-exuberant sociology. *American Behavioral Scientist*.
3. Dunlap, R. E., & Michelson, W. (Eds.). (2002). *Handbook of environmental sociology*. Greenwood Press.
4. Godden, A. (2009). *Sociology* (6th ed.). Polity Press.
5. Hannigan, J.A. (1995) *Environmental Sociology: A Social Constructionist Perspective*. Routledge Press.

Reference

1. Mehta, M., & Ouellet, E. (1995). *Environmental sociology: Theory and practice*. Captus Press.
2. Knight, K. W. (2018). *Environmental sociology*. Oxford Bibliographies.
3. Dunlap, R. E. (2011). Environmental sociology. In G. Ritzer & J. M. Ryan (Eds.), *The concise encyclopedia of sociology* (pp. 189-191). Blackwell Publishing.
4. Macionis, J. C. (1995). *The Natural Environment and Society, in Sociology 5th* (Ed.). Prentice-Hall.

Basic Concepts

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ understand the relationships among living organisms and their physical surroundings
- ◆ recognise the wide variety of life on earth and the importance of preserving different species for ecosystem stability
- ◆ examine the complex interconnections between human social structures and the environment
- ◆ address the conservation of natural resources and ensure the fair distribution of environmental benefits and burdens among communities
- ◆ understand the importance of environmental conservation

Prerequisites

Human activities today are heavily dependent on three key natural resources: food, water, and timber. However, excessive exploitation of these resources has led to deforestation, soil degradation, biodiversity loss, and pollution. These environmental issues have severely impacted ecosystems and contributed to climate change, pushing many species toward extinction.

Global warming is one of the most significant threats our society faces today. Unlike other species, humans possess the ability to understand the damage we are causing to the environment. Yet, we continue to exploit nature irresponsibly, making environmental degradation a persistent issue. This calls for urgent action to halt environmental destruction and focus on conservation efforts for future generations. It is our collective responsibility to set an example by adopting

sustainable practices. This includes using and purchasing reused, repaired, and recycled products, utilizing public transportation whenever possible, conserving water, and opting for energy-efficient products in daily life.

Keywords

Climate change, Natural disasters, Ecosystem, Justice, Conservation, Sustainability, Global warming, Greenhouse effect

Discussion

Have you ever looked out of your window in the morning, or gone out to your terrace and looked at the trees moving their leaves in the gentle breeze or at the water flowing in the river? Listen to the sound of rain, the whisper of the breeze among leaves, the sparkle of the leaves in the bright sunlight, or the cows grazing in the meadows? This is nature. Nature is not a creation of our mind, as is religion or belief. Nature is the tiger, with its extra ordinary energy, its great sense of energy, its great sense of power. Nature is the solitary tree in the field, the meadows and the grove. It is that squirrel chirping on a tree branch.

1.2.1 Nature

As per the Cambridge dictionary, nature means all the animals, plants, rocks etc. in the world and all the features, forces, and processes that happen or exist independently of people, such as the weather, the sea, mountains, the production of young animals or plant and growth.

Nature includes ants, bees, and all those living things that exist on Earth. Nature is the river, the snow-clad mountains with their dark valleys, and the range of hills meeting

the seas. Yes, our universe is part of our nature. Nature is part of our life and we are part of nature. Thus, the word nature has a number of meanings. It refers to the total biological scope of the planet Earth. It also includes the total ecological system of the material world.

But unfortunately, our relationship with nature is imbalanced. If we look at history, we can see that nearly every step in our development is accompanied by a leap in environmental degradation. In the beginning, humans were incredibly in tune with their surroundings. For example, nomadic tribes used to roam about the lands, following the ebb and flow of the season. Their impact on the environment was relatively manageable due to their small population size.

But as agriculture progressed, settlements became more permanent, and paved the way for the growth of new cities and towns, for which exploitation of nature is inevitable. This shift of man from village to city life led to more and more distancing from nature. Moreover, our need for more resources changed our attitude towards nature by using its resources unmercifully. Nature is unable to replenish its resources at the same pace as our growing population. We have now come to realize that it can no longer sustain

us indefinitely.

1.2.2 Ecology

The word ecology was first used by the German biologist Ernst Haeckel in 1869. It is derived from the Greek words ‘oikos’, which means ‘house’ or dwelling place and ‘logos’, which means ‘study of’. Literally, ecology means the study of the earth as a ‘household’ of plants. Haeckel defined ecology as the study of the natural environment, including the relations of organisms to one another and to their surroundings.

Ecology is the scientific study of the relationship between living organisms (Plants, animals, microbes) as well as their interaction with their abiotic environment (Temperature, water, air, soil, light etc.). It also studies the interaction of organisms with each other, the pattern and causes of abundance and the distribution of organisms in nature. These relationships are varied, complex and hierarchical. Ecological hierarchy follows an order with an increase in size and complexity. It is the study of interactions between the life forms (biotic) and the physical environment (abiotic). Ecology deals with the relationship between living organisms and their environment. It also studies the interaction of organisms with each other, the pattern and cause of the abundance and distribution of organisms in nature and the interactions that determine distribution in abundance.

In an ecosystem, all organisms interact with each other for food, support, and nutrients. It also focuses on how and why animals live in groups, what determines the distribution of species, and how organisms interact with biotic and abiotic components as well as the behavioral aspects of animals. Different kinds of physical, chemical and biological processes occurring within the ecological systems lead to complex interactions among different components of the system. In order

to study these interactions, ecologists involve with other sciences such as physiology, biochemistry, genetics, geology, hydrology and meteorology. With increasing scientific information, this science also involves complex mathematical modeling and algorithms to make it a truly interdisciplinary science.

1.2.2.1 Ecosystem

An eco-system or ecological system is the functional unit comprising all the organisms in a particular place interacting with one another and with their physical environment. This interaction is interconnected with an ongoing flow of energy and a cycling of materials. The term ecosystem was first introduced by an English Botanist, Arthur Tansley, in 1935. The concept gained popularity after its appearance in the textbook by Eugene Odum. After this, the term was mentioned in the famous article by Francis Evans in 1956 in Science, in which he mentioned ecosystem as the basic unit of ecology. Thus, an eco-system is the interaction system made up of all the living and non-living objects in a physically defined space.

1.2.2.2 Components of Ecosystem

There are four basic components of an ecosystem.

1. The abiotic part, which is the non-living environment
2. The producers or autotrophs - This part consists of the green plants which are capable of producing their own food through a process called photosynthesis by using the energy of sunlight to make carbohydrates from water and carbon dioxide.
3. Consumers or heterotrophs are animals which obtain their food by eating plants or other animals. These heterotrophs can be divided

into groups on the basis of their feeding habits. They are –

- ◆ Herbivorous, which eats only living plant material,
- ◆ Carnivorous, which feeds on other animals
- ◆ Detritivores, which feed on dead plants and animal material and
- ◆ Omnivorous eat both plants and animals

4. Decomposers such as bacteria and fungi that promote decay

1.2.2.3 Types of Ecosystem

Ecosystems are of different types. They can be categorized as: Natural Ecosystem and Artificial Ecosystem.

A. Natural Ecosystem

The natural ecosystem consists of a Terrestrial ecosystem ecosystem and an Aquatic ecosystem

1. Terrestrial ecosystem consists of forest, grassland, and desert.
 - ◆ A forest means an ecosystem with a high density of trees and other woody vegetation.
 - ◆ A grass land is an ecosystem which is dominated by grasses and other herbaceous (non -woody) plants. Grasslands occur in regions which are too dry for forests but have sufficient soil water to support an herbaceous plant canopy which is absent in deserts.
 - ◆ A desert is an eco-system that receives an extremely low amount of precipitation which is less for supporting the growth of most of the variety of plants. Deserts are defined as areas with an average

annual precipitation of fewer than 250 millimeters per year or as areas where more water is lost by evapotranspiration than falls as precipitation.

2. Aquatic Eco-system is an ecosystem in a body of water. They are commonly categorized on the basis of its movement whether moving as streams or rivers or still like ponds and lakes. An aquatic ecosystem is generally divided into two major types based on Salinity- Marine ecosystem and the Freshwater ecosystem.

The marine ecosystem covers over 70 percent of the earth's surface and is the largest aquatic ecosystem of the earth. A marine ecosystem, such as the oceans, estuaries which have very high salt content (35ppt or less), while Freshwater ecosystems, such as lakes, ponds, etc., has very low salt content in them. Freshwater ecosystems include ponds, rivers, streams and springs and cover 2 percent of the earth's surface. They are further categorized into lentic ecosystem (still water such as lake, pond) and lotic ecosystems (flowing water such as river).

B. Artificial or Domesticated Ecosystem

This type of ecosystem is maintained artificially by man, with the addition of energy. For example, croplands like paddy fields where a man tries to control the biotic community as well as the physicochemical environment.

1.2.3 Biodiversity

Biodiversity is a combination of two words Bio which means life and diversity meaning variety. It is short of biological diversity, which refers to the sum total of all the variety and variability of life in a defined area. It refers to the varieties of living species on earth including plants, animals

and microorganisms, the genes they contain and the ecosystems they form. Convention on Biological Diversity defined biological diversity as “the variability among living organisms from all sources including inter alia (among other things), terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are a part; this includes diversity within species between species and ecosystems”. According to the the total number of plants and animal species is slightly more than 1.5 million, but there is no clear idea of how many species are yet to be discovered and described. Another estimate ranges from 20 to 50 million but a more scientifically sound estimate made by Robert May places the global species diversity is at about 7million. The term refers to the diverse array of living organisms found in an eco-system from microscopic organism and fungi to large animals and plants.

Biodiversity in India

- ◆ India shares only 2.4% of the land's area but it shares 8.1% of the global species diversity
- ◆ This included 45,500 recorded species of plants and 91,000 recorded species of animals.
- ◆ India has diversity of ecological habitats like forests, grasslands, wetlands, coastal and marine ecosystems as well as desert ecosystems.
- ◆ India has four global biodiversity hot spots like Eastern Himalayas, Indo-Burma, Western Ghats and Sri Lanka and Sundaland (Andaman and Nicobar Islands).

1.2.3.1 Types of Biodiversity

Bio diversity largely describes the change of life from genes to ecosystem based on their existence, genetic variations environment, populations and the ecosystem in which they are existing and other evolutionary developments that keep the system functioning, changing and adapting.

Biodiversity is distributed into three different components based on the levels of differences. They are –

- ◆ Genetic diversity,
- ◆ Species diversity and
- ◆ Ecosystem diversity.

Genetic diversity- Refers to the variation in the genetic composition of individuals within or among species. Genetic diversity enables the population to adapt to its environment and respond to natural selection. Genetic diversity occurs at several levels of organization such as among higher taxonomic categories like kingdoms, phyla and families, among species and populations. Genetic diversity can be seen between organisms of two kingdoms such as plant versus animals between phyla like arthropods versus chordates, between classes such as birds versus reptiles and so on.

Species diversity- According to the biological species concept, species are groups of actually or potentially inter-breeding natural populations, which are reproductively isolated from other such groups. Species diversity means a variety of species within a region or a region having species richness as well as species evenness. Taxonomic or phylogenetic diversity can also be included under species diversity.

Ecological diversity- Is the diversity seen between the ecosystems in a region. It includes all the species and all the abiotic factors characteristic of a region. For example, a desert ecosystem has soil, temperature, rainfall patterns and solar radiation that

affect not only the species living there but also the morphological behaviour and the interactions among those species. Ecosystem diversity describes the number of niches, tropic levels and various ecological processes that sustain energy flow, food webs and the recycling of nutrients. Several ecosystems like rainforests, deserts, mangroves, etc., show a vast diversity of life forms living in them.

1.2.3.2 Importance of Biodiversity

All the above-mentioned diversities help to keep the balance in nature. Loss of it will adversely affect our nature. When the natural balance is lost, it will disturb the natural food chain as well. Biodiversity increases the range of food products suitable for human consumption. Wild biodiversity gives us a large variety of foodstuffs like fruits, meat, nuts, mushrooms, honey, and spices. Wild biodiversity guards against the failure of our agricultural systems. In many agricultural products all over the world, a wide range of regular assimilation of new genes from wild relatives of these crops is adopted. This helps them to guard against pests and diseases as well as the failure of even the most advanced agricultural system.

Biodiversity provides therapeutic substances like morphine, quinine, and the anticancer drug Taxol. It also supplies industrial materials such as fibers, dyes, resins, and gums. Beyond its practical benefits, biodiversity has significant aesthetic and cultural value, supporting ecotourism, birdwatching, wildlife appreciation, pet keeping, and gardening. Many find deep satisfaction and connection in nature, whether for its beauty, cultural significance, or spiritual meaning. Recently, the rate of extinction of some species has gone up, causing direct influence on our earth, like abuse of resources in some places and the overpopulation of some species at some other

places, causing a huge imbalance in nature.

1.2.3.3 Uses of Biodiversity

At the ecosystem level, biodiversity provides the conditions to drive the processes that sustain the global economy – and our survival as a species. Biodiversity helps to keep the ecosystem in good shape by keeping the Oxygen level intact. The benefits and services provided by ecosystems are called Ecosystem services. Biodiversity is essential for the maintenance of ecosystem services and their sustainable utilization. These services include maintenance of the gaseous composition of the atmosphere, climate control by forests and oceanic systems, natural pest control, pollination of plants by insects and birds, formation and protection of soil, conservation and purification of water and nutrient cycling etc.

Prevention and mitigation of natural disasters - Forests and grasslands protect landscapes against erosion, nutrient loss, and landslides through the binding action of roots. Floodplain forests and wetlands along regularly flooding rivers help absorb excess water, reducing flood damage. Social ecology is a highly dynamic and interdisciplinary research field rooted in both social and science and natural science traditions. This term has been used by many disciplines from its disciplinary vantage points and perspectives using a shared paradigm. Social ecology deals with energy and society, land use and food production, the metabolism of societies and the environmental impact of human activities. Social ecology claims that the environmental crisis is the result of the hierarchical organization of power and the authoritarian mentality of humans rooted in the structures of our society. It is this mentality that has originated the domination of nature.

1.2.4 Social Ecology

Social ecology is a compound term. It

is a combination of Social and Ecology. Social refers to human society and the way it is organized. It includes the study of all the constituent elements of society, such as the economy, polity, social structure, and culture. The term ecology refers to the study of the relationship between living things and their environment. Therefore, social ecology is the study of the interaction between human beings and the environment in which they live, and how those interactions have a reciprocal impact on society and the environment. Thus, it is an interdisciplinary approach to study – the interrelationship between human social institutions and ecological or environmental issues. The ecological infrastructure of human society (soil, water, flora, fauna, climate, etc.) significantly conditions the evolution and direction of human economic life, political relations, social structure, and ideology (culture). Hence, social ecology is based on the interdependence of the biophysical and sociocultural spheres.

Social ecology, one of the earliest radical eco-philosophies, was developed over five decades from the 1950s by its founder and leading proponent, American left-libertarian socialist and political philosopher Murray Bookchin. Social ecology is based on the conviction that almost all of our present ecological problems originate from deep-seated social problems. These ecological problems cannot be understood, let alone solved, without a careful understanding of our existing society and the irrationalities that dominate it. To make this point more concrete, economic, ethnic, cultural, and gender conflicts, among many others, lie at the core of the most serious ecological dislocations we face today – than those that are produced by natural catastrophes.) For example, the massive oil spills that have occurred during the past years, the extensive deforestation all over the world, and vast hydroelectric projects that flood places where people live. “Social ecologists

believe that things like racism, sexism, third world exploitation are all products of the same mechanisms that cause rainforest devastation.”

Murray Bookchin is a key thinker in the field of the social ecology movement. He has worked carefully to construct a coherent and broad philosophy which he defends strongly. According to Murray, “The domination of nature by man stems from the very real domination of human by human”. The only alternative to this is the creation of a society based on ecological principles, an organic unity in diversity, free of hierarchy and based on mutual respect for the interrelationship of all aspects of life. If we can change human society then our relationship with the rest of nature will be transformed to protect nature. He argues that human society causes more ecological damage than nature does to humanity, emphasizing that the destinies of human life and the non-human world are interconnected.

1.2.4.1 Origin of Social Ecology

It was when the social science disciplines like sociology, psychology, demography and economics were still young that social ecology as a field of study found its roots in the social and behavioural sciences. While searching for theoretical concepts and methodological frameworks, researchers used to select concepts from ecology for the study of human communities in the late nineteenth and early twentieth centuries. While doing research, the researchers used the main concepts and explanatory structures of the biological theory of evolution to the changes in human communities. The basic unit of analysis in plants and animal communities was also used as the basic unit for analysis in social and behavioural sciences. In the beginning, the scope of human ecology was the scientific analysis of human communities. The development of human communities in general and the differences between various

human communities were explained on the basis of ecological concepts.

The environment around us like waterbodies and seashores. Deserts, grasslands and forests are the habitat of a large variety of living forms. Apart from this, the biosphere, the planet's complete system, is made up of the whole complex ecosystem. Next to the concept of community, concepts like dominance, succession, cooperation, competition, natural areas, and centralization/decentralization were adopted from the theory of evolution. They were ecological concepts that are now used to explain processes of human development and the structure of societies. Roderick McKenzie, therefore, defines human ecology as the "study of the spatial and temporal relations of human beings as affected by selective, distributive and accommodative forces of the environment". The core principle of social ecology is that ecological problems stem from social issues and cannot be resolved without addressing them. It emphasizes that nature offers ethical principles, as ecosystems thrive by maximizing diversity and interaction while minimizing hierarchy and domination.

"The root causes of environmental problems are such as trade for profit, industrial expansion, and the identification of "progress" with "corporate self-interest." Social hierarchy and class legitimize our domination of the environment and underpins the consumer system. The massive oil spills that occurred over the past, the extensive deforestation of tropical forests and magnificent ancient trees in temperate areas, and vast hydroelectric projects that flood human habitats are to cite only a few problems which are reminders of the real ecological future of the planet.

1.2.5 Environmentalism

Environmentalism is a heterogeneous worldwide social and political movement, that

works towards the preservation, sustainable management and restoration of natural environment. The term Environmentalism is generally used to denote particular actions or advocacy to limit negative human impacts on the environment. The roots of environmentalism can be traced back to ancient civilizations. Contemporary environmentalism is associated with a range of social and political movements that have emerged to promote certain specific environmental philosophies and practices. It is a political and ethical movement which seeks to improve and protect the quality of nature. This is done by making changes in human behaviour that are harmful to the environment.

It aims to fulfill human wants, including spiritual and social needs, for its own sake. Environmentalism has always been rooted in indigenous and native cultures. They depend on nature for their existence and living, and hence, they respect nature and follow traditional practices that maintain an ecological balance. Environmentalism claims that all living things other than human beings and the natural world deserve consideration while formulating social, economic, political and moral policies. Environmentalism is used as a general term to refer to concern for the environment and particularly actions or advocacy to limit negative human impacts on the environment.

It is a political and ethical movement that seeks to improve and protect the quality of the natural environment through changes to environmentally harmful human activities. The movement aimed at achieving this through various social, economic and political organizations that were thought to be necessary for the arrest of the conducive treatment of nature by humans through a reassessment of humanity's relationship with nature. The organizations that were established during the late 19th to the mid-20th century were primarily constituted of

middleclass groups concerned with nature conservation, wildlife protection and the pollution created by industrial development and urbanization.

The contemporary environmental movement arose primarily from concerns in the late 19th century about the protection of the countryside in Europe and the wilderness in the United States and the health consequences of pollution during the Industrial Revolution. It is a movement and ideology that aims to reduce the impact of human activities on the earth and its various inhabitants. This movement has evolved to build resilience towards the effects of global climate change, in order to build a society capable of adapting to a rapidly changing earth and finding sustainable ways to live in it. The environmentalist movement is constituted of representatives from a wide range of non-governmental organizations from all over the world from the global to the grassroots level. It includes individuals from the corporate world, religious and spiritual people as well as government officials.

The major problems that alarm environmentalists are the rapid increase in the worldwide population and increasing demands for natural resources and energy, leading to an increasing pressure on the natural system and increasing alienation of modern humanity from their natural environment. Environmentalism seeks to preserve the air and water which we all depend upon, as well as to conserve and protect our entire ecosystems, compromising animals, plants, and humans found in different habitats throughout our planet. It also encompasses theories about nature and causes of environmental problems, moral views about our relation to nature, and attempts to define and bring about an environmentally sound society.

Along with preserving natural elements, this movement primarily seeks to protect

the earth's resources that humanity requires for its survival and development. The most pressing issue in our global society today is climate change. This includes the issues of air and water pollution, water scarcity, food insecurity, deforestation, rising sea levels, loss of species and habitat, biodiversity, and loss of indigenous environmental knowledge and traditions.

1.2.5.1 Civic Environmentalism

Civic environmentalism is a type of social action where citizens come together to solve environmental problems with a view to improving their communities. Its goal is to ensure a sustainable community for our future generation through participation in the democratic process. It is a regional, local, or individual response to environmental issues. It is a type of social action where citizens cooperate and work together to solve environmental problems as a means to improve the communities they live and work in.

The ultimate goal of civic environmentalism is to ensure a sustainable community or movement through collective participation. In this case, sustainability can be defined as a lifestyle made up of decisions that protect the natural environment and drive social and technological innovation to solve environmental problems. These lifestyle decisions are intended to preserve the ability of future generations to achieve the same quality of life. Civic environmentalism adopts a global, regional and local role of advocacy, awareness and education through participation and collective action. The countries and people that have done the least to contribute to climate change are the ones that will be most affected by its devastating effects and we see this already everywhere around the world, including the USA. Civic Environmentalism is a recent movement that developed when environmental protection efforts failed to produce positive results.

1.2.5.2 Contemporary Environmentalism

Contemporary environmentalism started to control or reduce human action that exploits the resources of the earth. It is associated with a range of social and political movements that have emerged to promote specific environmental philosophies and practices. Everywhere in our society environmentalism has been rooted in indigenous and native culture that has protected nature through traditional and religious beliefs and practices. Our native population comprises only 4 to 5 percent of the world's population, while they manage about 11 percent of the world's forests. By doing so, they maintained 80% of the planet's biodiversity.

The first worldwide discussion on environmental issues was held at the United Nations conference in Stockholm in 1972 which was attended by 114 nations. The Paris Agreement 2015 is a landmark international accord that was adopted by 195 UN member states to address climate change and its negative impacts. In 2017, the United States of America announced its withdrawal from participation in the Paris Agreement.

The popular environmental movement began with a number of high-profile events that roused public awareness of environmental issues in the 1960s.

The important environmental event which received great attention was on the 31st of January 1969, an oil spill took place off the coast of Santa Barbara, California.

On 22nd June 1969 the Cuyahoga River in Cleveland, Ohio, caught fire because of the chemicals floating on the surface of the river

By the 1960s and 70s, as scientific knowledge of the causes and consequences of environmental degradation was becoming more extensive and sophisticated, there was increasing concern among some scientists, intellectuals, and activists about Earth's ability to absorb the detritus of human economic activity and, indeed, to sustain human life. This concern contributed to the growth of grassroots environmental activism in a number of countries, the establishment of new environmental non-governmental organizations, and the formation of environmental ("green") political parties in a number of Western democracies. As political leaders gradually came to appreciate the seriousness of environmental problems, governments entered into negotiations in the early 1970s that led to the adoption of a growing number of international environmental agreements.

1.2.6 Environmental Justice

During the midnight of December 2, 1984, in Bhopal, India, more than 40 tons of Methane Isocyanide gas leaked from a pesticide plant, immediately killing at least 3,800 people and causing significant morbidity and premature death for many thousands of people. The company immediately tried to dissociate itself from their legal responsibility. However, due to the intervention of the Supreme Court, they paid compensation, which is relatively small amount, ignoring the long-term health consequences of exposure and the number of victims. Did they get adequate justice from this manmade disaster? The population that suffered was mostly poor and vulnerable minorities. The monetary compensation they got was not enough to compensate for the loss they suffered in health, family

and livelihood. Therefore, it is important that one should know what environmental justice is and how it is related to human life.

Environmental justice means equal protection and meaningful involvement of all people regardless of race, religion, sexual orientation, gender identity, disability, national origin or income with respect to the development, implementation and enforcement of environmental laws, regulations and policies as well as an equitable distribution of environmental benefits. It is based on the principle that all people have a right to be protected from environmental pollution and get access to clean air, water and soil and to live and enjoy a clean and healthy environment.

“The fair treatment and meaningful involvement of all people regardless of race, colour, national origin or income with respect to the development, implementation and enforcement of environmental laws, regulations, and policies” (The U.S. Environmental Protection Agency (EPA))

Following the core definition from the Environmental Protection Agency (EPA), environmental justice seeks equitable treatment and involvement of people of all segments of society in the development, implementation and enforcement of environmental programmes, laws, rules and policies. Therefore, the concept of environmental justice with more political connotation implies justice on a distributive, procedural and precautionary level. For distributive justice, an equal distribution of costs of environmental risks and benefits of environmental values across demographic and geographic scales is required. Considerable importance is placed on procedural justice. Procedural justice is defined as the extent to which the political decision process is applied fairly and how people are empowered to

control and influence the decisions that affect them. For example, higher fines should be imposed for dumping waste in public places.

With challenges like globalization, urbanization, and environmental degradation—such as ozone depletion, water scarcity, biodiversity loss, deforestation, and climate change—the concept of environmental justice has expanded to include both generational and international dimensions. Generational environmental justice emphasizes the responsibility of the present generation to ensure a sustainable environment for future generations, preventing harm for short-term economic gains. As environmental resources become increasingly scarce and the burden of hazardous conditions grows in developing countries due to affluent nations, international environmental justice has become a critical issue, prompting many countries to adopt the concept.

Chlorofluorocarbons (CFCs) emitted from refrigerators, air conditioners, fire suppression systems in aircraft, aerosols, and other sources escape into the upper atmosphere, where they damage the ozone layer. In 1985, scientists discovered significant ozone depletion over the South Pole, creating an ozone hole. A major concern is that the area of high depletion could expand to densely populated regions, increasing exposure to harmful ultraviolet rays and radiation.

Environmental justice is a social movement aiming to address the unequal distribution of environmental hazards, particularly affecting poor communities and minorities. It asserts that everyone deserves to live in a clean, safe environment, free from industrial waste and pollution that can harm their health and well-being. From a

policy perspective, environmental justice ensures that all citizens, regardless of their socio-economic or minority status, receive equal protection from environmental hazards by the government.

1.2.6.1 History of Environmental Justice

Environmental justice started as a grassroots activism focusing on the rights and liberties of people of colour and low-income communities in response to the disproportionate burden of industrial pollution and lack of regulatory enforcement. It started during the early 1980s in the United States, where minorities and underprivileged people lived and faced disproportionate levels of environmental burdens.

The origin of the environmental justice movement can be traced to the United States in the 1980s. During this period, several local protests took place in which inhabitants living in poor areas and ethnic minorities were involved. They protested against the imposition of new waste dump facilities in their locality. They suffered a lot due to the industrial discharges produced by the industries set up in their municipality. These earlier protests were not led by any environmental groups, but by the local citizens concerned about developing the areas where the conflict was taking place. In the first place, these protests were carried out in isolation, but later, it got a national impact.

Another such movement took shape in 1982 in Warren County in North California, where the African American community resided. This area was selected as the landfill site for hazardous waste. This was followed by illegal dumping of polychlorinated biphenyl oil along the community's roads. The events in Warren County led to the coining of the term, environmental racism. This means minority communities are targeted for the

placement of waste generating or waste storage facilities and discriminated against in the enforcement of environmental standards.

Thus, environmental justice, environmental equity and environmental racism are all different phrases that describe and explain central features of the environmental movement. It focuses on the disparate impact of hazardous waste sites and other polluting facilities located in or near distressed neighbourhoods with a high concentration of ethnic minorities and economically disadvantaged populations. Since the concepts and contexts associated with each of these terms are complex and multidimensional, the meaning of environmental justice and injustice can change over time and differ considerably.

1.2.7 Environmental Conservation – Necessity and Challenges

We are not able to lead a healthy life without the presence of a healthy environment and ecosystem. We have to take into consideration both the living and non living components in the environment and their interaction with human life. In order to protect our earth from getting more and more polluted, we have to take immediate steps to conserve it from further damage we are causing to our mother earth. In this context, we have to address first our biodiversity or life-supporting system. We depend on our environmental biodiversity for our food, water, air, and climate for our life and living. Biodiversity is the existence of various life forms on our ecosystem. Our earth contains a variety of species of plants and animals, microorganisms, and terrestrial, marine and freshwater organisms that live in a particular ecosystem on the entire earth. For a diverse ecosystem we need a greater number of species. We have wetlands, which reduce global warming and absorb carbon and pollutants from water, trees and

plants, fertilising the soil by breaking down the organic material from the soil. Mass Extinction of the species from the earth is the gravest crisis faced by our earth today. For a healthy and sustainable ecosystem we have to give more concern to environmental conservation to protect our planet.

Environmental conservation is a protective and management programme of natural resources like air, water, soil, plants, and animals. It seeks to maintain and protect the diversity and integrity of ecosystem as well as the services it renders to the human species and other living organisms in the nature. It also involves the protection of degraded habitats, restoring them from further damage and sustaining the protected environment for the use of future generations as well. Environmental conservation and sustainability aim to protect our natural habitat and our relationship with it. Environmental conservation is the practice of preserving the natural habitat while sustaining the practice of improving the environment for human health.

Environmental conservation helps to enhance the quality and availability of natural resources. It supports the livelihood and culture of human beings as well as other living and non-living organisms in nature. It also preserves genetic diversity and prevents the extinction of rare species from the universe. It reduces the risks and impacts of natural disasters and protects nature from damage. It controls the effects of climate change by storing carbon and regulating temperature.

The conservation of our environment should be sustainable for the sake of the next generation. Sustainability helps the individual to enhance their quality of health and life by providing access to clean drinking water, better sanitation facilities, energy, fuel, food, a better health care system and other basic human services. Better health

helps to reduce poverty and inequality by providing opportunities for a better work environment, income, empowerment and social inclusion. In a safe environment, we can do creative innovation by encouraging safe technologies, practices and services. It helps to strengthen good governance and democracy by promoting transparency, equal and collaborative participation of all citizens, accountability and promotion of human rights and peace.

All over the world, environmental conservation is an important topic. Human existence depends on a healthy environment and ecosystem. Plastic waste, carbon emissions, smog, and pollution are just the tip of the iceberg. To ensure a thriving Earth for future generations, we must conserve the environment by reducing energy use, choosing sustainable products, and keeping cities and water bodies clean. Governments, non-governmental agencies, as well as private organizations are contributing to conserving nature and its biodiversity. As a result, nations all over the world have enacted various Acts, policies and human restrictions for conserving nature and its biodiversity. All human beings have the responsibility of protecting our environment by utilizing its resources properly.

We all know that our environment is under greater pressure than before. The official report is that more than 8000 species of fish, amphibians, reptiles, mammals and birds are facing the threat of extinction and more than 9600 species of trees are in danger of extinction. Habitat loss is another great threat that is faced by the world's biodiversity largely because of human activity and population increase. Illegal wildlife trade has become a global threat to some of the species. Apart from this, the accumulation of plastic in the water sources of the world is at an alarming rate. An estimated eight million tons of plastic are swept into the seas and oceans every year mainly through rivers

and coastal urban centers. These plastics pose a huge danger to sea life, with over 500 marine species.

The main challenge is the creation of awareness among the masses that the environment in which we live is actually not our own creation. It is God-given, and we have to share it not only with the next generation but also with the coming generations as well. There is an urgent need to educate the masses regarding the consequences of environmental pollution and the degeneration of the earth.

Every individual should be made aware of how they are polluting the environment and how we can improve environmental health through practising the 3 R's- Reduce, Recycle, and Reuse. If we all took little steps, we would make our way towards major progress. This can be achieved by paying more attention to what we buy and not using resources unnecessarily. We must also remember to recycle and dispose of our chemical drugs properly so that the ground and bodies of water do not get poisoned.

Recap

- ◆ Nature encompasses all living and non-living elements, existing independently of human creation, and is fundamental to our existence.
- ◆ Human development has historically led to environmental degradation, shifting from a balanced relationship with nature to resource exploitation.
- ◆ Ecology is the scientific study of interactions between organisms and their environment.
- ◆ An ecosystem is a functional unit comprising all organisms in a defined space, interacting with each other and their physical environment.
- ◆ Ecosystems consist of abiotic components, producers (autotrophs), consumers (heterotrophs), and decomposers.
- ◆ Ecosystems are categorized as natural (terrestrial and aquatic) or artificial/ domesticated.
- ◆ Biodiversity, or biological diversity, is the variety of life on Earth, encompassing genetic, species, and ecosystem diversity.
- ◆ India, despite its small land area, boasts a significant portion of global biodiversity and several biodiversity hotspots.
- ◆ Biodiversity is crucial for ecosystem services, food security, and providing therapeutic and industrial resources.
- ◆ Social ecology examines the interactions between human societies and their environments, highlighting how social issues contribute to ecological problems.
- ◆ Environmentalism is a diverse movement advocating for the preservation, sustainable management, and restoration of the natural environment.

- ◆ Civic environmentalism involves citizens working together to address environmental issues within their communities.
- ◆ Contemporary environmentalism has evolved from historical concerns to address modern challenges like climate change.
- ◆ Environmental justice seeks equitable treatment and involvement of all people in environmental laws and policies, regardless of demographics.
- ◆ The Bhopal gas tragedy exemplifies the need for environmental justice, highlighting the disproportionate impact of environmental disasters on vulnerable populations.
- ◆ Environmental conservation is essential for maintaining a healthy ecosystem, as biodiversity supports human life by providing food, water, air, and climate stability.
- ◆ Conservation efforts focus on protecting natural resources, preventing species extinction, and sustaining habitats for future generations.
- ◆ Individual and Collective Responsibility is key—governments, organizations, and individuals must work together to protect and restore the environment.

Objective Questions

1. Who first used the term “ecology”?
2. What does “oikos” mean in Greek?
3. What are the four basic components of an ecosystem?
4. What process do autotrophs use to produce food?
5. What percentage of the Earth’s surface does the marine ecosystem cover?
6. What are the three types of biodiversity?
7. How many global biodiversity hotspots does India have?
8. What is the term for animals that eat only plants?
9. What does social ecology primarily focus on?
10. Who is a key thinker in the field of social ecology?
11. What is the goal of civic environmentalism?
12. How many UN member states signed the Paris agreement?

13. Which Indian city was the site of a major gas leak in 1984?
14. What does environmental justice aim to achieve?
15. What is the definition of a detritivore?
16. What is biodiversity?
17. What are the three R's of environmental conservation?

Answers

1. Ernst Haeckel
2. House or dwelling place
3. Abiotic, producers, consumers, decomposers
4. Photosynthesis
5. 70%
6. Genetic, species, ecosystem
7. Four
8. Herbivorous
9. The interaction between human societies and their environments
10. Murray Bookchin
11. To ensure a sustainable community through citizen participation
12. 195
13. Bhopal
14. Equal protection and meaningful involvement in environmental policies
15. An organism that feeds on dead organic material.
16. The variety of species in an ecosystem
17. Reduce, Recycle, Reuse

Assignments

1. Compare and contrast the characteristics of terrestrial and aquatic ecosystems, providing specific examples for each.
2. Discuss the significance of biodiversity in maintaining ecological balance and supporting human well-being, with particular reference to India's biodiversity hotspots.
3. Examine the role of civic environmentalism in promoting sustainable practices at the local level, using case studies to illustrate your points.
4. Explain the importance of environmental justice with reference to Bhopal Gas Tragedy in India.
5. Explain the role of environmental conservation in sustainable development.

Suggested Reading

1. Bookchin, M. (2007). *Social ecology and communalism* (Illustrated ed.). AK Press.
2. Bookchin, M. (1982). *The ecology of freedom: The emergence and dissolution of hierarchy*. Cheshire Books.
3. Stokols, D. (2018). *Social ecology in the digital age: Solving complex problems in a globalized world*. Academic Press.

Reference

1. Mukerjee, R. (2014). *Social ecology*. D.K. Printworld.
2. Guha, R. (Ed.). (1994). *Social ecology*. Oxford University Press.
3. I, Sundar. (2012). *Principles of environmental sociology*. Saujanya Books.
4. McKenzie, R. D. (1924). The ecological approach to the study of the human community. *American Journal of Sociology*, 287-301

BLOCK

Ideological Perspectives on Environment

Environmental Views—Buddhist, Jainist, Indigenous, Gandhian

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ understand the Buddhist, Jainist, Indigenous and Gandhian perspectives on environment
- ◆ examine how the ancient world preserved and protected the environment
- ◆ discuss the need for environmental sustainability in the present scenario

Prerequisites

“The world grows smaller and smaller, more and more interdependent...today more than ever before life must be characterized by a sense of Universal Responsibility not only nation to nation and human to human, but also human to other forms of life”. (His Holiness the Dalai Lama). This idea of ‘Universal Responsibility’ is a key thread that connects the different views we’ll be studying. We’ll see how the Buddhist concept of interdependence, the Jainist principle of non-violence, the Indigenous understanding of humans as part of nature, and Gandhi’s philosophy of simple living all emphasize our interconnectedness with the world around us. We’ll examine how each of these traditions calls for a deep respect for all living beings and a commitment to protecting our planet. It is to be kept in mind the fact that it is only the human species who have got complete control over nature and everything on earth- living or non-living giving us a great responsibility of protecting the environment from getting damaged and passing on to our next generation with whom we have to share our earth.

Keywords

Four noble truths, Thirthankaras, Karma, Five elements of nature, Sacred groves

Discussion

From time immemorial environmentalism existed in this world. It has its primary roots in the indigenous culture and tribal culture. They depended on nature for their existence and subsistence. For this reason, they respected nature and followed traditional practices of revering and protecting nature, which have helped in the ecological balance. This type of nature worship was followed by the ancient saints and thinkers like Lord Buddha, Jain, and Gandhiji who gave due importance to the preservation of nature and environment. Here, we are going to understand different perspectives in the environment. The unit will also look into how Sri Buddha perceives nature, how Jainism followers view the environment, how the Indigenous populations perceive the environment and how Gandhi looked at the environment in their respective ways.

2.1.1 Buddhist Perspective on Environment

First, we will try to understand the Buddhist perception on nature in order to determine the role of Buddhist doctrine and practices in the conservation of natural resources. During the days of Buddha, people were not aware of the environmental issues or concerned about the global environmental changes that may affect the earth. So, he did not give any specific teachings on the subject. But Buddhist monks, some NGOs and academicians in Thailand believe that Buddhist values are positive forces in nature conservation. He did recognize that the behavior of his followers could affect the local communities negatively. Hence, he set

certain rules and regulations for his nuns and monks that they should never pollute the running water near their habitat where people would want to wash or drink. Similarly, he also laid down rules that monks and nuns should not disrupt the established habitat of any creatures or kill other living creatures while building houses.

Buddhism as a religion was founded in the northeastern parts of India about 2,500 years ago by Siddhartha Gautama, later known as Lord Buddha or the ‘enlightened one’. He is considered enlightened because he discovered the “Four noble truth” about life. They are:

1. The truth of suffering,
2. The truth of the origin of suffering,
3. The truth of the cessation of suffering and
4. The truth of the way leading to the cessation of suffering.

The last truth is also known as the Eight-fold Path which consists of

1. Right understanding,
2. Right thought
3. Right speech
4. Right action
5. Right livelihood
6. Right effort
7. Right mindfulness
8. Right concentration

According to Lord Buddha, this path will

ultimately lead to true happiness and freedom from all suffering which means emancipation from the cycle of being born, getting old, being sick and dying. It is generally accepted that through these teachings, Lord Buddha provides a system of analytical thinking, critical reflection, reasoned attention and thinking by way of causal relation or by way of problem-solving, which helps to guide people towards living a balanced and harmonious life with one another and with nature. From a Buddhist perspective, environmental problems are caused by greed and people's endless desire. These are guidelines about how to act properly. Two of these Precepts have a direct bearing on a Buddhist attitude to the environment:

Buddhists should abstain from taking life, and this includes any form of life. This is linked to the idea of rebirth, which can include the possibility of being reborn as an animal. Rather than taking life, Buddhists are encouraged to show compassion to all creatures and believe that all life forms are special, not just human beings. This first Precept relates to the concept of ahimsa. This is based on the idea of "do no harm". A Buddhist may argue that destroying the natural habitats of animals is taking away something that does not belong to us and, therefore, breaks the second Precept. Therefore, by not acting thoughtlessly, Buddhists can protect the environment from destruction and exploitation.

Buddhism had a long and close relationship with nature and, in particular, forests. He lived closely with nature and taught his followers to take care of nature. He taught his disciples to abstain from taking the life of living forms, which is based on his love and kindness to nature and can be seen as an environmental ethic to conserve animals and plants. Lord Buddha was supportive of water conservation. He prohibited his disciples from disposing waste in canals or rivers, which was considered a sinful act.

Deforestation is unacceptable in Buddhism, and it is important to show respect for trees that provide food and shelter for all forest dwellers.

Buddhism emphasizes the importance of human harmonious coexistence with nature. Buddhism also emphasizes compassion, respect for all living creatures and harmony between living beings that share the same planet. These ideas are linked to the attitude of respect for nature amongst his disciples. They believe that Dharma will provide values essential to self-reliance and to nature conservation. In Buddhist literature nature was never treated as something 'outside' the human realm, but rather as an extension of human love. All of the above teachings demonstrate that Lord Buddha had a vision for environmental protection and conservation as he taught his followers to love and respect nature. It is also Buddha's teaching that one should love not only human beings but also animals and plants.

Buddhist monks and academicians believe that Buddhist values are positive forces that help in nature conservation. Buddhism teaches its followers to refrain from greed and the desire to be rich. They should be satisfied with meeting basic needs. He perceived spiritual values as more meaningful than material values. It is also Buddha who taught that humans should live in an appropriate environment, which not only means a good neighborhood but also a natural environment. Buddha's teachings emphasize the importance of coexisting with nature, rather than conquering it.

Following his teachings, many monks have changed the physical environment of their temples by growing trees and plants on the temple premises. This, they believe, will give them a peaceful and healthy place to stay and practice Dharma and meditation. By planting trees, they not only will get fruits as yield but also make the environment green,

make the land fertile, and the air healthy. At the same time, their relationship with nature will be strong. According to Buddhists, there must be a relationship with human beings as well as with other fellow beings and finally with the whole universe, to create a balance and, harmony and unity of the whole. According to ecologists and nature conservation experts as embodied in Buddhism, what is urgently needed is to stop the destruction of nature, which is happening now, if we want to continue life on earth.

2.1.2 Jainist Views on Environment

Jainism is one of the oldest living religions. The term Jain means “follower of the Jinas.” The Jinas, or spiritual victors, are human teachers who attained omniscience. They are also called Tirthankaras (ford-makers), those who help others escape the cycle of birth and death. The twenty-fourth Tirthankara, called Mahavira, was born in 599 B.C. At the age of 30, he left home on a spiritual quest. After 12 years of trials and austerities, he attained omniscience. Eleven men became his ganadharas, or chief disciples.

Jainism is one of the most environment-conscious religions in the world. This religion is based on non-violence towards all living beings. This religion is believed to have its roots in Indus Valley Civilization and later in Vedic Civilization. Jainism is fundamentally considered a religion of ecology or which has turned ecology into religion. This has enabled Jains to create an environment-friendly value system and a code of conduct. This has prompted Jains to look positively and enthusiastically towards environmental causes. They are in the forefront of bringing greater awareness and putting into practice their cardinal principles on ecology. This religion was established in India between the 9th and 6th century B.C. Today there are over 4 million followers of Jainism in

India and around the world.

2.1.2.1 Nature and Jainism

In Jain literature, nature is depicted uniquely. The physical environment plays a key role in the Jaina world view which makes a direct connection between its cosmology and its ethical system. It says that the five elements of nature - Prithvi, Jal, Agni, Vayu and Akash are living creatures and must be treated as such. These five types of elements form the five classes of beings: vegetation, trees and plants, fungi, and animals. Jains believe that life takes many interchanging forms. Life forces exist in the four elements of earth, water, and fire, as well as in the microorganisms, plants and animals. At the time of death, this force will move from one body to the next, depending on its karmic constitutions. The life force attached to an earth body moves very slowly whereas the life force attached to an insect or microorganism might move on very quickly. This uniqueness of this religion prohibits its followers from harming any creatures. This principle has eventually led to a limited consumption of food and has helped protect our environment.

The goal of Jainism entails an elevation of consciousness about Karma, which leads to rebirth in a human being. This compels them to adopt a non - violent life style that they believe will liberate them from all karmic entanglements, which in the final stage ascends them to the realm of perfection where in one dwell eternally. The twenty-four great teachers or tirthankaras of Jainism are said to have attained this state along with a large number of saints. Lord Mahavira, the 24th and last tirthankara, clearly warned against contamination of any natural resources as not desirable in any case. The Jainism followed nonviolence by restraining themselves from eating roots like potatoes, radishes, carrots, ginger, etc., especially during the four months of the rainy

season. During this period, even the monks will not move from one place to another in order to avoid unnecessary killing of any forms of life. For example, on a rainy day, they observe fasting as they cannot walk on the wet streets to get food for themselves.

Jain scriptures motivate people to consume less and emphasize Tyaga or sacrifice. They preach minimal consumption of consumables. One of their vows restricts them from unlimited consumption of natural resources. It preaches its observers to learn and educate themselves towards limiting their consumables. The practice of nonviolence or ahimsa in Jainism sets an individual on the path of spiritual purification and ascends towards liberation. This remarkable faith gives the message that presents interesting challenges to the development of an ethical outlook. They follow vegetarianism and will not take up any profession that entails harm in any way to living things. They are careful about their professional choice. Virtually none will be involved in the trafficking of animal products. Most of them engage in jobs that involve the production and sale of items, cotton products, and diamond business, as well as accounting and banking. Many prosperous Jains have used their wealth to support the Jain monks and nuns in India and contribute to the construction of Jaina temples.

2.1.3 Indigenous Perspective

India is a country with a large ethnic society, immense natural resources and rich biodiversity. As per studies, India has 227 ethnic groups comprising 573 tribal communities. India has the second largest tribal population in the world after Africa. These communities belong to six major racial groups – Negroid, Proto Australoid, Mongoloid, Mediterranean, Brachycyphals and Nordic, settled in different parts of India. India has the second largest place in tribal population in the world after Africa.

Most of these ethnic tribes live closer to the forest area and have managed to conserve the biodiversity of their localities from time immemorial. Forest gives them shelter and food for their livelihood, fuel for burning and water for drinking. Thus, the long duration of their living in Forests has developed a kind of affinity with forests.

According to Arora 1991, there are 45000 species of wild plants, out of which 9500 species are ethnobotanically important species. Of these 7500 species are in medical use for indigenous health practices. About 3900 plant species are used by tribals as food (out of which 145 species comprise roots and tubers, 521 species of leafy vegetables, 101 species of bulbs and flowers, and 647 species of fruits). Also, 525 species are used for fiber, 400 species are used as fodder, 300 species are used in preparation and extraction of chemicals which are used as naturally occurring insecticides and pesticides, 300 species are used for extraction of gums, resins, dyes and perfumes. A botanical survey of India has reported 46,214 plant species are found in India. Of these 17,500 represents flowering plants. Thirty-seven of these are endemic and found in the northeast of India. In India, 11.95% of the world's biodiversity is conserved by ethnic people.

All over the world, indigenous people essentially depend on the environment and natural resources for their livelihood and survival. In India, the indigenous or tribal population also lives near forests or in interior forests. This helps them to conserve the biodiversity and natural resources of the locality during their lifetime, mainly through their traditional belief system, animism, conservation of sacred groves, wildlife, etc. In India, Indigenous communities are known by different names like aboriginal communities/Indigenous communities; Adivasi; Janjati; Scheduled Tribes (ST), etc., all of which are variations of the term Indigenous communities.

Indigenous people rely on forests and their resources for daily life, primarily using pastoral and hunter-gatherer methods for survival. They view nature—trees, rivers, stones, and hills—as sacred beings rather than inanimate objects, striving to protect them as deities with equal rights to life. A good example of such environmental worship and conservation is the existence of sacred groves, where there is a thick growth of plants and trees in which all forms of biodiversity exist. Such sacred groves are protected and worshipped not only by the tribal people but also by the local communities. Such sacred groves can be seen in almost all the traditional ‘Tharavads’ or ancestral homes of Hindu families in Kerala, even today. Sacred groves are small patches of forest-like area made of trees and shrubs which are believed to be the abode of snake gods called ‘Nagas’, and it is considered to be the duty of each family to protect the sacred groves located in their premises. In such cases, along with the worship of snake Gods, the protection of sacred groves is also taking place. In such groves, all kinds of birds, reptiles, butterflies, insects and all sorts of plants and trees grow in abundance without fearing destruction by human beings.

According to Alison A. Ormsby and Shonil A. Bhagavat, ‘India with its diversity of cultures and traditions has over 100,000 sacred forests’. Such sacred groves or forests have cultural and spiritual significance for the indigenous communities who care for and protect them. This magico-religious belief of indigenous communities in sacred forests as the habitat of gods and goddesses leads to the conservation of such biodiversity in their natural habitat. These sacred places have rich biodiversity and provide the ecosystem for the communities that have protected them. Moreover, they are conserving a wide variety of plants and crop plants, wild fruits, seeds, bulbs roots and tubers by indigenous people as they are depending upon them for their survival. Thus, India’s indigenous people

have played a vital role in preserving the biodiversity of several forests, their flora and fauna in the form of sacred groves, preventing them from extinction.

2.1.4 Gandhian Perspective on Environmentalism

“I need no inspiration other than Nature’s. She has never failed me as yet. She mystifies me, bewilders me, sends me to ecstasies”. **Mahatma Gandhi**

“The Earth has enough resources for our needs but not for our greed.” Gandhi. This most often quoted phrase by Gandhi depicts his concern for nature and the environment. Much before the convening of any of the international conferences like the Stockholm Conference of 1972 or the Rio Earth Summit of 1992, they were convened much later than the concerns raised by Gandhiji about the environment and its effects. The concern was evident in his speeches, writings and his messages to the workers. It is apt to note that he was the “World’s early Environmentalist in vision and practice”. Major environmental movements in India, like the Chipko movement led by Chandi Prasad Bhatt and Sunder Lal Bahuguna and Narmada Bachao Andolan by Baba Amte and Medha Patkar, were inspired by the Gandhian perspective.

Gandhiji has cautioned the world about the problems of large-scale industrialization much before anyone openly talks about it. In his work Hind Swaraj, written in 1909, warned us about the dangers the world is facing today in the form of environmental destruction and the threat to the planet. Gandhi’s Hind Swaraj was a warning against growing consumption, materialism and the wrong model of development. Gandhiji was influenced by the Jainist perspective that considers nature as a living entity and

exhorts human beings to continually purify themselves by respecting diverse life forms. Gandhiji considered the earth as a living being. He expressed his ideas in terms of fundamental laws such as Cosmic Law and the Law of Species. As per the Cosmic Law, the entire universe is a single entity. Nothing could malfunction outside the threshold limits built into the grand system that includes both living and non-living phenomena. For him, nature has enough to satisfy everyone's needs but not to satisfy anybody's greed.

According to Gandhiji, since humans are the custodians of all creations, we should respect their rights and encourage diversity. That is why he considered taking resources more than the required quantity as theft. His social, economic and political ideas were based on this understanding of the interdependence of the whole universe. His ideas can be seen in all his writings. His idea on Satyagraha, based on truth and non-violence, simple life style and development, shows his views on the possibility of sustainable development without harming nature and other fellow beings.

According to him, “the universe was structured and informed by the cosmic spirit, that all men all life and indeed all creations were one”. As per the Law of Species, Gandhiji believed that without the cooperation and sacrifice of both human and non-human beings, evolution is not possible.

For him, taking resources that are more than what is required is theft. Gandhiji's principles have evolved from his vast reading of the religious traditions of Hinduism, Jainism, Christianity and Islam. According to Arne Naess, the pioneer of deep ecology, ecological preservation is non-violent in nature. Gandhiji's idea of nonviolent satyagraha was first used effectively in the Chipko movement to protest against deforestation. Gandhian techniques like padayathras were conducted to save nature. Environmental activists like Chandi Prasad Bhatt, Baba Amte, Sunderlal Bahuguna, Medha Patkar and others used nonviolence and self-sacrifice as conflict resolution techniques of Gandhiji.

Gandhiji warned the world about the problems of large-scale industrialisation, since it would gradually lead to the destruction of the environment. In his book Hind Swaraj written in 1909, Gandhiji focussed on the production by the masses rather than the mass production, which would result in a new economic order. Himsa against a living being makes complete self-realization impossible. The ancient Indian religious philosophy, thought, action and practices point to a harmonious relationship between man and other living beings. Gandhi was an ardent believer in the philosophy of Vedanta, a combination of spiritual faith and scientific thought.

Recap

- ◆ Environmentalism has existed since ancient times, with its roots in indigenous and tribal cultures that revered nature.
- ◆ Buddhism emphasizes harmony with nature, advocating non-violence, compassion, and minimal environmental impact.
- ◆ Lord Buddha encouraged respect for all life forms and prohibited pollution of natural resources.

- ◆ Jainism promotes environmental consciousness through non-violence (Ahimsa) and limited consumption of natural resources.
- ◆ Jains believe that earth, water, fire, air, and space are living beings and should be protected.
- ◆ Indigenous communities in India have played a crucial role in biodiversity conservation through sacred groves and traditional practices.
- ◆ Sacred groves are protected patches of forest worshipped by indigenous and local communities, contributing to ecological conservation.
- ◆ Mahatma Gandhi emphasized simple living and warned against over-industrialization and materialism.
- ◆ Gandhi's philosophy of sustainability and non-violence influenced major environmental movements like the Chipko Movement.
- ◆ All these perspectives highlight the importance of maintaining harmony between humans and nature for sustainable living.

Objective Questions

1. Who is considered as the founder of Buddhism?
2. Which fundamental Buddhist principle promotes non-violence towards all living beings?
3. What is the main environmental teaching of Jainism?
4. Which major environmental movement in India was inspired by Gandhian principles?
5. What is the significance of the Five Great Elements in Jainism?
6. According to Mahatma Gandhi, what is the root cause of environmental problems?
7. Why do Jain monks avoid eating root vegetables?
8. Which Buddhist principle promotes mindful consumption and environmental responsibility?
9. Which environmental ethic is deeply embedded in Jain philosophy?
10. What does Gandhi's idea of "Sarvodaya" emphasize?

Answers

1. Siddhartha Gautama
2. Ahimsa
3. Non-violence and limited consumption
4. Chipko Movement
5. They are considered living beings and must be respected
6. Greed and overconsumption
7. To prevent harm to microorganisms in the soil
8. Right Livelihood
9. Non-Violence
10. Development for the upliftment of all, including nature

Assignments

1. Gandhiji considered ‘taking resources more than the required quantity as theft’ Elaborate.
2. Discuss how Buddhism, Jainism, Indigenous traditions, and Gandhian philosophy contribute to environmental conservation.
3. Elaborate on the way Buddhism preserved the environment.
4. Discuss the Jain’s perspective on environmental protection.
5. Analyse the impact of Gandhian philosophy on modern environmental movements in India.
6. Compare and contrast the environmental perspectives of Jainism and Buddhism.
7. Explain how indigenous communities help in preserving biodiversity, and what challenges they face in modern times.

Suggested Reading

1. Arora, R. K. (1991). Conservation and management concept and approach in plant genetic resources. In R. S. Paroda & R. K. Arora (Eds.), *Plant Genetic Resources* (p. 25). IBPGR, Regional Office South and South Asia.
2. Kabil Singh, C., Chankaew, J., & Kabil Singh, P. (1991). *Buddhism for preservation of nature* (In Thai). Thammasart University Press.
3. Naess, A. (1988). Self-realization: An ecological approach to being in the world. In J. Seed, J. Macy, P. Fleming, & A. Naess (Eds.), *Thinking Like a Mountain: Towards a Council of All Beings* (p. 26). New Society Publishers.
4. Ormsby, A. A., & Bhagavat, S. A. (2010). Sacred forests of India: A strong tradition of community-based natural resource management. *Environmental Conservation*, 37 (3), issue 3, pp. 320-326.
5. Pushpagandhan, P. (1994). *Ethnobiology in India. A status report*. Ministry of Environment and Forest, GOI.
6. Singh, B. P. (2018). *Biodiversity, tribal knowledge and life in India*. Whioce Publishing Ltd.

Reference

1. Mishra, R. P. (2009). *Facing environmental challenges; The Gandhian way*. Anasakti Darshan, 5(2), 9.
2. Parekh, B. (1989). *Gandhi's political philosophy; A critical examination*. Macmillan.
3. Tiwari, R. R. (2019). Gandhi as an environmentalist. *Indian Journal of Medical Research*. <https://www.ncbi.nlm.nih.gov/pmc>
4. Weber, T. (1999). Gandhi and deep ecology. *Journal of Peace Research*, 36(3), 261–279.

Ecological Paradigms

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ compare anthropocentrism and deep ecology, examining their philosophical foundations and ethical implications
- ◆ evaluate how anthropocentric versus eco centric perspectives influence environmental degradation and policy approaches
- ◆ assess deep ecology's contribution to sustainable environmental policies and climate change solutions
- ◆ understand core principles of ecofeminism and eco-marxism, including the connections between gender, economic systems, and environmental issues
- ◆ examine key thinkers in ecofeminism and eco-marxism and their central concepts

Prerequisites

We begin with anthropocentrism, the dominant worldview that places human needs and interests at the center of environmental considerations. We then examine three critical responses to this perspective: deep ecology, which advocates for the intrinsic value of all living beings beyond their utility to humans; ecofeminism, which draws parallels between environmental degradation and gender oppression; and eco-Marxism, which analyses environmental issues through the lens of economic systems and class structures. Throughout this unit, we explore key questions about how humans value nature, who gains and who suffers from environmental choices, and what new approaches might create better relationships with our natural world. By examining different viewpoints, we gain insight into the core

ideas behind today's environmental movements and policies. These concepts help us better understand environmental problems and imagine fairer, more sustainable solutions for the future.

Keywords

Deep ecology, Shallow ecology, Ecofeminism, Eco-Marxism, Gaia hypothesis, Theocentrism, Value, Sustainable development

Discussion

2.2.1 Anthropocentrism

Anthropocentrism is a philosophical doctrine that gives importance to human beings, placing them at the center of the universe. The word in anthropocentrism derives from two Ancient Greek words: *anthrōpos*, meaning “human being”, and *kéntron*, meaning “center.” According to this doctrine, everything else is subordinate to the needs and interests of humanity. This view conceived human beings as having the ability to transform and dominate nature so that there is a blind trust in everything that occurs due to the result of human intervention. Anthropocentrism is the idea that humans are the most significant or central entities on Earth.

Anthropocentrism perceives that human beings are the most significant beings on earth and that all other plants, animals and objects are important only if they support or contribute to the survival or pleasure of man. We can see today that human greed and blind anthropocentrism have led to climatic change, ozone depletion, destruction of rainforests, poisoning of water and air, large scale extinction of species, forest fires, the decline of biodiversity and many more. In its original connotation, in environmental ethics, anthropocentrism is the belief that

value is human centered and that humans alone possess this intrinsic value and all other beings are means to human ends. All other beings hold value only in their ability to serve humans or in their instrumental value.

2.2.1.1 The Roots of Anthropocentrism

Anthropocentrism has its origin in the early modern age in the 16th century, replacing Theo centrism in the Middle Ages, which placed God as the center of the entire universe. In his landmark book *On the Origin of Species* (1859), Charles Darwin claimed that, in its struggle for survival, every being on Earth considers itself and its offspring to be at the top of the chain of what is immediately important. Anthropocentric philosophy, also known as ‘Shallow Ecology’ or ‘Techno-centrism’ mainly includes the negative effects that the environmental damage has on human beings, their health, recreation and quality of life. It is a mechanical approach to a non-human nature in which individual creatures and species have only an instrumental value for humans. The anthropocentric approach derives its support from the famous lines of the Holy Bible. This states that God created man in his own image, in the image God created He him, male and female created

He them, Be God blessed them, and God said to them, be fruitful and multiply and replenish the earth, and subdue it and have dominion over fish of the sea, and over fowl in the air, and over everything that moves upon earth."

Similar opinion has been expressed by Greek Philosopher Aristotle in his book on 'Politics' "Nature has made all things specifically for the sake of man" and value of non-human things in nature is merely instrumental. The Christian Philosopher Thomas Aquinas, in his book *Summa Contra Gentiles* mentioned that because non-human animals are "ordered to man's use", he can kill them or use them in any way he wishes without any injustice. Generally, anthropocentrism accepts over-exploitation of nature and the cruel treatment towards non- human animals as something wrong only when such humans caused damage that will affect the well-being of human beings. This intense exploitation of the environment by humans is causing widespread ecological damage and diminishing the earth's carrying capacity or ability to sustain people as well as the ecosystem. If this environmental deterioration continues like this, it will adversely affect the existence of human beings for which they need access to a continued flow of ecological goods and services to sustain themselves as well as their society.

2.2.2 Deep Ecology

Ecology is a study that helps us to understand the connection between plants, animals, and the world around us. Here, shallow and deep ecology help us to understand the relationship between humans and nature.

There are two approaches to ecology. Scientific ecology and Deep ecology.

1. Scientific Ecology is the study of interrelationship between species

and their environment. In this approach, the relationship is of detached observation in which the observer is separated from the object of his observation. The focus of observation is on measurable data 'out there', collected by experts who know their 'facts and figures'.

2. Deep Ecology Here, the observer experiences himself as a part of the living earth and finds his role in protecting the planet. In this approach, the relationship is one of involved participation. The participant feels his connection with the world around him. This is done by everyone who is involved with the world around him irrespective of any expertise.

Norwegian activist and philosopher Arne Naess introduced the concepts of deep and shallow ecology in the early 1970s, emphasizing the need for a deeper response to social and environmental issues. He highlighted the central role of humans in the environmental crisis, focusing on how increasing anthropocentrism has led people to detach from nature, creating a master-slave dynamic. Naess distinguished between two ecological approaches: shallow ecology, which he viewed as a weak, human-centered perspective that supports environmental preservation only to serve human interests, and deep ecology, which calls for a fundamental shift in human-nature relationships. He criticized shallow ecology for its limited solutions, such as using less polluting vehicles or air conditioners that avoid chlorofluorocarbon emissions.

Deep ecology, on the other hand, sees humans only as a single species on a planet with millions of other species that have their intrinsic values. Hence, humans should change their relationship with nature. With this, Arne Naess's aim was to sustain nature

by making large-scale changes to human lifestyles. For this, he posits two ideas. The first is that there must be a shift away from human-centered anthropocentrism to ecocentrism in which every living thing is seen as having inherent value regardless of its utility. Second, humans are part of nature rather than superior and apart from it, and therefore, they must protect all life on Earth as they would protect their family or self. Deep ecology emphasizing philosophical and ethical dimension had significantly influenced the larger movement. Deep ecology also thinks about the reshaping of transport system that involves the usage of internal combustion engines, which in simple terms, humans should cooperate and coexist with nature.

Deep ecology believes in live and let live attitude among humans. Though deep ecology gained considerable share of criticism, its fundamental premises remain relevant and thought provoking in this modern era of climate crisis. Deep ecology takes into consideration every living form on this planet while Shallow ecology takes account of the environmental preservation that meets human interests. For example, Deep ecology would promote planting trees and man-made forests, while shallow ecology would promote recycling waste rather than preventing waste in the first place. Deep ecology mainly focused on the western cultural values and on the need for reducing the size of the human population of the world to achieve sustainability.

Deep ecology serves as the philosophical basis for genuine environmental policies, emphasizing a holistic approach rather than focusing solely on human interests. It assesses the impact of human activities on nature as a whole and advocates for a lifestyle that aligns with ecological harmony. This perspective integrates thought, emotion, spirituality, and action, encouraging a shift from Western individualism to a deeper connection with

the Earth. Rather than viewing ecology as an external concept, deep ecology recognizes it as an intrinsic part of human existence, highlighting our responsibility within the natural world.

2.2.2.1 Why Deep?

He proposed that we ask 'deeper questions', looking at the 'why and how' of the way we live and seeing how this fits with our deeper beliefs, needs and values. Asking questions like "How can I live in a way that is good for me, other people and our planet?" may lead us to make deep changes in the way we live.

Deep Ecology can also be seen as part of a much wider process of questioning of basic assumptions in our society that is leading to a new way of looking at science, politics, healthcare, education, spirituality and many other areas. Because this change in the way we see things is so wide ranging, it has been called a new 'worldview'. It tends to emphasize the relationships between different areas, bringing together personal and social change, science and spirituality, economics and ecology. Deep Ecology applies this new worldview to our relationship with the earth. In this way, deep ecology challenges the assumptions about the way we see ourselves as mere individuals and makes us see as individuals as part of the earth. This increases our sense of belonging as well as our tendency to act for life.

Deep ecology claims that humans should maintain a spiritual relationship with the non-human nature. Through an interconnection with all organisms in the ecosphere, humans would develop an ecological consciousness and a sense of ecological solidarity. The British environmentalist James Lovelock developed the principle of bio-centric interconnectedness, in which he postulates the principle that the planet Earth is a single living self-regulating entity capable of

re-establishing an ecological equilibrium even without the existence of human life.

2.2.3 Ecofeminism

Ecofeminism originated in the year 1970's which proposes a theory and politics that recognizes the interdependence of human beings with other species. Ecofeminism, also known as ecological feminism, was coined by a French feminist, Francoise d'Eaubonne in 1974. It examines the interconnection between women and nature. This philosophy emphasizes the ways both nature and women are treated by patriarchal society. It examines the effects of gender categories in order to demonstrate the ways in which social norms exert unjust dominance over women and nature. Oppression, hierarchy and spiritual relationship with nature have been the central concerns of ecofeminism. The proponents hold that there exists a connection between the destruction of nature by human beings and the oppression of women by men. Both women and nature are treated by men as objects to be owned and controlled for their own wellbeing.

Ecofeminism encompasses a range of perspectives whose basic premise is that the ideology which authorizes oppression—such as that based on race, class, gender, sexuality, physical abilities, and species—is the same ideology that sanctions the oppression of nature. It was during the year 1970s and early 1980s that modern ecofeminism was born. It was the outcome of a series of conferences and workshops held in the United States by a coalition of women academicians and professionals. They were of the view that the patriarchic society depicted both women and nature as chaotic, irrational and in need of control, while men were often characterized as rational, ordered and capable of directing the use and development of women and nature. This historical notion has led to the oppression of both women and nature. This has also resulted in the hierarchical structures

that allow power and authority for men to exploit women and nature, as far as the two are associated. This deplorable condition can be rectified only by undoing the social status of both.

2.2.3.1 Key Ideas in Ecofeminism

According to Bina Agarwal (2007), there are certain key ideas in Ecofeminism. The first one is that there is an important connection between the domination and exploitation of nature. The second one is, in patriarchal thought, women are seen to be closer to nature and men as closer to culture. Nature, in turn, is seen to be inferior to culture, and therefore, women are inferior to men. Third, the domination and oppression of nature and of women have occurred together. Women have an important stake in ending the domination of nature, thereby bringing together both human and non-human nature. Fourthly, the feminist movement and the environment movement must stand together to create a more equitable and just society. Both movements have a lot in common and can create a common perspective, praxis and theory.

One of the early founders of ecofeminism, Rosemary Ruether, a theologian, insisted that in order to end the domination over nature, women and environmentalists should work together against the patriarchal systems that privilege hierarchies, control and unequal socio-economic relations. This was taken up by feminist scholars and activists who started criticizing not only ecological theories that overlooked the effect of patriarchal systems but also those feminist theories which fail to interrogate the relationship between women and nature. Ecofeminism had gradually grown out of its academic environment by the late 1980's and became a popular movement largely because of the efforts taken by the feminist theorist Ynestra King. In her article entitled *What is eco feminism?* appeared in *The Nation* in 1987,

she challenged all Americans to consider how their belief systems allow them the exploitative use of the earth and further the oppression of women. With this article, the concept ecofeminism grew both in support and philosophical scope.

Thus, ecofeminism aims to establish an environmentally sound and socially just society. However, there exists a division among them over how to conceive the relationship between nature and women. Cultural ecofeminists are of the view that the relationship is inherent in women's reproductive and nurturing roles, while social ecofeminism claims that it arises.

2.2.4. Eco-Marxism

Eco-Marxism is an anthropocentric view that criticizes the capitalist system for having a negative influence on the relations between human beings and nature. Ecological Marxism is a subfield of Sociology that seeks to study the dialectics of nature from a Marxian perspective and challenges the concepts of conservation and sustainable development. The capitalists view nature as a commodity that presents itself for humans to exploit. Ecological Marxism is the application of Marxian theory to the study and analysis of the environment and its impact and processes. Eco-Marxism suggests that social problems are the basic reason for natural exploitation. This emerged as a

movement against capitalism under famous thinkers like Paul Burdtket, Michael Lowy, David Harvey, Joel Kovel, James O'Connor and Mike Davis.

Eco Marxism can also be considered an ideology that combines traditional Marxist political ideology with ecology and green politics. According to Marx and Engels, the relationship between man and nature forms the basic principles of Marxian ideology. As per this view, man and nature are interconnected as both man's body and psyche live through nature and vice versa. Eco-Marxism is against treating nature as a resource, alienating man from it and monopolizing nature by man for his private benefit.

According to Clark and Foster, "the problem of nature is a problem of capital". Marxian ecology can be used to analyse environmental degradation using his "capitalism" and how it favours the accumulation of private property and prioritizes profit over environmental protection. Marxian ecological theory thus gives importance to unequal exchange of environment. Marx perceived that there is only one science, the science of history and considered the history of nature and history of man as two sides of history. Hence his historical materialism embodies ecological materialism and he claimed that there was a "necessary metabolic interaction between humans and earth".

Recap

- ◆ Anthropocentrism is a philosophy that places humans at the center of the universe, considering all other beings valuable only if they serve human interests.
- ◆ Anthropocentrism replaced Theocentrism during the early modern age, emphasizing human dominance over nature.

- ◆ Charles Darwin suggested that all species prioritize their own survival, aligning with the principles of anthropocentrism.
- ◆ Deep Ecology, introduced by Arne Naess, challenges anthropocentrism by promoting the intrinsic value of all living beings.
- ◆ Scientific Ecology focuses on detached observation, whereas Deep Ecology encourages human participation in environmental preservation.
- ◆ Ecofeminism, coined by Francoise d'Eaubonne, highlights the connection between the oppression of women and environmental degradation.
- ◆ Bina Agarwal emphasized the need for collaboration between feminism and environmental movements to achieve a just society.
- ◆ Eco-Marxism critiques capitalism for its role in environmental degradation and calls for sustainable resource use.
- ◆ Marx and Engels viewed nature and humans as interconnected, opposing the commodification of the environment.
- ◆ James Lovelock's Gaia Hypothesis suggests that Earth functions as a self-regulating entity, reinforcing the idea of ecological interdependence.

Objective Questions

1. What does anthropocentrism prioritize?
2. Which philosopher supported the anthropocentric view by stating that nature exists for the sake of man?
3. What is the main criticism of shallow ecology?
4. Which ecological approach promotes a deep spiritual connection with nature?
5. Who introduced the concept of Deep ecology?
6. What is the central idea of ecofeminism?
7. Who coined the term ecofeminism?
8. What does eco-Marxism critique?
9. What does Marx's ecological theory emphasize?
10. Which thinker introduced the Gaia Hypothesis?

11. Which approach suggests that environmental preservation should benefit only humans?
12. Which ecological perspective argues that humans must radically alter their lifestyles to protect nature?
13. What is the primary concern of ecofeminism?

Answers

1. Human needs and interests
2. Aristotle
3. It focuses only on environmental benefits for humans
4. Deep Ecology
5. Arne Naess
6. The link between women's oppression and environmental exploitation
7. Francoise d'Eaubonne
8. Capitalism's exploitation of nature
9. The interdependence of humans and nature
10. James Lovelock
11. Shallow ecology
12. Deep Ecology
13. The link between gender oppression and environmental degradation

Assignments

1. Discuss the key principles of anthropocentrism and analyse its impact on environmental degradation.
2. Compare and contrast the ideas of shallow ecology and deep ecology with examples.

3. Examine the role of ecofeminism in addressing environmental concerns and gender inequality.
4. Analyse the Gaia Hypothesis by James Lovelock and discuss its significance in ecological conservation.
5. Explain how Deep Ecology promotes a fundamental shift in human-nature relationships.
6. Discuss the contributions of key thinkers like Bina Agarwal, Francoise d'Eaubonne, and Rosemary Ruether in shaping ecofeminism.
7. Examine the critique of capitalism by eco-Marxism and discuss its solutions for environmental sustainability.

Suggested Reading

1. Drengson, A., Devall, B., & Schroll, M. A. (2011). The deep ecology movement: Origins, development, and future prospects (Towards a transpersonal ecosophy). *International Journal of Transpersonal Studies*, 30(1-2).
2. Naess, A. (1988). Self-realization: An ecological approach to being in the world. In J. Seed, J. Macy, P. Fleming, & A. Naess (Eds.), *Thinking like a mountain: Towards a council of all beings* (p. 26). New Society Publishers.

Reference

1. Agarwal, B. (2007). The gender and environment debate: Lessons from India. In M. Rangarajan (Ed.), *Environmental Issues in India: A Reader*. Pearson India.
2. Clark, B., & Foster, J. B. (2010). Marx's ecology in the 21st century. *World Review of Political Economy*, 1(1), 142–156.

BLOCK

Sociological Perspectives on Environment

Approaches to Environmental Sociology

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ differentiate key environmental sociological approaches
- ◆ analyze the realist perspective
- ◆ evaluate the constructionist Perspective
- ◆ understand the reformist approach

Prerequisites

From the beginning, scholars have observed that there existed a heated argument between the proponents of two major approaches- social constructionism and realism. Realists take the point that the analysis, examination and formulation of concepts related to nature actually refer to environmental reality and aid in formulating environmental policy. Realists ask the question, what is the truth about this environmental issue, or what is the cause of the phenomena global warming, acid rain, pollution level increase in cities, etc. They wanted to get an answer for any environmental issues or phenomena. Constructionist, on the other hand, helps to explore what we know and how we know anything about the world we inhabit. It stresses the significance of social perceptions, conceptions, ideas, and knowledge that help us to understand our world. They deny the existence of an external objective singular reality which is independent of human perceptions about it. It stresses the significance of social perceptions, conceptions, ideas, and knowledge that help people understand their world. They argue that nature does not present itself in an unmediated form and always requires interpretation, mediation, and social meanings.

Keywords

Human Experience, Environmental Reality, Degradation, Social Construct, Interpretative Approach

Discussion

In this block, we will examine some of the important research approaches that have been significant to the field of environmental sociology. We will first discuss the divide between the Realist and Constructionist perspectives on environmental issues and how it has evolved.

The relationship between society and the environment has outstanding importance in the field of environmental philosophy and sociology. This is dominated by the opposition between Realism and Constructivism. This means the opposition between those who argue that nature is an entity independent of society and those who say that nature is a social construction. Realism and Constructivism are grounded in two different theories and two opposed conceptions of nature.

3.1.1 Realistic Approach in Environmental Sociology

Realism is an approach in social sciences with certain theoretical assumptions and methodological concerns regarding reality. Realists conceive nature as an objective, autonomous, independent entity with structures, and processes that constantly operate within the physical world. They are of the opinion that the objective world is real and independent of our categorization but filtered through subjective conceptual systems and scientific methods that are socially conditioned. They admit that society influences the way we look at the natural world, but they insist that there is a reality out there. Realists are trying to draw

scholarly policy and political attention to environmental issues. Through a realistic approach, Environmental sociologists will try to find out the root cause of the problem in a deeper way. After identifying the problem, the researchers will explain the social causes of that problem and will try to find an alternative solution for getting a better environmental outcome.

One of the major characteristics of realism is the assumption that the world, with all its structures, events and phenomena, exists independent of human experience, consciousness and perceptions about it. It can be known but is located beyond the social realm. This means that natural life, with its rivers, mountains, living species, and different weather conditions or events, exists independent of human beings and their consciousness regarding these things. Since the problem of the environment is quite real, the proponents of this approach are interested in finding solutions to improve the environment. To identify the environmental problems these social scientists used to follow, they used methods followed by natural scientists.

The second characteristic of this approach is that they believe that the world as it exists can be known through human senses and observation, and hence can know the world, measure its nature, identify its mechanism and its way of working and thereby predict events. This approach is based on the assumption that there is an objective reality out there that we can study, examine and explain. Environmental sociology has witnessed a

SREENARAYANA GURUKUL
OPEN UNIVERSITY

heated argument between the proponents of these two schools of thinkers- Social realism and social constructionism. The realistic approach has been widely applied in the study of nature, as the discipline deals with nature, environmental changes, social interactions with the natural environment, etc.

According to realists, analysis, examination and formulation of concepts related to nature actually refer to environmental reality and hence help in formulating environmental policy. Theorists like Ted Benton, Peter Dickens, and Raymond Murphy follow a realistic perspective in their theories. According to these scholars, a realistic approach helps in examining the aspects, events and practices of the natural world and its implications for social institutions and vice versa. Realists question the causes of environmental issues like global warming, acid rain, pollution problems etc. and try to find out a causal explanation for such environmental issues, problems or phenomena. Ted Benton has stressed the significance of environmental realities for social interaction. Nature includes not only humans but also life, action and contexts of non-human and other objects, ecosystems and entities of the biophysical world.

According to realists, nature and its dynamics exist with their own autonomous character and functioning and not merely a socio – cultural perception. As per Murphy's view, nature has its own functioning capacity and dimension of existence, which are obviously in interaction with the human world. According to Murphy there are cases when we took the signals of natural crisis seriously and understood them as real. Based on those factors countries formed policies to evaluate the impact of any environmental risks or hazards, their natural functioning and took appropriate steps to avoid loss of lives.

Realists are of the opinion that one should not discard nature and its structures, processes

in understanding human environmental interrelations. Realists would argue that the environmental problem like radiation, pollution, acid rain etc. can exist before it is socially and politically acknowledged as a social problem for communities living there, but it still exists materially. Realists emphasize the significance of developing a social theory of environment that reflects the relation between human society and the forces of nature. Hence, they examine the way human society is embedded in nature and how society acts back on nature. Environmental issues and problems are not just constructs made by environmentalists or scholars. The threat of nuclear reactors or the impact of the nuclear bombs is real wherever the place is. He argues that environmental issues and problems are not just constructs made by environmentalists or scholars. The threat of nuclear reactors or the impact of the nuclear bombs is real whether it is the case of Japan or India.

3.1.1.1 Criticism of Realistic Approach

There are several criticisms of the realistic approach. Some of the critics are of the opinion that the realists overlook the cultural aspects of reality through which people perceive and interpret the natural world. Some say that due to their biological and material bias realists are not paying attention to social processes of the meaning making i.e. Construction of something as an environmental problem. Another criticism is that the rank ordering of environment problems by actors do not always correspond to the natural objective reality out there, but also gets framed by complex social cultural discourses and political agenda setting. Constructionists are of the opinion that all our knowledge of nature is a human construct that has been produced under certain social situations and is open to the influence of similar social factors.

3.1.2 The Constructionist Approach

A second approach that opposes realism is the constructionist approach. It is one of the popular approaches in the field of social sciences. The proponents of this approach mainly deny the existence of an external objective reality, which is independent of human perception. It actually stresses the significance of social perceptions, conceptions, ideas, and knowledge that help people understand the world around them. This approach was mainly brought forward during the 19th century by eminent social thinkers like Wilhelm Dilthey, Max Weber, Edmund Husserl, and John Dewey. This approach was generally termed an Interpretative approach. The major difference in this approach from the realist one is that it places emphasis on understanding human contexts, their social origin, value system, interests, and socialization that shape human beings to perceive an issue or problem.

Constructionists are of the opinion that nature does not present in an unmediated form and always require interpretation, with social meanings, constructions, and discourses about it. It emphasizes that human knowledge is socially constructed, and not passively received from the environment as stated by realist thinkers. Social dimensions such as language, symbols, tools, cultural practices, beliefs, and values are socially classified and categorized, which will enable the society to understand them properly. This is the central point in the theory of social construction of reality by Peter Berger and Thomas Luckman. According to them human interaction evolves concepts about human behaviour which later become part of social habits and then get institutionalised. As per their view our knowledge about this world and its reality is based upon our conception of reality, which we construct on the basis of our experience which we have gained through various social situations in our

different interactions.

According to them there is no one reality of environmental problems. Different people construct their own differently constructed and valid interpretation of environmental problems. This perspective derives from Sociological tradition which says that society is not a real thing but a socially constructed one. According to these schools, social and other realities do not exist independently apart from the meanings given by the people. If we apply this to environmental issues, this approach maintains that there is no single nature as such but only a diversity of contested natures. Moreover, that each such nature is constituted through a variety of socio-cultural processes from which such natures cannot be plausibly separated. It is the job of Sociologists to investigate how the environment is understood by different sections of people and how environmental issues are constituted as social problems and how society responds to such discourses of environmental trouble. Constructivists claim that our understanding of environmental problems is.

3.1.3 Constructionism in Environmental Sociology

Proponents of constructionism believe that the environment is socially constructed in a given social cultural context rather than granted. Constructionist approach believes that environmental realities are deeply shaped by historical practices, political interests and cultural perceptions. Social construction perspective highlights the social embeddedness of the knowledge that claims about the environment and thus place human societies and its meaning making concepts and discourse making aspects central to the analysis. It can be seen that the social construction perspective is able to demonstrate that concerns over the loss of biodiversity have been socially constructed at different levels in the society and this

process can be analytically studied. They also claim that other environmental issues are constructed at different places and times.

Burningham and Cooper highlights the two key positions the social constructionists take while dealing with environmental issues. Firstly, while engaging in social research, sociologists will draw attention to the human mistreatment of the environment. According to him, they should refrain from political positions on environmental issues rather than concentrate on examining the mainstream debates or narratives about the environmental conditions. Because, the examination of the process of social and cultural construction of the dominant environmental claims is in itself capable of providing certain directions to formulate policies or to solve environmental problems.

Secondly, they argue that instead of being neutral in their normative orientation, social constructionists actively take the views of local people or community in their issues.

3.1.3.1 Criticism

There are several criticisms against the constructionist approach on various grounds. First criticism was against their insistence on understanding the constructed nature of any environmental problem, issue or claim. Scholars allege that constructionists avoid and ignore talking about direct solutions and actions. For example, when an urgent action is required for an immediate problem, the constructionists will appeal for understanding social meanings attached to the specific environment issue like greenhouse effect by different people. As a result, it will delay the formation of any concrete political action in this regard.

Secondly scholars depict constructionists work as a way to undermine the vitality of sociological imagination by indulging in relativism. It can be destructive to nature since it suspends any action and remains

trapped in conceptual analysis.

Thirdly, constructionists are criticised for asserting that nature and reality are just mental constructs. This view undermines the legitimacy of the arguments that environmental problems are real and thus deserve the urgent attention.

Anthropologists like Tim Ingold view that socio-cultural construction and understanding of nature is limited in its scope as it views nature or environment as given. These insights indicate that all social constructions about any environmental problem do not change the existing reality. People can have different terms, concepts, meanings or categorisation for environmental issues like air pollution. But even without such categorisation, pollution will continue to exist with its negative impacts on societal and environmental health.

Realist scholar Murphy also criticized constructionists' view on the environment. He highlighted the significance of nature and the autonomous dynamics of its existence. According to him modern societies have little control or success in abolishing the occurrence of earthquake volcanoes, storms, hurricanes etc. While upholding the realist position of nature, Murphy stresses that the meaning given to the dynamics of nature by human beings can be socially constructed, but those dynamics cannot be ignored by just talking about human perceptions, meanings and their social constructions regardless of the meaning assigned to them by humans.

3.1.4 The Reformist Approach

The reformist approach considers technological innovation and a free market economy as the key to resolving issues of environmental degradation. Reformist environmentalism seeks to tame the excess of urban industrial societies without radical changes in the principles of the dominant social paradigm. It aims at having small

reforms to the structures of the economy and politics of the present society in order to deal with the problems and issues of the environment.

Within this approach markets are the main means to distribute products where goods are bought and sold for money. In the book *Natural Capitalism*, Hawken and colleagues said that the primary means of distributing products in an economy are markets and the money is a means to buy and sell products.

Natural capitalism does not aim to discard the market economy, instead what is necessary is the steering of markets in a more creative and constructive direction. Other aspects of the capitalist economy, such as money, private ownership of means of production and wage labour, are also retained.

“Natural capitalism does not aim to discard market economics,” claim Hawken and colleagues. Instead, markets need to be directed “into more imaginative and constructive directions.” Other elements of the capitalist system are still in place, including money, private ownership of the means of production (factories, farms, and so on), and wage labour.

In the reformist model, economic expansion is maintained. It is argued that this

can be possible while reducing environmental damage. For example, even if the global economy expanded by 6 to 8-fold, the rate of carbon release from the burning of fossil fuel could simultaneously decrease. It can be considered that the new environmental technology as a growth industry which can stimulate growth by reducing the economy’s dependence on fossil fuel and can be seen as an investment and job creation opportunity.

The reformist approach aims to reform the economic and political structures of current society to deal with environmental problems. Within this approach the main means to distribute products which are bought and sold for money. Environmental reforms occur because people lobby politicians for change, with the threat of not casting their votes on those parties that refuse to enact environmental reforms. Environment reforms also come about partly through lifestyle changes by ordinary citizens who make different market decisions. Various kinds of government intervention like regulations to prevent environmentally damaging practices, taxes such as carbon tax on the use of fossil fuels, incentives and subsidies for new technologies such as solar hot water services or wind power, and international agreements like Kyoto Protocol designed to get countries to agree to environmental reforms.

Recap

- ◆ The realist approach views environmental issues as objective realities that exist independently of human perception and can be studied scientifically.
- ◆ The constructionist approach argues that environmental problems are socially constructed, shaped by cultural, political, and historical contexts.
- ◆ The reformist approach seeks to address environmental issues through technological advancements, policy reforms, and market-driven solutions.

- ◆ There is an ongoing debate between Realists and Constructionists regarding whether environmental issues are inherent realities or social constructs.
- ◆ The reformist perspective promotes economic growth while aiming to reduce environmental damage through sustainable practices and regulatory measures.

Objective Questions

1. What does the realist approach in environmental sociology emphasize?
2. How does the constructionist approach explain environmental problems?
3. What is the focus of the reformist approach in environmental sociology?
4. How does the realist approach view environmental degradation?
5. What role does the media play in shaping environmental concerns according to the constructionist approach?
6. How does the reformist approach propose solving environmental issues?
7. Why is the constructionist approach criticized in environmental sociology?
8. How does the realist approach differ from the constructionist perspective?

Answers

1. The material reality of environmental problems and their direct impact.
2. It sees environmental issues as socially constructed through discourse.
3. It focuses on gradual policy changes and institutional reforms.
4. As a tangible, measurable issue requiring direct action.
5. By influencing public perception and framing environmental debates.
6. Through gradual reforms, policy changes, and technological innovation.
7. For focusing too much on discourse and not enough on real environmental damage.
8. The realist approach focuses on physical consequences, while the constructionist approach looks at social interpretation.

Assignments

1. Explain the key differences between the realist and constructionist approaches in environmental sociology.
2. Discuss the role of media in constructing environmental issues according to the constructionist approach.
3. How does the reformist approach suggest addressing environmental concerns? Provide examples.
4. Compare and contrast the realist and reformist perspectives on environmental degradation.
5. Analyze the strengths and weaknesses of the constructionist approach in understanding environmental problems.
6. How do different sociological perspectives shape environmental policy-making?
7. What are the limitations of the reformist approach in tackling large-scale environmental crises?
8. Explain the importance of integrating realist and constructionist approaches in environmental sociology.

Suggested Reading

1. Berger, P & Luckmann, T. (1967). *The social construction of reality*. Penguin Books.
2. Dickens, Peter. (1996). *Reconstructing nature: Alienation, emancipation and the division of labour*. Routledge.
3. Dunlap, R. & Catton, W. (1994). 'Struggling with human exceptionalism'. *American Sociologist*, 25: 5 – 30.
4. Hannigan, John. (1995). *Environmental sociology: A social constructionist perspective*. Routledge.

Reference

1. Ingold, Tim. (1992). Culture and the perception of the environment in E.Croll and D. Parkin (eds.) *Bush Base: Forest Farm*. Routledge, pp.39 – 56.
2. Murphy, R. (2002). The internalization of autonomous nature into society, *The Sociological Review*, 18: 313 – 333.
3. Murphy, R. (2006). Environmental realism: From apologetics to substance, *Nature and Culture*, 1 (2): 181 – 204.
4. Proctor, James D. (1998). The social construction of nature: Relativist accusations, pragmatist and critical realist responses, *Annals of the Association of American Geographers*, 88 (3): 352 – 376.

Theoretical Perspectives on Environment

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ understand the evolution of environmental sociology
- ◆ analyze Marx's Metabolic Rift Theory
- ◆ examine Durkheim's view on society and the environment
- ◆ evaluate Weber's concept of rationalization and environmental impact
- ◆ discuss how Talcott Parsons and Anthony Giddens conceptualize the relationship between society and the environment

Prerequisites

The three thinkers of sociology, Karl Marx, Emile Durkheim and Max Weber, have been universally considered as the major classical sociological theorists among contemporary sociologists. These classical sociologists have developed a concrete empirical sociology rather than merely a methodological postulate of abstract theoretical arguments. The three pioneers of sociology, Marx, Weber and Durkheim, were criticised for positioning the discipline of Sociology out of Psychology, biology, economics, and geography. However, Marx and Weber were noted for their concepts, the metabolic rift and rationality in environmental sociology, unlike Durkheim, who was criticised for his methodological dictum that was believed to be against the use of biophysical parameters in sociology.

Famous Sociological theorist Anthony Giddens developed his theory from the insight he gained from Psychology, which says that people are likely to respond to climate change if they have personally.

Keywords

Rationalisation, Environmental degradation, Life politics, Industrial revolution, Reflexivity

Discussion

Environmental Sociology has not been popular since the 1950s's, even when environmental issues prevailed in society. It was during this post war era that rapid industrialisation and urbanisation has created pollution in that society. During the 1970s, environmental problems gained public attention leading to the emergence of the environmental movement. This movement welcomed the theories of eminent Sociologists like Durkheim, Weber who introduced the Rationalisation concept and Marx, who introduced the theory of Metabolic Rift. We can see that the pioneers of Sociology - Durkheim, Weber and Marx had addressed some aspects of nature and society, but not in a definite way.

We can see that the contemporary form of environmental degradation occurring in the world is largely due to the economic expansion during the last one and a half centuries, which has made an alarming consequence for the global environment.

It can be pointed out that classical sociological thinkers have limitations in their approach to dealing with environmental issues, especially Marx, Weber, and Durkheim, who examine environmental issues. Weber's work shows the least engagement in this respect. At the same time, Marx and Durkheim explain the relation between human societies and the natural world while discussing historical change. Classical social theories were concerned more with how the pre-societies were constrained by their natural environment than the environmental degradation faced

by modern society because of the industrial revolution.

Talcott Parsons has attempted to develop Weber's theory of social actions more systematically and has dealt with the problems of environmental explanations at a general theoretical level. In his work Societies: Evolutionary and Comparative Perspectives, Parsons distinguished between two environments of action- The Physical – organic environment and Ultimate reality. The former refers to the geographical environment, including all forms of biological life other than man himself. At the same time, "Ultimate Reality", according to Parsons, refers to an environment of action, i.e. an environment external to all modes of social action, including religious ideas.

3.2.1 Karl Marx

Classical sociological thinkers had not much talked about the natural environment. The three thinkers Durkheim, Weber, and Marx had addressed only very limited aspects of nature and society. Marx is not usually considered an environmental theorist because of the too narrow definition we give for environmental thoughts, which focuses on the contrast between ecocentrism and anthropocentrism rather than its relation between society and the natural world.

It is true that during the period of Karl Marx's writing, environmental problems were never considered an issue either popularly or scholarly. Even then, there have been several occasions where Marx has shown great concern for the environment and ecology.

He viewed the environment primarily as a medium of human labour. According to him, the rapid growth of the capitalist economy was achieved by exploiting the proletariat class by the bourgeoisie. Due to this situation, all relations and values, including the environment, will become subordinate to a monetary-oriented one, i.e. one of market orientation. Marx and Engels argue that under capitalism, all relations, including natural and human have changed into monetary relationships.

Marx, a classical theorist, incorporated humans into nature while demonstrating the political economy. In his classical works, he has given importance to resolving the alienation between man and nature. His ecology was both scientific as well as socialist in nature. Karl Marx saw societies as a system of social relations. This means that in any society, the production of goods and services depends on the relationship between individuals as well as individuals and nature. According to him, the appropriation of natural resources is possible only in a specific social setting. Marx was of the opinion that science is a progressive and liberating force that enables humankind to gain control over nature and thereby get better control over their chosen path in life. Marx believed that the interaction between man and his environment cannot provide a source of change in society, but can only be achieved through interaction between groups of people. In the Marxist ideology of capitalism, economic development involves the creation of value as resources are transformed into commodities through the destruction of natural resources, which are our life sustaining matrix upon which we rely. While analysing the distorted relationship that capitalism imposes on humans and nature, Marx used the agricultural development that existed during his time. He argues that through the radical transformation of socio-economic relations, it is possible to repair the rift between humans and nature.

Thereby, a path to environmental protection and sustainability is possible.

3.2.2 Metabolic Rift

The term Metabolic rift derived from Marx's description of the fundamental shift in the relationship between man and the rest of nature which developed along with class society, mainly capitalism.

In his notes on 'Capital' prepared by Marx, which later was assembled by Engels as Volume 3, Marx stated that capitalism had served that link to produce an irreparable rift in the interdependent process of the social metabolism, a metabolism prescribed by the natural laws of life itself'. While speaking about metabolism, Marx used the organic analogy of metabolism as in a biological system, in which an organism takes nutrients from its environment and expels wastes, enabling it to grow and reproduce. Marx focused on social metabolism, in which the systems that connected humans with nature are mediated by productive forces. He termed this metabolic rift, which refers to the way human labour becomes alienated from its natural resources. Here, Marx drew a parallel between the capitalist exploitation of laborers in urban areas and capitalist agriculture's depletion of natural resources like soil fertility on the rural side. Thus, large scale industry in the urban area impoverishes labourers, while large scale agriculture impoverishes the soil in the countryside.

As cited in Foster, Marx discusses how the "long-distance trade in food and clothing made the problem of the alienation of the constituent elements of the soil that much more of an irreparable rift". Instead, they should be seen as one metabolism, as one cannot function without the other. For example, in today's globalised world, the majority of food and clothing are produced in the peripheral countries of the USA, such as Brazil and China, for consumption in the

USA. This distancing between the source of production and consumption further alienates man's relationship with goods and nature. When a man loses touch with nature, he sees no problem in exploiting the ecological system to collect natural resources for producing goods as per the demands of society. The consumers do not give much consideration to the factors of production, which means how the production process is taking place; that is how the capitalists extract natural resources on a large scale for the production of consumer goods. This alienates the consumer from nature, resulting in an irreparable rift between society and the ecological system.

As per the writings of Marx in his Capital, "capitalist production disturbs the metabolic interaction between man and the earth. ie prevents the return to the soil of its constituent elements consumed by man in the form of food and clothing; it therefore violates the conditions necessary to lasting fertility of the soil. he soil combination and organisation of the labour processes are tuned into an organised mode of crushing out the workman's individuality, vitality, freedom and independence. Moreover, all progress in capitalist agriculture is a progress in the art, not only of robbing the worker, but of robbing the soil; all progress in increasing the fertility of the soil for a given time is a progress towards ruining the more long-lasting sources of that fertility. Capitalist production therefore develops technology. Only by sapping the original sources of all wealth- the soil and the worker. As per Marx, "Even soil fertility is not so natural in capitalism is something different from humanity, which can be dominated by humans, which is even a free gift to capital. For Marx, "Even soil fertility is not as natural a quality as might be thought; it is closely bound up with the social relations of the time". The mediation between humans and nature is found in technology, which

is shaped by both natural conditions and human social relations. Foster observes that New social relations are created by advances in agricultural techniques, which are inherently compatible with sustainable agriculture.

3.2.3 Emile Durkheim

Among the classical sociological thinkers, Durkheim is probably the least likely to be recognized as an environmentalist. According to Durkheim, social facts can only be explained by social facts, which have power over individuals and are different from non- human and organic facts, and his methodological dictum made Durkheim and sociologists ignore biological and physical parameters. To objectify society within a scientific discipline, Durkheim defended the use of social facts and collective consciousness against biology and psychology. Durkheim explained the static position of nature throughout history while society changes and evolves. Durkheim separated the concept of evolution, which originated from ecology and biology, from nature and integrated it into the social sphere. He further made a sharp distinction between human society and animal society as they lack morality and collective consciousness and are static, unlike human societies. Although sociological theorists like Durkheim did not directly examine the interaction between society and the environment, their studies indirectly included this issue. Hence, Durkheim should be comprehended through the extensive framework of the human nature system instead of narrow anthropocentrism and physical parameters in sociology.

Moreover, Durkheim followed the example of natural science during the exploration of social reality. According to him, nature is not the reverse of society but a part of the highest representation and complex form of nature.

Durkheim often referred to nature in his classical study of totemism. Tribe members refer to plants, animals, and rocks while referring to their social life. Durkheim often used biological terms like species, population density and resource scarcity in his explanation of social evolution and solidarity concepts. He implied that division of labour exists in all living organisms and transfers society from nature. On the other hand, his notion of competition and division of labour undermined environmental concerns like pollution and resource scarcity in urbanization. Although some of the studies of Durkheim, like social facts, strongly separate society from the environment, he often referred to environmental concepts like population, balanced organisms and resource scarcity. Durkheim also implied metabolic interaction between society and the environment and believes that society is a complex part of nature.

3.2.4 Max Weber

Max Weber did not discuss the nature of sociological explanations in terms of the environment. Though Weber did not discuss in detail the environment or the nature of sociological explanation in terms of environment, Talcott Parsons, in his *Societies: Evolutionary and Comparative Perspectives*, published in 1966, has developed Weber's theory of social action in a more systematic fashion and dealt with the problems of environment at a general theoretical level.

In his *Sociology of Religion* and Comparative research on ancient societies, Weber emphasizes the concrete examples of struggles over natural resources and control over irrigation systems. Raymond Murphy, while analyzing the works of Max Weber, opens the possibility of developing a relationship between the environment and society and the role of human agency in determining how human beings interact with the material and natural world. Weber

distinguished between formal rationality and substantive rationality. Formal rationality involves following the best means to achieve specific goals. It dictates that the most efficient action is to clear-cut an old-growth forest, even if this is in no way substantially rational from an ecological point of view.

Substantive rationality involves examining whether these goals reflect broader values about what is desirable. Weber's examination of modernization also has the potential to develop an understanding of how humans are increasingly alienated from nature. In his view, peasants were closely connected to nature in their everyday activities, but with urbanization and modernization individuals got more and more alienated from their natural living in a built environment.

According to Murphy, Weber's concept of social action was action oriented towards others (who can be persons or groups) in the past, present and future. Such social action can be oriented towards previous generations by taking into account tradition. However, he did not fully orient his concept of action towards future generations. For example, the needs of the future generations have not been considered by the present generation while consuming the resources of the present generation. This they are doing at the risk of the future generation orienting their bitterness and resentment about the damage they have caused to the environment.

Drawing on Weber's concepts, such as Intellectual rationality, Freudenberg highlights certain facts about science, technology and risk. According to him, when compared with tribal societies the average individual in an industrial society cannot know more than a minimum about how technologies work- unless she or he is a physicist. For example, one who rides in a streetcar has no idea how the car happened to get into motion.

3.2.5 Talcott Parsons on Environment

In Talcott Parsons' *Theory on Social Action*, a social system is made up of a large number of actors interacting with each other under certain circumstances that can be characterized by physical or environmental features. Here "Actors are motivated" in order to the "Optimization of gratification" and whose relation to their situations and to each other is defined and mediated in terms of a system of culturally structured and shared symbols". A system of social action and interaction is made up of a social system, personality system of individual actors, and a cultural system. Each of these systems is independent. According to him, different social roles are created based on the permanent recurrence of the behavioral pattern based on the influence of established institutionalized expectations. So, while programming and implementing ecological programmes, one has to take into consideration the analysis of the mechanisms of internalization of individual perceptions and ecological norms or values. According to him, in ecological politics, it is important to create or systematically programme social situations in which individuals would not only relate to the ecological imperatives but also act due to the knowledge interiorized in their consciousness, ecological values, and those co-relations and actions would be on high social priority.

Talcott Parsons while talking about social change, in his book *Societies: Evolutionary and Comparative Perspectives*, presented an equilibrium model of social change. As per Parsons, society is always in a natural state of equilibrium, which he defined as a state of equal balance among opposing forces. Gradual change is both necessary and desirable and typically stems from such things as population growth, technological advancement, and interaction with other societies that bring new ways of thinking and

acting. However, any sudden social change disrupts this equilibrium. To prevent this from happening, other parts of society must make appropriate adjustments if one part of the society sees a change too suddenly.

As far as Parsons is concerned, the process of socialization is significant since it serves as an instrument in transmitting and thrusting the conventional standards and morals of society to the individuals belonging to the social system. If social norms and values are not adjusted to the set roles, and stability is not gained, the structure may break up and either die or transfer into a new system. Such social, cultural and personality systems coordination approach with stress on implementing activities on ecological values internalization on a personal level due to formed social and individual expectations should be the main point of view in environmental system and sustainability development programmes.

The human relationship with nature is central to Giddens's theory of historical sociology. A major aspect of Giddens' theory is the emphasis he has given to the challenges posed to modern societies by ecological issues and by environmentalist movements as an expression of the life of what he calls 'life politics', raising questions of lifestyle or how we should live.

3.2.6 Anthony Giddens on Environment

A distinctive aspect of Anthony Giddens' sociological theory has been his emphasis on the challenge posed to modern societies by ecological issues and by environmentalist movements as an expression of what he calls 'life politics', raising questions of lifestyle or how we should live.

In his writings, he included the idea that social, political and economic factors are more important than technology while addressing climate change. In his book '*The Politics of Climate Change*' (he rejects the relevance of

environmentalism and demarcates climate change policy from life politics. Giddens is of the opinion that climate change is unlike any other problem humanity has faced before. The unique nature of climate change, according to Giddens, is that 'the industrial revolution and the subsequent exponential growth in human population, consumption and technological advancement have led to an unparalleled impact on the earth's climate system. For him, the complex nature of climate science and the inherent uncertainties associated with climate models and projections make it challenging for the general public to grasp the magnitude of the problem entirely. Climate change is cumulative and will not be felt by humanity for a long period of time. The long-lasting effects of greenhouse gas effects remaining in the atmosphere add to the urgency of rectifying this problem of climate change. However, the delayed impact of our actions makes it difficult for people to act according to the situation immediately when it arises.

Reflexivity, a key concept in environmental sociology, is associated with Giddens' and Beck's work on reflexive modernization. According to Giddens, in reflexive modernization 'social practices are constantly examined and reformed in the light of incoming information about those very practices, thus constitutively altering their character'. He believes that reflection is constantly used by both laymen as well as experts and organizations. Giddens primarily discusses reflection and how it is institutionalized in late modern society. Giddens links this idea of reflexivity to the historical process of detraditionalization, individualization and the undermining of traditional authorities and structures, such as state church, science, family and gender roles.

Modern society is seen to be characterized by large-scale environmental degradation. Giddens while discussing risk, highlighted the

catastrophic character of the society. Giddens was of the opinion that capitalism combined with industrialism is responsible for the environmental crisis. In his later works, he attributes environmental problems to modern industrial societies and the industrial sectors in developing countries. For him, the crisis of modern industry shaped by the combination of science and technology is responsible for the greatest transformation of the world of nature ever before. Giddens suggests that not just the impact but the very logic of unchecked scientific and technological development would have to be confronted if further harm is to be avoided. He explains that since the most consequential ecological issues are global, forms of intervention must have a global basis.

According to him, we are living in a reflexive age of modernity or a society that is risky, which is distinguished by the high consequence of technological risks. The risk society, developed by two sociologists, Ulrich Beck and Anthony Giddens, is one of the most ambitious, expansive, and debated of the social theories of risks. He defined the risk society not by the distribution of "Goods" (wealth), but more so by the distribution of "bads" (pollution, contamination, and other by-products of production). These bands, according to him, are technological hazards produced by society and can be preventable, unlike natural hazards. Thus, he considers environmental health risk as a social construction the impact of which is intensified or mitigated by social, economic, political and cultural systems.

Giddens has coined such risks as "manufactured risks" and believes that people today tend to focus their concerns on manufactured risks as a result of their actions over external risks. In particular, there have been rising anxieties and debates on the kind of environmental issues and problems brought about by the risk society due to new technologies in the field of nuclear, chemical

and genetic industries, which have generated environmental hazards that create risks in modern society.

The Chernobyl nuclear accident in 1986 shows how manufactured risks translated into actual environmental hazards and damage. It is evident that nuclear energy is a risk because no one is able to fully understand the kind of far-reaching consequences it can have in the event of an accident. Based on the Chernobyl nuclear accident alone, over 300,000 people had to be evacuated and resettled after the accident as the area surrounding the nuclear power plant was deemed to be unsuitable for living

Recap

- ◆ Environmental Sociology gained prominence in the 1970s due to growing environmental concerns.
- ◆ Karl Marx introduced the Metabolic Rift, linking capitalism to environmental degradation.
- ◆ Emile Durkheim acknowledged ecological factors but largely separated society from nature.
- ◆ Max Weber discussed rationalization, highlighting modernization's role in alienating humans from nature.
- ◆ Talcott Parsons: defined environmental influences on social systems and emphasized internalizing ecological values for sustainability.
- ◆ Anthony Giddens: highlighted life politics, risk society, and manufactured risks, linking industrialization to environmental crises.
- ◆ Industrialization & risks Led to large-scale environmental degradation and long-term consequences (e.g., Chernobyl disaster).

Objective Questions

1. How does Karl Marx link environmental issues with capitalism?
2. What was Durkheim's perspective on the environment and social cohesion?
3. How does Max Weber's concept of rationalization relate to environmental concerns?

4. What role does Parsons' functionalist theory play in understanding environmental problems?
5. How does Anthony Giddens explain the relationship between modernity and environmental risks?
6. What is the Marxist critique of industrialization in relation to environmental destruction?
7. How does Durkheim's idea of collective consciousness relate to environmental ethics?
8. What does Weber's idea of bureaucratization suggest about environmental policymaking?

Answers

1. Capitalism exploits natural resources unsustainably for profit.
2. He believed environmental factors influence social organisation and solidarity.
3. Rationalization leads to increased exploitation of nature for economic gain.
4. Environmental problems disrupt the balance of social systems.
5. Modern societies create risks that require global environmental management.
6. Industrialization prioritizes profit, leading to environmental degradation.
7. Shared moral values can encourage sustainable practices.
8. Bureaucratic processes can slow down or complicate environmental regulations.

Assignments

1. Discuss Karl Marx's views on environmental issues in the context of capitalism.
2. How does Durkheim's theory of social cohesion relate to environmental ethics?
3. Analyze Weber's idea of rationalization and its impact on environmental policies.
4. Explain how Parsons' functionalist approach addresses environmental problems.
5. Discuss Anthony Giddens' concept of modernity and environmental risks.
6. Compare and contrast the environmental perspectives of Marx and Weber.
7. How do sociological theories help in understanding and solving environmental challenges?
8. Examine the role of bureaucracy in shaping environmental policies according to Weber's theory.

Suggested Reading

1. Taniya Basu Majumdar. (2012). in Marx and His idea on Environment and Ecology, *Indian Journal of Law and Justice*, September 2012, vol.3, Department of Law , University of North Bengal.
2. Foster, J. B. (1999). Marx's theory of metabolic rift: Classical foundations for environmental sociology. *American Journal of Sociology*, 1999, 105(2), 366–405.
3. John Bellamy Foster. (1999) “Marx’s Theory of Metabolic Rift: Classical Foundations for Environmental Sociology.” *The American Journal of Sociology*, Vol. 105, No. 2. (Sep., 1999), pp. 366-405.
4. Marx, K. (1967). *Capital* Vol.1, New York International Publishers,
5. Marx, K. (1993). *The Poverty of Philosophy*, (Online Version: mea 1993; Marx/Engels Internet Archive (marxists.org) 1999)

6. Buttel, F. H., & Humphrey, C. (2002). Sociological theory and the natural environment. In R. E. Dunlap & W. Michelson (Eds.), *Handbook of environmental sociology* (pp. 33–69). Greenwood Press
7. Lidskog, R., Mol, A. P. J., & Oosterveer, P. (2015). Towards a global environmental sociology? Legacies, trends and future directions. *Current Sociology*, 63(3), 339–368
8. Hannigan, J. (2006) Environmental Sociology: *A Social Constructivist Perspective*, 2nd ed.; Routledge
9. Hirvikoski, T. (1996). The relation of nature and society in Marx and Durkheim. *Acta Sociologica*, 39(1), 73–86.
10. Durkheim, E. (1982). *The rules of sociological methods*. The Free Press.
11. Raymond Murphy, (1994) *Rationality and Nature, A sociological inquiry into a changing relationship*, West view Press.

Reference

1. Pushpagandhan P. (1994). *Ethnobiology in India. A status report*, Ministry of Environment and Forest, GOI, New Delhi.
2. Arora R. K. (1991). *Conservation and management concept and approach in plant genetic resources*, (Eds) Paroda R.S. and R.K.Arora, IBPGR, Regional Office South and South Asia, P 25.
3. B.P.Singh, (2018) *Biodiversity, tribal knowledge and life in India* 3(1). Whioce Publishing Ltd.
4. Alison A.Ormsby and Shonil. A. Bhagavat, (2010), *Sacred forests of India: A strong tradition of community-based natural resource management*”, Cambridge University Press, Vol.37, issue3.
5. Kabil Singh, C., Chankaew, J. & Kabil Singh, P. (1991). *Buddhism for preservation of nature*. Thammasat University Press. (In Thai).

BLOCK

Environmental Issues

Environment: Impact and Issues

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ understand the major environmental challenges and issues
- ◆ examine the root causes and impacts of environmental challenges
- ◆ understand how environmental issues affect communities, economies, and ecosystems

Prerequisites

Students should have a strong foundation in environmental science and sociology to understand the complexity of global warming, climate change, technology breakthroughs, and consumerism. Understanding significant environmental difficulties, such as pollution, deforestation, and resource depletion, will help to contextualize these issues. Understanding the environmental consequences of industrialization, urbanization, and economic development requires a fundamental understanding of these processes. Furthermore, understanding policy frameworks, environmental programs, and grassroots movements will aid in examining mitigation strategies. Understanding basic ecological concepts such as biodiversity, ecosystems, and the carbon cycle is advantageous. Critical thinking, research abilities, and an interest in sustainability will help you engage with the unit's themes.

Keywords

Ecosystem, Greenhouse gases, Pollution, Natural disasters, Development

Discussion

Environmental issues have become a critical area of study due to their profound influence on society. The rising urgency of addressing these challenges stems from their direct and indirect effects on human well-being, economic stability, and ecological balance. With the rapid pace of industrialization, urbanization, population growth, coal-based power plants, and deforestation, the world is witnessing an unprecedented strain on natural resources, leading to global warming, climate change, and large-scale environmental degradation.

Sociology, traditionally focused on human interactions and social structures, has evolved to incorporate the study of environmental challenges, examining the interconnected relationship between humans and nature. This interdisciplinary field, known as environmental sociology, investigates how societal behaviours drive ecological crises and how environmental changes, in turn, transform social institutions and human lives. By analyzing these complex dynamics, environmental sociology uncovers the underlying causes of environmental issues, assesses their impacts on natural ecosystems and human communities, and explores strategies for achieving sustainable development.

The study of environmental issues is particularly relevant in India, a country marked by its rich biodiversity, diverse ecosystems, and significant socio-economic disparities. India's rapid economic growth has brought numerous environmental challenges.

Cities like Delhi and Mumbai face severe air pollution, while rural areas grapple with water scarcity and soil degradation. Coastal regions, including Kerala and the Sundarbans, are increasingly vulnerable to rising sea levels and cyclones driven by global warming. Moreover, the loss of mangrove forests in the coastal regions of India, especially in West Bengal, Tamil Nadu, Gujarat, and Kerala, affects biodiversity changes on a large scale. These issues highlight the need for a sociological perspective to understand the intersection of environmental and societal factors.

This unit delves into four critical aspects of environmental issues: global warming, climate change, technological advancements, and consumerism. Global warming, characterized by rising global temperatures due to greenhouse gas emissions, has far-reaching consequences, from melting glaciers to intensified weather events. Climate change, a broader phenomenon, encompasses shifts in weather patterns, rising sea levels, increased natural disasters, and loss of biodiversity in coastal regions, disproportionately affecting vulnerable communities. Technological advancements, while driving progress and innovation, often come at the cost of environmental degradation, as seen in deforestation for mining or the improper disposal of electronic waste. Consumerism, propelled by globalization and materialism, exacerbates environmental challenges by promoting overconsumption and waste generation.

Fig. 4.1.1 (Image credit: NOAA Climate.gov, using NOAA NCEI data)

4.1.1 Global Warming

In Mawsynram, Meghalaya—one of the wettest places on Earth—villagers have witnessed drastic shifts in rainfall patterns over the past two decades. Previously marked by steady monsoons, the region now experiences unpredictable downpours in short, intense bursts. These heavy rains often trigger flash floods, damaging homes, destroying crops, and disrupting daily life. For generations, the community depended on the monsoon for agriculture, but climate change has brought uncertainty, forcing many to abandon traditional farming. This case vividly illustrates how global warming disrupts ecosystems and livelihoods, even in historically resilient communities.

Global warming refers to the long-term rise in Earth's average surface temperature due to human activities, primarily the burning of fossil fuels. This process releases greenhouse gases such as carbon dioxide,

methane, and nitrous oxide, which trap heat in the atmosphere. The intensification of industrialization and urbanization has significantly contributed to the emission of these gases. Deforestation further exacerbates the problem, reducing the Earth's capacity to absorb carbon dioxide. Additionally, expanding transportation networks and the widespread use of coal-fired power plants amplify greenhouse gas emissions, accelerating the warming process.

The consequences of global warming are far-reaching, affecting natural ecosystems and human societies alike. Coastal regions are particularly vulnerable, as rising sea levels threaten cities like Mumbai and Kolkata with increased flooding risks. Seawater intrusion has raised salinity levels in the Sundarbans, a UNESCO World Heritage site, forcing communities to abandon traditional agricultural practices. The melting glaciers in the Himalayas disrupt water flow, posing challenges for irrigation and

drinking water supplies. These ecological shifts disproportionately impact vulnerable populations, worsening social inequalities and economic disparities.

The Uttarakhand floods of 2013 illustrate the dangers posed by global warming. Accelerated glacier melting in the Himalayas, triggered by rising temperatures, contributed to a catastrophic flood. This disaster claimed thousands of lives, destroyed infrastructure, and displaced countless families. Such events underscore the urgent need for sustainable practices and robust climate adaptation strategies to mitigate the adverse effects of global warming.

Global warming triggers cascading effects on biodiversity and public health. For example, the shrinking habitat of polar species, such as snow leopards in the Himalayan region, directly results from rising temperatures. Additionally, the increasing frequency of heat waves in northern India has led to severe public health crises. Heat-related illnesses, such as heatstroke and dehydration, have become alarmingly common, particularly among vulnerable groups like the elderly and outdoor workers. Recognizing these interconnected consequences is essential for devising effective mitigation and adaptation strategies that address the root causes of

global warming.

4.1.2 Climate Change

The Palisades Fire in Los Angeles County, which started on January 7, 2025, was worsened by climate change. While the cause is still under investigation, the fire spread rapidly due to extreme vegetation dryness and strong Santa Ana winds. UCLA climate scientists found that climate change made vegetation 25% drier when the fire began. The region is also experiencing its driest period in 1,200 years, creating ideal conditions for wildfires. These climate-driven factors highlight the urgent need for action to reduce future wildfire risks.

The state of Kerala, often called “God’s Own Country,” has been experiencing significant shifts in its climate patterns over recent years. Once known for its reliable monsoon rains, the state now grapples with erratic weather events, including prolonged dry spells followed by heavy downpours. The devastating floods of 2018, which displaced over a million people and claimed hundreds of lives, were exacerbated by unexpected and intense rainfall. These changes have disrupted traditional farming practices and strained infrastructure, showcasing how climate change reshapes landscapes and livelihoods.

Figure. 4.1.2 . Impact of Climate Change

Climate change refers to significant alterations in global or regional climate patterns over time. While global warming forms a critical component, climate change encompasses a broader spectrum, including changes in precipitation, wind patterns, and extreme weather events. Human activities such as deforestation, urbanization, and burning fossil fuels are primary contributors, accelerating these shifts by increasing the concentration of greenhouse gases in the atmosphere. Natural factors like volcanic eruptions and solar radiation variations can also influence climate, although their impact is more minor than anthropogenic causes.

4.1.2.1 Impact on India

India, with its vast geographical diversity, faces a range of climate-related challenges:

- Agriculture:** Unpredictable monsoons disrupt traditional farming schedules, leading to crop failures and food insecurity. For example, droughts in Maharashtra's Vidarbha region have caused severe distress among farmers, resulting in increased debt and even suicides.
- Water Resources:** Melting glaciers in the Himalayas threaten the stability of rivers such as the Ganges, which millions depend on for drinking water and agriculture. Meanwhile, over-extraction of groundwater in states like Punjab exacerbates water scarcity.
- Urban Areas:** Indian cities like Mumbai, Bengaluru, and Chennai are increasingly vulnerable to urban flooding due to inadequate drainage systems and intense rainfall events. Rising temperatures also contribute to the urban heat island effect, amplifying health risks.
- Coastal Regions:** Rising sea

levels and storm surges put coastal areas, including crowded cities like Kolkata, at risk. The Sundarbans' mangrove forests, which protect against cyclones and erosion, are shrinking, leaving communities more vulnerable.

- Global Consequences:** Climate change is a global crisis with far-reaching consequences that transcend national and regional boundaries. The localized challenges countries like India face, including altered monsoon patterns, glacial melt, and coastal erosion, are microcosms of the broader impacts experienced worldwide. Rising sea levels are among the most pressing issues, threatening low-lying coastal areas and island nations with inundation, displacement of communities, and loss of critical habitats such as mangroves and coral reefs. These ecosystems, which provide natural protection against storm surges and support marine biodiversity, are crucial for global ecological balance.

Biodiversity loss is another critical outcome, as changing climates disrupt habitats, migration patterns, and breeding cycles. The extinction of species, even in isolated regions, creates ripple effects across ecosystems, potentially destabilizing food webs and natural processes like pollination and carbon sequestration. This ecological imbalance exacerbates economic instability, especially in developing nations where livelihoods are heavily dependent on agriculture, fisheries, and forestry, all vulnerable to climate variability.

The interconnectedness of ecosystems underscores the global nature of these challenges. For instance, deforestation in one region can accelerate global warming, while ocean pollution affects fisheries worldwide.

Addressing climate change requires collective action, international cooperation, and a shared commitment to sustainable practices to safeguard the planet for future generations.

Cyclone Amphan, a powerful super cyclone in 2020, showed the increasing danger of extreme weather events worsened by climate change. Forming in the Bay of Bengal, it gained strength due to unusually warm ocean temperatures. The cyclone caused massive destruction in India and Bangladesh, especially in the Sundarbans, a UNESCO World Heritage site. It displaced millions, leaving many homeless and damaging infrastructure, crops, and livelihoods. Economic losses topped \$13 billion, with long-term recovery challenges. Amphan highlights the growing frequency and intensity of climate-driven cyclones, stressing the need for stronger climate resilience and global action.

4.1.2.2 Adaptation and Mitigation Strategies

1. Policy Measures: India's National

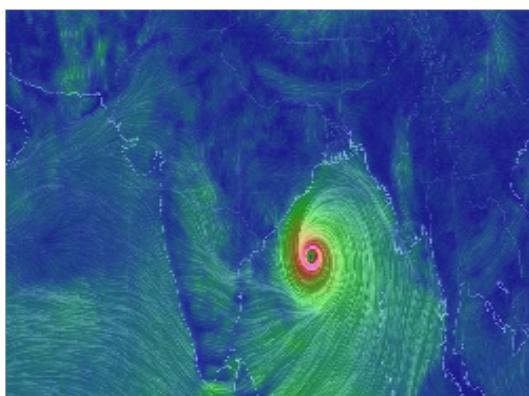


Figure. 4.1.3 Cyclone amphan-news clipping and satellite image

3. Technological Innovations: Advancements in weather forecasting, early warning systems, and climate-resilient crop varieties offer promising solutions to

Action Plan on Climate Change (NAPCC) outlines missions focusing on solar energy, sustainable agriculture, and water conservation. Programs like the State Action Plans on Climate Change (SAPCC) localize these efforts, addressing region-specific vulnerabilities. Legislative measures, such as stricter emission norms for industries and transport, reinforce mitigation efforts. Like Kerala's flood resilience programs, state-level initiatives aim to build local capacities.

2. Community Engagement: Grassroots movements, such as farmer-led water conservation projects in Maharashtra, women-led afforestation projects in Rajasthan, and participatory water management in Gujarat, illustrate the transformative potential of local action. Empowering Indigenous and rural communities with knowledge and resources fosters resilience while preserving traditional ecological wisdom and demonstrates the power of collective action in adapting to changing climatic conditions.

fuels. Smart agriculture techniques, including precision farming and drip irrigation, conserve resources while improving yields. Carbon capture and storage (CCS) innovations also offer significant potential in reducing atmospheric greenhouse gases.

4. International Collaboration:

Agreements like the Paris Climate Accord highlight the importance of global cooperation in reducing emissions and sharing resources to combat climate change. COP conferences promote global synergies in tackling climate change. Technology transfer programs enable developing nations to access sustainable technologies, while financial mechanisms like the Green Climate Fund support adaptation and mitigation in vulnerable regions.

5. Nature-Based Solutions:

Strategies such as mangrove restoration, wetland conservation, and urban green belts enhance carbon sequestration, improve biodiversity, and reduce the impacts of extreme weather events. Initiatives like afforestation in the Western Ghats and coastal restoration in Odisha have shown promising results in mitigating climate risks.

6. Education and Capacity Building:

Public awareness campaigns and climate education programs in schools and universities are critical for fostering a culture of sustainability. Training programs for government officials, farmers, and industrial stakeholders ensure the adoption of best practices and adaptive measures.

7. Infrastructure Development:

Climate-resilient infrastructure, including elevated roads, flood

barriers, and cyclone shelters, plays a pivotal role in reducing vulnerability. Integrating renewable energy into urban planning, such as solar-powered microgrids and energy-efficient buildings, further contributes to long-term sustainability.

8. Economic Instruments:

Implementing carbon pricing mechanisms, such as carbon taxes and cap-and-trade systems, incentivizes emission reductions. Subsidies for renewable energy adoption and penalties for polluting industries encourage sustainable practices.

9. Research and Development:

Investment in climate research enhances understanding of regional impacts and potential solutions. Collaborative projects, such as those between Indian and international institutions, provide innovative approaches to tackling climate challenges.

10. Disaster Risk Reduction:

Strengthening early warning systems, disaster response frameworks, and insurance schemes ensures better preparedness for climate-induced disasters. Programs like the National Cyclone Risk Mitigation Project (NCRMP) enhance resilience in coastal areas.

Climate change represents one of the most pressing challenges of our time, with far-reaching consequences for ecosystems, economies, and communities. Balancing development goals with environmental sustainability is crucial for a country like India. Understanding and addressing the multifaceted impacts of climate change through a sociological lens not only aids in building resilience but also fosters a collective responsibility toward a sustainable future.

4.1.3 Technological Advancement

The rise of artificial intelligence (AI) contributes to environmental challenges, a crucial aspect explored in environmental sociology. AI systems require vast energy to power data centers and are linked to the growing demand for rare earth minerals, often extracted through environmentally damaging practices. Additionally, while offering efficiency improvements, AI-driven technologies may inadvertently increase consumption patterns and waste generation. Environmental sociologists examine how these technological advancements intersect with human behaviors, societal values, and policy decisions, urging a balanced approach that integrates sustainability and technological growth to mitigate the environmental impact of AI.

Another important issue is the digital divide. The fast growth of AI can widen inequality, as communities without access to advanced technology may fall behind, while those with access may contribute more to environmental damage. Additionally, AI-related waste, like e-waste, often harms marginalized communities due to weak disposal and recycling regulations. Environmental sociologists stress the need for inclusive policies that consider both the technological and social impacts of AI, ensuring fair solutions for everyone.

Technological progress has transformed societies and economies, driving growth and innovation. However, it also comes with significant environmental costs. As technology advances, it puts more strain on natural resources and contributes to environmental damage. This section examines how technology both creates environmental challenges and offers solutions for sustainability, with a particular focus on its impact in India.

4.1.3.1 Role of Technology in Modernisation

Industrialization brought rapid technological progress, boosting productivity, connectivity, and living standards in India, especially through mechanized farming and the growing IT sector. While these advancements drive economic growth, they also have serious environmental consequences.

Industries, transportation, and expanding cities have increased fossil fuel use, leading to air pollution and high greenhouse gas (GHG) emissions. India's coal-dependent energy sector accounts for nearly 40% of its GHG emissions, making climate goals difficult to achieve. The IT sector, despite its economic benefits, consumes large amounts of energy, much of it from non-renewable sources.

The rise of digitization has also led to a surge in electronic waste (e-waste). As one of the world's largest e-waste producers, India struggles with improper disposal and recycling, which releases harmful toxins into the environment. To reduce these impacts, sustainable energy use and effective e-waste management are urgently needed.

4.1.3.2 Environmental Costs of Technological Advancement

One of the most visible impacts of technological advancement is the exponential growth in e-waste. India, the third-largest producer of e-waste globally, faces significant challenges in managing this waste. Improper disposal methods, such as open-air burning and unregulated recycling, release toxic substances into the soil, air, and water, endangering human and ecological health. Additionally, mining rare earth metals, essential for modern electronics, disrupts ecosystems and contributes to deforestation.

Thermal power plants, a key part of

industrialization, are a major source of greenhouse gas emissions in India. While essential for meeting energy needs, they cause serious environmental issues like air pollution and the release of harmful fly

ash. Similarly, hydropower projects, though a renewable energy source, often lead to large-scale community displacement and biodiversity loss due to deforestation and habitat destruction.

Kudankulam Nuclear Power Plant (KKNPP)

Fig. 4.1.4 Kudankulam nuclear power plant

The Kudankulam Nuclear Power Plant (KKNPP), situated in Tamil Nadu, is India's largest nuclear facility, developed in collaboration with Russia and operated by the Nuclear Power Corporation of India Limited (NPCIL). It plays a significant role in expanding the country's clean energy capacity, reducing dependence on fossil fuels, and supplying electricity to southern states. However, the plant has raised environmental concerns, including thermal pollution affecting marine biodiversity, risks related to radioactive leaks, nuclear waste disposal, and potential threats from natural disasters like tsunamis. While it does not emit greenhouse gases, its auxiliary activities contribute to environmental degradation, with possible impacts on nearby soil and agriculture.

Socially, the project has faced long-standing resistance from local communities, particularly fishermen, due to fears of radiation exposure, displacement, and livelihood loss. Despite protests and legal challenges led by groups like PMANE, the government has promoted the plant for its economic benefits, including job creation and infrastructure development under NPCIL's CSR initiatives. Nonetheless, public mistrust persists, fueled by global nuclear accidents and ongoing health and safety concerns.

4.1.3.3 Positive Potential of Technology

Despite its environmental costs, technology also offers significant potential for fostering sustainability. Innovations in renewable energy, such as solar and wind power, have gained traction in India. The Cochin

International Airport in Kerala, the world's first airport to run entirely on solar energy, is a shining example of how technology can drive sustainable development.

Moreover, advancements in precision agriculture, including drones and IoT devices, have enabled more efficient resource

utilization, reduced water wastage, and

optimized fertilizer use. Innovative city initiatives in India aim to integrate technology for better urban planning, waste management, and energy efficiency, paving the way for more sustainable living environments.

Broader Implications and Future Directions The dual nature of technological advancement as both a contributor to and a solution for environmental issues necessitates a balanced approach. Policies promoting green technologies and stringent regulations for managing industrial waste and emissions are essential. Investments in research and development for cleaner and more efficient technologies can further mitigate the environmental impact of technological progress.

As a global technology leader, India is uniquely positioned to pioneer sustainable practices. By leveraging its technological capabilities and fostering international collaboration, India can address its environmental challenges while contributing to global sustainability efforts. Education and awareness campaigns can encourage responsible technology use among individuals and organizations.

While technological advancement has undeniably contributed to environmental degradation, it is also key to addressing these challenges. A concerted effort to harness technology for sustainable development can ensure a balance between progress and environmental preservation, securing a better future for coming generations.

4.1.4 Consumerism

The fashion industry has a major environmental impact, producing nearly 10% of global carbon emissions and 20% of wastewater. This is mainly due to energy-heavy textile production and dyeing. The dyeing and finishing processes alone cause

3% of global CO₂ emissions and over 20% of water pollution. In 2015, the industry used about 79 billion cubic meters of water, worsening water shortages in parts of Asia.

To tackle these issues, solutions include reducing production, using sustainable materials, and improving waste management. Consumer awareness and demand for eco-friendly fashion also play a key role in pushing for industry-wide change.

Consumerism refers to the cultural and economic phenomenon where individuals are encouraged to purchase and consume goods and services beyond their basic needs. Rooted in industrialization and the rise of capitalism, consumerism has become a defining characteristic of modern economies. Driven by global trade, advertising, and technological advancements, consumerism perpetuates the idea that personal and social success is tied to material possessions. In India, the liberalization of the economy in the 1990s marked a significant shift toward consumer-driven markets, with the rapid proliferation of malls, online shopping platforms, and luxury brands.

The role of Advertising and Media Advertising is pivotal in shaping consumer behavior. Media fosters a culture of desire and aspiration through persuasive messaging and targeted campaigns. Social media platforms amplify consumerism by showcasing curated lifestyles and trends, encouraging individuals to emulate and participate in consumer-driven cultures. For instance, festivals like Diwali, traditionally associated with cultural and religious practices, have increasingly become occasions for excessive spending on electronics, apparel, and other goods, often influenced by aggressive marketing.

10 Concerning Fast Fashion Waste Statistics

BY MARTINA IGNA | GLOBAL COMMUNE | AUG 31ST 2021 | 4 MIN

EARTH.ORG IS POWERED BY OVER 150 CONTRIBUTING WRITERS

Fig. 4.1.5 Fast Fashion's toll on environment

4.1.4.1 Impact of Consumerism the Environment

The environmental consequences of consumerism are profound and multifaceted:

- Resource Depletion:** The relentless demand for products drives unsustainable extraction of natural resources, including deforestation for furniture, mining for electronics, and overfishing for luxury seafood.
- Pollution:** Consumerism contributes significantly to pollution, from industrial waste during manufacturing to packaging waste discarded by consumers. Single-use plastics, widely used in packaging, have become a significant pollutant, clogging rivers like the Yamuna

and Ganga and harming marine ecosystems.

- Waste Generation:** The fast fashion industry, characterised by inexpensive and disposable clothing, exemplifies the wastefulness of consumerism. In India, cities like Bengaluru struggle with mounting textile waste, often in landfills or incinerators, releasing toxic gases.
- Water Scarcity:** The production of consumer goods, particularly in the textile and electronics industries, consumes vast amounts of water. For example, the dyeing process in textile manufacturing pollutes freshwater sources, exacerbating water scarcity in regions like Tamil Nadu.

The Deonar Landfill in Mumbai, one of Asia's largest, highlights the impact of unchecked consumerism. Spanning over 300 acres, it receives vast amounts of mostly non-biodegradable waste daily. Frequent fires release toxic gases, harming air quality and public health in nearby areas. The Deonar crisis emphasizes the urgent need for sustainable waste management and greater consumer awareness.

Consumerism impacts the environment and shapes societal values and behaviours. In India, the rise of consumer culture has widened socio-economic disparities, as the pursuit of material goods often leads to financial strain among lower-income groups. Moreover, the emphasis on material wealth fosters a culture of disposability, where products are quickly replaced rather than repaired, exacerbating environmental degradation.

4.1.4.2 Solutions and Sustainable Practices

- Promoting Minimalism:** Encouraging a lifestyle focused on essential needs and mindful consumption can reduce the environmental footprint of consumerism.
- Government Policies:** Regulations like India's ban on single-use plastics aim to curb pollution. Policies incentivizing recycling and waste segregation at the household level can improve waste management.
- Corporate Responsibility:** Companies adopting sustainable practices, such as using biodegradable packaging or implementing take-back schemes for old products, can mitigate environmental harm.
- Awareness Campaigns:** Educating

consumers about the environmental impact of their choices can drive a shift toward eco-friendly products and practices. For example, campaigns promoting cloth bags over plastic ones have gained traction in several Indian cities.

4.1.4.3 Global Movements

Movements like the circular economy advocate redesigning production and consumption systems to minimize waste and resource use. In India, initiatives like Swachh Bharat Abhiyan align with these principles, emphasizing cleanliness, recycling, and sustainable living.

Consumerism, while driving economic growth and innovation, poses significant environmental challenges. Addressing these requires a multifaceted approach that combines individual responsibility, corporate accountability, and government intervention. By adopting a culture of sustainability, societies can balance the benefits of consumerism with the imperative to protect the environment for future generations.

- Understanding the Interconnections:** The interconnected nature of global warming, climate change, technological advancements, and consumerism reveals how human activities and societal developments amplify environmental challenges. Rapid technological development fuels consumerism, increasing resource extraction and waste production. In turn, the environmental degradation caused by these factors exacerbates global warming and climate change, creating a cycle of intensifying impacts. For example, the mass production of electronic devices drives mining for rare earth metals, contributing to deforestation and carbon emissions.

- b. Economic Growth and Environmental Trade-offs :** India's ambition to become a global financial powerhouse has highlighted the trade-offs between development and environmental sustainability. Urbanisation, while essential for economic growth, often occurs without adequate planning, resulting in unregulated construction, loss of green cover, and increased resource demand. Cities like Delhi, Bengaluru, and Chennai exemplify how rapid urban growth strains infrastructure, leading to water shortages, traffic congestion, and air pollution.
- c. Impact on Rural and Urban Areas:** In rural areas, farming is struggling due to desertification and soil erosion. Using too many chemical fertilizers and growing only one type of crop has damaged the soil. Water-heavy crops like sugarcane have also drained groundwater. Farmers in Maharashtra and Punjab are seeing lower harvests and more debt, forcing many to move to cities for work. This migration adds to the strain on already crowded urban areas.
- d. Environmental Justice and Inequality:** Environmental challenges disproportionately affect marginalised communities. In India, the urban poor, who often reside in informal settlements, are more vulnerable to flooding, heat waves, and air pollution. Similarly, tribal communities face displacement due to mining and infrastructure projects, losing access to their ancestral lands and resources. This highlights the need for equitable policies addressing environmental and social justice.

The Aravalli Hills

The Aravalli Hills, spanning Haryana and Rajasthan, serve as a critical natural barrier against desertification in northern India. However, rampant illegal mining and deforestation have significantly degraded this ecosystem. The loss of vegetation has increased dust storms in the Delhi-NCR region, exacerbating air pollution and public health crises. The Aravalli case illustrates how local environmental degradation can have far-reaching consequences on regional climates and urban living conditions.

4.1.4.4 Global and Local Solutions

Environmental issues like climate change, resource depletion, and pollution are global in nature but often require local solutions to be effectively addressed. The complexity of these challenges demands a multi-level approach that combines international cooperation with grassroots action. While global frameworks and technological advancements set the stage for large-scale change, local efforts rooted in community participation, sustainable practices, and policy enforcement bring these solutions to life. Global and Local solutions are;

- 1. Integrated Urban Planning:** To reduce their environmental footprint, Cities need comprehensive planning incorporating green spaces, efficient public transportation, and water management systems.
- 2. Sustainable Agriculture:** Promoting crop diversification, organic farming, and water-efficient irrigation techniques can mitigate the environmental impacts of agriculture in rural areas.

3. **Community Participation:** Empowering local communities to protect and manage their natural resources fosters a sense of ownership and ensures sustainable practices.
4. **Policy Frameworks:** Stricter enforcement of environmental regulations, such as those governing mining and deforestation, is essential to prevent further degradation.
5. **Technological Innovations:** Renewable energy technologies, such as solar and wind power, offer viable alternatives to fossil fuels, reducing emissions and conserving resources.

The interplay between global warming, climate change, technological advancements, and consumerism underscores the complexity of modern environmental challenges. India's dual economic growth and environmental conservation pressures require innovative and inclusive solutions. By adopting sustainable practices and addressing the root causes of environmental degradation, societies can break the cycle of interconnected impacts and pave the way for a balanced and equitable future.

4.1.5 Mitigation Strategies

India faces significant environmental challenges that demand both global and local solutions. As a rapidly developing nation with diverse ecosystems and a growing population, India must balance economic growth with ecological sustainability. Climate change, resource depletion, and pollution are interconnected issues requiring coordinated responses across policy, technology, community action, and education. India's proactive measures—ranging from national policies like the National Action Plan on Climate Change (NAPCC) to grassroots movements and international collaborations—demonstrate its multifaceted approach to environmental protection. This essay explores

the mitigation strategies undertaken at various levels, highlighting how integrated efforts can foster a sustainable future.

India's National Action Plan on Climate Change (NAPCC) has been pivotal in addressing environmental challenges. This comprehensive framework includes missions on solar energy, enhanced energy efficiency, water conservation, and sustainable agriculture. For example, the National Solar Mission has significantly boosted solar power adoption, aiming to achieve a capacity of 100 GW by 2030. Similarly, the National Mission for Sustainable Agriculture promotes climate-resilient agricultural practices, such as micro-irrigation and organic farming. Policymakers also prioritize electric vehicle adoption and phasing out single-use plastics to curb pollution.

Grassroots movements have played a crucial role in environmental protection in India. The Chipko Movement (1973) in Uttarakhand, where villagers hugged trees to prevent deforestation, remains a powerful example of community-led conservation. More recently, local initiatives in Kerala have focused on cleaning rivers and planting mangroves to mitigate coastal erosion. Self-help groups and non-governmental organisations (NGOs) also engage in awareness campaigns, encouraging citizens to adopt eco-friendly practices like waste segregation and composting.

Promoting renewable energy technologies has gained momentum, with India emerging as a solar and wind energy leader. The Cochin International Airport in Kerala, running entirely on solar power, exemplifies how technology can drive sustainable development. Additionally, advancements in battery storage and grid management enable more efficient renewable resource utilization. In agriculture, precision farming technologies, including drones and IoT sensors, optimize resource use and reduce

waste. Furthermore, innovations in waste management, such as biogas plants and recycling systems, are helping cities manage growing waste volumes sustainably.

Awareness campaigns and educational initiatives are essential to driving behavioral change. Programs like Swachh Bharat Abhiyan focus on cleanliness and instill a sense of environmental responsibility among citizens. Schools and universities increasingly integrate environmental studies into their curricula, encouraging the younger generation to adopt sustainable practices. Public campaigns, such as those promoting cloth bags over plastic ones, have gained traction, illustrating the power of collective action in driving change.

India's participation in global agreements like the Paris Climate Accord reflects its commitment to addressing climate change internationally. Collaborative efforts with other nations to share technology and expertise are crucial for tackling transboundary environmental issues. For example, partnerships in renewable energy research and disaster management enhance India's ability to respond to climate challenges

effectively.

Addressing environmental challenges requires a comprehensive understanding of the intricate interplay between global warming, climate change, technological advancements, and consumerism. While often viewed in isolation, these factors are deeply interconnected, amplifying each other's effects on ecological and social systems. India's diverse geography and socioeconomic structure uniquely position it as vulnerable to and pivotal in tackling these global environmental challenges.

Sustainability should be integrated into policies, community efforts, and technological advancements. Initiatives like the National Action Plan on Climate Change (NAPCC) need support from grassroots movements and global partnerships for a more inclusive approach. India can achieve both development and environmental protection by promoting renewable energy, embracing a circular economy, and prioritizing environmental education. By fostering a culture of sustainability, India can balance its growth with ecological preservation.

Recap

- ◆ Environmental issues like climate change, technology, and consumerism are interconnected, affecting ecosystems, economies, and societies.
- ◆ Greenhouse gases, deforestation, and industrialization drive global warming, extreme weather, and biodiversity loss, impacting vulnerable communities.
- ◆ While technology fuels progress, it also depletes resources and creates pollution, requiring a balance between growth and sustainability.
- ◆ Overconsumption in industries like fashion, electronics, and urbanization worsens environmental damage.
- ◆ Solutions include renewable energy, sustainable agriculture, eco-friendly urban planning, policies, and grassroots efforts.

- ◆ Environmental sociology explores how human behavior and economic systems contribute to crises, emphasizing policy, awareness, and collective action.

Objective Questions

1. Which one is a major cause of changing rainfall patterns in Mawsynram, Meghalaya?
2. Which greenhouse gas is primarily responsible for global warming?
3. What was one of the key factors that contributed to the 2013 Uttarakhand floods?
4. Which Indian city is particularly vulnerable to urban flooding due to inadequate drainage systems?
5. How did Cyclone Amphan intensify before making landfall?
6. Which Indian policy framework aims to address climate change through missions like solar energy and water conservation?
7. What is a major environmental concern related to the Kudankulam Nuclear Power Plant?
8. Which initiative promotes global cooperation in combating climate change through emissions reduction commitments?
9. Which Indian region faces severe water scarcity due to over-extraction of groundwater?
10. What is a key environmental issue linked to the Kudankulam Nuclear Power Plant?

Answers

1. Climate change
2. Carbon dioxide
3. Accelerated glacier melting

4. Mumbai
5. Due to unusually warm ocean temperatures
6. National Action Plan on Climate Change (NAPCC)
7. Thermal pollution affecting marine ecosystems
8. Paris Climate Accord
9. Punjab
10. Marine ecosystem disruption from thermal pollution

Assignments

1. Consider any recent natural disaster that has occurred in India, assess whether it was caused by climate change, record your observations.
2. Examine the role of technological innovations in sustainable development.
3. Critically assess the challenges brought on by growing consumerism, what strategies can be employed to overcome this.
4. Recently 100 acres of forest area was cleared in Telengana for developmental purpose.;assess how does this become a cause of concern for environmental conservation.
5. Describe the sociological perspective on urbanisation and its subsequent environmental consequences.

Suggested Reading

1. Masson-Delmotte, V. P., Zhai, P., Pirani, S. L., Connors, C., Péan, S., Berger, N., & Sceh Monteiro, P. M. (2021). *Ipcc, 2021: Summary for policymakers.* in: Climate change.
2. Carolan, M. S. (2020). *Society and the environment: Pragmatic solutions to ecological issues.* Routledge.

3. Martínez-Alier, J. (2012). Environmental justice and economic degrowth: an alliance between two movements. *Capitalism Nature Socialism*, 23(1), 51-73.

Reference

1. Pande, C.B., Moharir, K.N., Negm, A. (2023). Introduction to Climate Change Impact on India. In: Pande, C.B., Moharir, K.N., Negm, A. (eds) *Climate Change Impacts in India*. Earth and Environmental Sciences Library. Springer, Cham.
2. Mehta, L., Adam, H.N., & Srivastava, S. (Eds.). (2021). *The Politics of Climate Change and Uncertainty in India* (1st ed.). Routledge.
3. Houghton, J. (2015). *Global Warming: The Complete Briefing* (5th ed.). Cambridge University Press.

Environmental Movements

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ examine the impact of environmental movements
- ◆ analyze major environmental movements and their origins, strategies, successes, and challenges
- ◆ understand how grassroots activism and legal frameworks contribute to shaping environmental policies

Prerequisites

Before beginning this course, students should have a solid awareness of environmental issues such as deforestation, pollution, climate change, and biodiversity loss. Knowing essential environmental concepts like sustainability, conservation, and ecological balance can help you understand the importance of environmental movements. A thorough understanding of social movements and activism, particularly their role in pushing for policy reforms and preserving community rights, will help you analyze case studies such as Greenpeace, Narmada Bachao Andolan, Silent Valley, and Plachimada. Furthermore, understanding human-environment interactions, the influence of industrialization on natural resources, and the ethical considerations surrounding development projects will allow students to critically evaluate the tensions between economic expansion and environmental preservation.

Understanding key legal frameworks, such as environmental legislation and governance structures at the national and international levels, will help to advance talks about corporate accountability, public policy, and sustainable development. Finally, a strong interest in ecological justice and the role of civil society in influencing environmental decisions will enable students to interact meaningfully with the themes covered in this course.

Keywords

Greenpeace, Hydroelectric projects, Environmental governance, Environmental activist, Ecological balance

Discussion

Environmental movements are individual, community, and organizational initiatives to protect, conserve, and restore the natural environment in reaction to the negative consequences of industrialization, urbanization, deforestation, pollution, and unsustainable resource extraction. These movements form to resist environmental degradation, advocate for policy changes, and promote public awareness of ecological issues. They can take many forms, including grassroots activity, international campaigning, legal disputes, scientific study, and policy lobbying.

Environmental movements have been essential throughout history in establishing environmental legislation, strengthening local communities, and holding governments and businesses accountable for environmental damage. These movements shaped public opinion and affected national and international environmental governance by tackling issues such as climate change, biodiversity loss, resource depletion, and pollution. They emphasize the link between human behaviors and environmental health, advocating for sustainable methods in industries, agriculture, and urban development.

As global consumption and development pressures rise, environmental activism becomes ever more critical to ensuring that progress does not come at the expense of ecological catastrophe. These movements argue for a balance between development and environmental preservation, aiming to build a more sustainable future in which economic expansion is balanced with

ecological responsibility.

4.2.1 Greenpeace

Greenpeace is a network of Greenpeace groups (National and Regional organizations, NROs). Greenpeace International is a foundation established in Amsterdam. It facilitates global campaigns and is known as an environmental protection organization with operations in 55 countries. It was created in 1971. It is a well-known organization because of its visible actions around the world.

Greenpeace was founded in the 1960s in response to the United States government's contentious intention to test nuclear bombs on Amchitka, a tectonically unstable island near Alaska. Despite tremendous opposition from nearby people and environmental organizations, the government conducted the test, which did not result in significant geological upheavals. Despite complaints, the United States unveiled plans for an even more powerful nuclear detonation, five times stronger than the previous one, raising public concerns about potential environmental and seismic threats.

After realizing that traditional protests had failed to stop nuclear testing, environmental activist Irving Stowe adopted a new approach. On October 16, 1970, he organized a benefit concert at Vancouver's Pacific Coliseum, featuring well-known musicians. The event successfully raised funds for Greenpeace's first campaign. These funds were used to purchase a yacht, later named Greenpeace,

inspired by a phrase coined by activist Bill Darnell. The name symbolized the organization's mission of promoting environmental sustainability ("green") and advocating for global peace.

In 1971, a group of activists aboard the Greenpeace ship set sail for Amchitka to protest nuclear testing. As they neared their destination, they were intercepted by the US Coast Guard cruiser Confidence and forced to turn back due to harsh weather and implied threats. Despite this setback, their daring mission captured public sympathy and media attention, raising global awareness of the dangers of nuclear testing.

Building on this momentum, Greenpeace volunteers expanded their campaign by sailing to other US nuclear test sites with allied vessels. Their relentless efforts, along with growing public opposition, eventually pressured the US government to halt further nuclear tests at Amchitka. This early victory cemented Greenpeace's reputation as a global environmental force, demonstrating the impact of direct action and public mobilization in shaping policy and environmental protection.

Following this, Greenpeace has played a pivotal role in, among other things, the adoption of:

- ◆ A ban on toxic waste exports to less developed countries.
- ◆ A moratorium on commercial whaling.
- ◆ A United Nations convention providing for better management of world fisheries.
- ◆ A Southern Ocean Whale Sanctuary.
- ◆ A 50-year moratorium on mineral exploitation in Antarctica.
- ◆ Bans on dumping radioactive and

industrial waste and disused oil installations at sea.

- ◆ An end to high-sea, large-scale driftnet fishing.

Greenpeace employs nonviolent and creative campaigns to raise awareness of global environmental issues and develop solutions for a more sustainable future for the planet and humanity. Its goal is to ensure that the Earth can support and nurture life for the current generation and future generations.

In the years since, it has launched the following campaigns:

- ◆ The conservation of oceans and ancient forests.
- ◆ To combat climate change, fossil fuels should be phased out and renewable energy promoted.
- ◆ The removal of harmful substances.
- ◆ The prevention of genetically engineered organisms from being discharged into the environment.
- ◆ The end of the nuclear threat and contamination.
- ◆ Safe and sustainable trading.

Greenpeace primarily funds its activities through private donations and foundations, carefully screening large contributions to avoid support from questionable or harmful sources. To maintain independence, it does not accept funding from governments, political parties, or international organizations. Even foundation donations are declined if they come with restrictive conditions that could compromise Greenpeace's mission. Since the 1990s, the organization has relied heavily on face-to-face fundraising, where supporters sign up for monthly direct debit donations to help sustain its work.

Greenpeace Movement in India

Greenpeace India was started in 2001. Greenpeace gathered momentum to register in India by May 2001 because of early efforts to prevent Western businesses from exploiting India as a toxic waste dump (1995), the iconic hot air balloon protest outside the Taj Mahal (1998), and the fight against toxic ship breaking in Gujarat. By 2006, Greenpeace India had established itself as a formidable environmental monitor. The group successfully established its first solar micro-grid, providing energy independence to the Bihar village of Dharnai in 2014.

As part of its Power the Pedal campaign, Greenpeace India will donate 500 bicycles to low-wage female workers in Bengaluru and Delhi. In 2021, the NGO collaborated with female laborers in these cities to test and design bicycles suited to their needs, aiming to build a community of 5,000 female riders. A Greenpeace India study found that between November 20, 2020, and November 20, 2021, pollution levels in eleven major South Indian cities were significantly higher than the latest WHO guidelines. The report highlights that air pollution is a nationwide public health concern, affecting cities across India, not just the northern regions. Air pollution data from ten cities, including Bengaluru, Hyderabad, Chennai, and Kochi, showed that despite lockdowns and reduced economic activity during the pandemic, annual average levels of PM2.5 and PM10 remained well above WHO's revised standards.

4.2.2 Narmada Bachao Andolan

The Narmada River, originating from the Amarkantak Plateau in Madhya Pradesh, is the largest west-flowing river in India. Stretching over 1,300 km, it drains an area of 9.88 million hectares between the Vindhya and Satpura mountain ranges. The river has an average annual flow of 41 billion cubic meters, making it a vital water

resource. However, developing large-scale irrigation and hydroelectric projects on the Narmada River has been a subject of intense debate, giving rise to one of India's largest environmental and social movements—the Narmada Bachao Andolan.

The Narmada Basin Development Programme, initiated by the Madhya Pradesh government, aimed to harness the river's potential through a multi-dam project. The plan included:

- ◆ 31 large dams on the Narmada and its tributaries
- ◆ 450 medium-sized projects
- ◆ Several thousand minor structures
- ◆ A total estimated cost of ₹25,000 crores

Table 4.2.1 Projected Benefits and impacts

Benefit	Projected Impact
Irrigation	Several million hectares of land
Drinking water supply	Thousands of villages and cities
Hydropower generation	Thousands of megawatts (MW)
Industrial use	Water supply to industries

4.2.2.1 Environmental and Social Concerns

While the project promised development, it also raised serious environmental and social concerns. Environmentalists and activists pointed out the disproportionate costs of the project, especially for marginalized communities.

Environmental Concerns

1. Deforestation: The Narmada basin

is home to one of India's densest forests. Large-scale deforestation due to the project could lead to a loss of biodiversity and effects of climate change.

2. Altered River Ecology: The natural flow of the river would be disrupted, leading to soil erosion, reduced groundwater recharge, and water stagnation.
3. Seismic Risks: The damming of a major river in a geologically sensitive zone could trigger earthquakes and other disasters.
4. Loss of Aquatic Life: The obstruction of natural water flow affects fish migration and aquatic ecosystems.

Social Concerns

1. Displacement of Indigenous People: More than 1 million people, mostly tribals and farmers, faced displacement due to the submergence of their lands.
2. Submergence of Villages: Over 1,000 villages and 50,000 hectares of agricultural land were at risk of submersion.
3. Loss of Livelihoods: Agricultural lands, fisheries, and traditional occupations were severely affected, leading to economic distress.
4. Inadequate Rehabilitation: Displaced communities faced poor compensation, a lack of proper resettlement plans, and loss of cultural identity.

The Narmada Bachao Andolan (Save the Narmada Movement) was founded in the 1980s to resist the construction of major dams, particularly the Sardar Sarovar Dam in Gujarat and the Narmada Sagar Dam in Madhya Pradesh. The movement was

spearheaded by Medha Patkar, a social activist who mobilized thousands of affected villagers, tribals, and farmers against the project. Strategies of the Narmada Bachao Andolan;

- ◆ Public Protests and Rallies: Mass mobilization, hunger strikes, and marches to raise awareness.
- ◆ Legal Battles: Filing petitions in the Supreme Court of India to halt dam construction.
- ◆ International Advocacy: Seeking support from global organizations like World Bank, which initially funded the project but later withdrew due to human rights concerns.
- ◆ Community-Based Resistance: Educating local communities about their rights and encouraging sustainable water management alternatives.

Despite strong opposition, the government continued the dam construction, citing national development. However, the Narmada Bachao Andolan activism led to:

1. World Bank withdrawal (1993): Following strong protests, the World Bank withdrew its funding.
2. Judicial Review: The Supreme Court conducted several hearings on the issue, highlighting environmental concerns.
3. Resettlement Policies: Increased compensation and rehabilitation measures for displaced families.
4. Awareness Generation: The NBA set a precedent for people's movements in India, inspiring future environmental activism.

The Narmada Bachao Andolan is a landmark movement in India's environmental

and social justice history. While the government proceeded with dam construction, the movement forced policymakers to consider displacement, environmental damage, and human rights in development projects. It also underscored the need for sustainable and community-centric development that balances economic progress with ecological preservation. The struggle continues, with activists demanding better rehabilitation and an ecologically sound approach to river management. The Narmada Bachao Andolan remains a symbol of resistance, proving that people's voices can challenge and shape large-scale developmental policies.

4.2.3 Silent Valley Movement (1970–1980)

The Silent Valley in Kerala's Palakkad district is one of India's most ecologically significant tropical rainforests. This pristine forest, which spans 8,950 hectares and stands at an elevation of 3,000 feet, is surrounded by the Nilgiri forests to the north and the Attappadi forests to the east, making a contiguous tract of approximately 40,000 hectares of untouched natural habitat. Silent Valley is a biological treasure trove, with a rich gene pool of uncommon plant species, fauna, and medicinal plants. It is recognized as one of the Western Ghats' few untouched ecosystems, and it is critical to maintaining regional biodiversity and ecological equilibrium.

However, in 1976, the Kerala State Government proposed building a hydroelectric dam in the Silent Valley, resulting in one of India's most prominent environmental movements. The proposed dam, designed to generate 120 megawatts (MW) of energy, would have caused significant ecological harm, burying 700 hectares of virgin rainforest and endangering numerous endangered species. In response, environmentalists, scientists, and grassroots activists formed the Silent Valley Movement,

which successfully halted the project, resulting in the designation of Silent Valley as a biosphere reserve in 1983.

Ecological Significance of Silent Valley

Silent Valley is part of the Western Ghats, a UNESCO World Heritage Site noted for its unique biodiversity and ecological significance. The rainforest is a genetic reservoir, maintaining unique plant and animal species that have persisted for ages in pristine conditions. Silent Valley is home to species such as the Lion-tailed Macaque, an endangered monkey found only in the Western Ghats, as well as Malabar Giant Squirrels, Nilgiri Langurs, Great Indian Hornbills, and a variety of unique medicinal plants. Scientists see this rainforest as a genetic bank for future medical, agricultural, and biotechnology breakthroughs.

The Kerala State Electricity Board (KSEB) proposed the Silent Valley Hydroelectric Project in 1976, with an estimated cost of Rs. 25 crores, which was later raised to Rs. 51 crores by 1984. The project entailed building a dam over the Kunthipuzha River, a significant tributary of the Bharathapuzha River, which would have:

1. Submerged 700 hectares of pristine rainforest
2. Threatened endemic and endangered species
3. Altered local climate patterns and rainfall cycles
4. Disrupted the water flow of Kunthipuzha, impacting agriculture and livelihoods

The project's environmental impact was severe enough to attract strong opposition from environmentalists, scientists, and local communities.

The Silent Valley Movement was initiated by the Kerala-based NGO Kerala Sastra Sahitya Parishad (KSSP), a people's science movement that brought together students, teachers, scientists, and activists. Their strategic protests, research reports, and public awareness campaigns played a vital role in gathering national and international support against the dam project.

Table 4.2.2 Key Events in the Silent Valley Movement

Year	Event
1976	Kerala Government proposes the Silent Valley Hydroelectric Project
1978	Kerala Sastra Sahitya Parishad (KSSP) launches the protest
1979	The National Committee on Environmental Planning and Coordination (NCEPC) intervenes.
1980	Prime Minister Indira Gandhi orders an ecological impact study.
1982	The International Union for Conservation of Nature (IUCN) supports the movement.
1983	Prime Minister Indira Gandhi cancels the hydropower project and declares Silent Valley a Biosphere Reserve.
1985	Silent Valley was officially declared a National Park

The protest received global attention when international conservation organizations such as the IUCN (International Union for Conservation of Nature) and the World Wildlife Fund (WWF) endorsed it. Finally, in response to popular activism and professional suggestions, Prime Minister Indira Gandhi

canceled the dam project in 1983. Silent Valley was officially designated a National Park in 1985, ensuring its unique environment is preserved for the long term.

4.2.3.1 Impact and Legacy of the Silent Valley Movement

The Silent Valley Movement is considered one of India's most successful environmental movements and serves as a model for conservation efforts worldwide. Its key impacts include:

1. **Policy Influence:** The movement highlighted the need for ecological impact assessments before executing development projects. It led to stricter environmental laws in India.
2. **Community Awareness:** The movement mobilized local communities, scientists, and conservationists, fostering environmental consciousness in India.
3. **Biodiversity Protection:** The movement preserved a globally significant ecosystem by halting deforestation and dam construction.
4. **Precedent for Future Movements:** Inspired other environmental struggles, such as the Narmada Bachao Andolan and the Plachimada Movement.

Persons Behind the Silent Valley Movement

1. **M.K. Prasad:** A leading environmentalist and educator, M.K. Prasad was one of the most prominent figures in the Silent Valley Movement. As an active Kerala Sastra Sahitya Parishad (KSSP) member, he played a significant role in raising public awareness and mobilizing protests for the project.

- Sugathakumari:** A renowned poet and activist, Sugathakumari was a passionate voice in the movement. Her poem “Marathinu Stuthi” (Ode to a Tree) became an anthem of environmental activism, inspiring many to join the cause. She was also a founding member of the Save Silent Valley Committee and was crucial in garnering public and governmental support.
- Dr.Salim Ali:** The legendary ornithologist and conservationist Dr. Salim Ali was instrumental in providing scientific justification against the dam project. His extensive research on the region’s biodiversity helped convince policymakers to reconsider the project.
- E.K.Shaji:** A journalist and environmental activist, Shaji played a key role in documenting the movement and bringing it to public attention through media coverage.

Organizations that Led the Movement

- Kerala Sastra Sahitya Parishad (KSSP):** A people’s science movement that played a leading role in organizing protests, conducting scientific studies, and mobilizing local communities. The KSSP was instrumental in transforming the Silent Valley issue into a statewide and national movement.
- Save Silent Valley Committee (SSVC):** A coalition of environmentalists, activists, writers, and scientists that formerly worked to oppose the dam project and petitioned the government.
- International Union for Conservation of Nature (IUCN):** The IUCN, along with organizations like the World

Wildlife Fund (WWF), supported the movement and influenced international conservation efforts.

- The Bombay Natural History Society (BNHS):** One of India’s oldest conservation organizations, BNHS supported the movement through research and lobbying efforts.

The Silent Valley Movement is a landmark environmental victory in India’s history. It demonstrated how scientific knowledge, grassroots activism, and public pressure can work together to protect critical ecosystems from destruction. The movement also established the importance of balancing development with environmental sustainability, ensuring that economic growth does not come at the cost of biodiversity loss. Prime Minister Indira Gandhi played a decisive role by halting the project in 1983 after reviewing reports from environmentalists and scientists.

Today, Silent Valley remains a protected biosphere reserve, serving as a beacon of hope for conservation efforts worldwide. The movement inspires environmental activism, emphasizing that people’s participation is crucial in safeguarding the planet’s natural heritage.

4.2.4 Plachimada Movement

The Plachimada Movement is one of India’s major environmental movements, fighting corporate exploitation of natural resources. It arose in response to serious groundwater depletion and pollution caused by a Coca-Cola bottling facility in Plachimada village, Palakkad district, Kerala. The movement, spearheaded mostly by local tribal groups, environmental activists, and civil society organizations, was successful in challenging unsustainable water extraction, establishing a precedent for corporate accountability and resource rights.

In 1999, Hindustan Coca-Cola Beverages Private Limited (HCCBPL), a subsidiary of The Coca-Cola Company, opened a bottling factory in Plachimada, a drought-prone district of Kerala. The factory drew over 500,000 liters of groundwater each day, resulting in serious water shortages, drinking water contamination, and agricultural devastation.

Key Environmental and Social Concerns:

1. Depletion of Groundwater: Excessive water extraction led to a sharp decline in water levels in wells and ponds, affecting drinking water availability.
2. Water Pollution : The plant discharged toxic sludge containing heavy metals such as cadmium and lead, contaminating soil and water.
3. Health Hazards: The presence of toxins in water led to skin diseases, stomach ailments, and other health issues among residents.
4. Loss of Livelihoods: Farmers and daily wage laborers suffered as water scarcity reduced crop yields and agricultural productivity.
5. Violation of Rights: The local Adivasi (tribal) communities, who depended on groundwater, faced human rights violations due to corporate exploitation.

The protests against Coca-Cola began in 2002, led by the local Adivasi Samrakshana Sangham (Tribal Protection Council) and supported by national and international activists.

Key Strategies of the Movement

- ◆ Continuous Protests: Villagers, especially women and tribals, staged a permanent sit-in protest near the plant.

- ◆ Legal Action: Cases were filed in the Kerala High Court demanding action against Coca-Cola.
- ◆ Scientific Reports and Media Advocacy: Environmental groups highlighted the toxic sludge issue, gaining global attention.
- ◆ Political and NGO Support: Organizations like Plachimada Solidarity Committee, Greenpeace, and human rights groups joined the cause.

Government response and victory after years of protests, legal battles, and widespread public support:

1. Factory Closure (2004) : The Kerala State Pollution Control Board ordered Coca-Cola to shut down the plant due to severe environmental violations.
2. Legal Precedents : The Kerala High Court ruled that groundwater is a public resource, limiting corporate exploitation.
3. Compensation Tribunal (2011): The Kerala government formed a Plachimada Tribunal, recommending ₹216 crore compensation from Coca-Cola to affected people.

The Plachimada Movement symbolizes grassroots resistance against corporate resource exploitation. It highlighted the importance of community rights over natural resources, setting an example for similar environmental justice movements worldwide. The victory at Plachimada reinforced the message that water is a fundamental right, and unsustainable corporate activities must be held accountable.

Environmental movements from global organizations like Greenpeace to national groups like the Narmada Bachao Andolan and regional fights in Kerala share a common

thread: the clash between consumer-driven development and ecological sustainability. The uncontrolled exploitation of resources, driven by new consumerist demands, jeopardizes ecological equilibrium and incites opposition from affected people.

These movements emphasize the importance of sustainable policies, participatory decision-making, and stricter environmental restrictions to ensure that progress does not come at the expense of nature or human well-being.

Recap

- ◆ Environmental movements arose in response to ecological degradation, advocating for conservation, sustainability, and policy reforms at local, national, and global levels.
- ◆ Greenpeace uses direct action to address environmental issues like nuclear testing, climate change, deforestation, and industrial pollution.
- ◆ Narmada Bachao Andolan opposed the construction of large dams on the Narmada River, raising concerns about displacement, environmental harm, and the need for sustainable water management.
- ◆ Silent Valley Movement was a grassroots campaign in Kerala that successfully halted a hydroelectric project, protecting a rainforest and highlighting the importance of biodiversity conservation.
- ◆ Plachimada Movement was a community-led protest in Kerala against Coca-Cola's excessive groundwater extraction, setting a precedent for corporate accountability and water rights activism.
- ◆ Development vs. Environmental Protection illustrate the ongoing tension between economic growth and ecological sustainability, emphasizing the role of laws, activism, and governance in shaping environmental policies.

Objective Questions

1. What are environmental movements, and why are they essential?
2. How has Greenpeace contributed to global environmental activism?
3. What was the primary objective of the Narmada Bachao Andolan (NBA)?
4. What was the key issue behind the Plachimada Movement?

5. Which Indian Prime Minister played a crucial role in stopping the Silent Valley hydroelectric project?
6. Greenpeace India was started in the year?

Answers

1. They address ecological concerns and promote sustainability
2. By advocating against climate change, whaling, and pollution
3. To advocate for the rehabilitation of displaced communities
4. Coca-Cola's over-extraction of groundwater
5. Indira Gandhi
6. 2001

Assignments

1. Examine the strategies, challenges, and outcomes of any one environmental movement covered in this unit (Greenpeace, NBA, Silent Valley, or Plachimada).
2. Analyze how environmental movements have influenced environmental laws and policies in India or globally.
3. Critically assess the challenges of balancing economic growth and environmental protection with examples from real-world case studies.
4. Discuss how grassroots activism, legal battles, and media campaigns shape public opinion and environmental governance.
5. Investigate the role of multinational corporations in environmental degradation and how movements like Plachimada have held them accountable.

Suggested Reading

1. Baviskar, A. (1999). *In the belly of the river: tribal conflicts over development in the Narmada Valley* (pp. xiv-286).
2. Shiva, V. (2016). *Water wars: Privatization, pollution, and profit*. North Atlantic Books.

Reference

1. Guha, R. (2014). *Environmentalism: A global history*. Penguin UK.
2. Eyerman, R. and Jamison, A. (1989) 'Environmental knowledge as an organizational weapon: the case of Greenpeace', *Social Science Information*, 28(1): 99–119.
3. Hansen, A. (1993b) 'Greenpeace and press coverage of environmental issues', in A. Hansen (ed.) *The Mass Media and Environmental Issues*, Leicester: Leicester University Press.

Environmental Policies and Legislations

Environmental Policies and Law: Global to Local Overview

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ understand environmental policies and explain the importance of environmental legislation at the international, national, and regional levels
- ◆ analyse key agreements and international treaties such as the Stockholm Declaration, Rio Summit, Kyoto Protocol, and Paris Agreement
- ◆ examine Indian environmental laws and learn about India's legislative framework

Prerequisites

Consider a future where rivers run dry, woods disappear, and cities suffocate in smog, instead of vibrant ecosystems and clean air. The distinction is in strong environmental policies and legislation that help nations balance conservation and development. These frameworks, which range from global climate accords to national pollution laws and regional initiatives addressing local concerns, represent humanity's commitment to sustainability. This unit investigates their origins, principles, and execution, emphasising their importance in climate action efforts, biodiversity protection, and sustainable development. We learn about the shared responsibility of maintaining our planet for future generations through international agreements, Indian environmental laws, and regional activities.

Keywords

Sustainability, Global treaties, National regulations, Legislation, Governance

Discussion

5.1.1 International Environmental Policies and Legislation

The development of international environmental policies and legislation has evolved over more than a century, driven by increasing awareness of environmental degradation, pollution, and the interconnectedness of ecosystems. Early efforts in the late 19th and early 20th centuries focused on conservation, especially of wildlife and natural resources. One of the first formal steps was the 1900 Convention for the Preservation of Wild Animals, Birds and Fish in Africa, followed by the 1946 International Convention for the Regulation of Whaling, both aiming to protect species from overexploitation.

However, the modern era of global environmental governance began in the 1970s, catalyzed by environmental disasters, population growth, and industrial pollution. The 1972 United Nations Conference on the Human Environment in Stockholm was a turning point, recognizing environmental protection as an international priority and

leading to the formation of the United Nations Environment Programme (UNEP). The following decades saw increasing momentum, notably with the 1987 Brundtland Report, which introduced the concept of sustainable development, and the 1992 Earth Summit (Rio de Janeiro), which resulted in foundational documents like the Rio Declaration and Agenda 21, as well as landmark treaties on climate change, biodiversity, and desertification.

The late 1990s to present day marks a phase of action-oriented multilateralism. Treaties such as the Kyoto Protocol (1997) and the Paris Agreement (2015) reflect growing urgency and cooperation to combat climate change. Simultaneously, agreements like the Montreal Protocol (1987) to protect the ozone layer and the Stockholm Convention (2001) to eliminate persistent organic pollutants show the international community's commitment to managing hazardous substances. These agreements represent a layered, multilateral approach to protecting the environment—spanning from global biodiversity to marine ecosystems, chemical safety, and climate resilience.

Table 5.1.1 Key International Environmental Treaties and Agreements

Treaty / Agreement	Year	Focus Area	Key Points
Stockholm Declaration	1972	General Environment	First major international statement on the environment; led to UNEP's creation
CITES (Convention on International Trade in Endangered Species)	1973	Biodiversity / Wildlife Trade	Regulates international trade in endangered species
Ramsar Convention	1971	Wetland Conservation	Conservation and wise use of wetlands

Treaty / Agreement	Year	Focus Area	Key Points
Bonn Convention	1979	Migratory Species	Protects migratory animal species across borders
UNCLOS (Law of the Sea)	1982	Marine Environment	Defines maritime boundaries and ocean protection
Montreal Protocol	1987	Ozone Layer Protection	Phases out ozone-depleting substances
Basel Convention	1989	Hazardous Waste	Controls transboundary movements of hazardous waste
Rio Declaration & Agenda 21	1992	Sustainable Development	Promotes environmental sustainability and development goals
CBD (Convention on Biological Diversity)	1992	Biodiversity	Conservation and sustainable use of biological diversity
UNFCCC (Framework Convention on Climate Change)	1992	Climate Change	Framework for future climate agreements
Kyoto Protocol	1997	Climate Change	Legally binding emission reduction targets for developed countries
Rotterdam Convention	1998	Hazardous Chemicals	Regulates trade in hazardous substances via prior informed consent
Stockholm Convention	2001	Persistent Organic Pollutants (POPs)	Bans or restricts hazardous organic pollutants
Paris Agreement	2015	Climate Change	Commits all countries to limit global warming below 2°C

5.1.1.1 International Treaties, Agreements and Policies

1. The Stockholm Declaration 1972

The post-World War II era witnessed rapid industrialization and economic growth, but at a significant environmental

cost. By the 1960s, alarming signs of ecological degradation, such as air and water pollution, deforestation, and species extinction, were becoming evident. These issues spurred a growing awareness of the need for a coordinated global response to environmental challenges. The Stockholm

Conference, officially known as the United Nations Conference on the Human Environment, was convened in June 1972 in Stockholm, Sweden. It brought together 113 countries and representatives from numerous non-governmental organizations and intergovernmental bodies. The conference's primary aim was to create a framework for global environmental cooperation while balancing the developmental needs of nations.

2. The Rio Declaration and Agenda 21 - 1992

By the late 20th century, environmental issues like deforestation, Ozone depletion, and climate change had escalated into global crises. The need for a comprehensive approach that integrates environmental protection with economic development became apparent. Against this backdrop, the Earth Summit was convened, drawing leaders, policymakers, and environmentalists from 172 countries to discuss the planet's future.

The summit's agenda emphasized the interconnectedness of environmental health, economic equity, and social justice. It sought to redefine development paradigms, ensuring that growth would no longer come at the expense of the environment or marginalized communities. The conference underscored that environmental degradation was an ecological issue and a matter of human rights and equity, particularly for developing

nations.

The Rio Declaration outlined 27 principles that serve as guidelines for sustainable development. Key principles include:

1. Principle of Sustainability
2. Precautionary Principle
3. Common but Differentiated Responsibilities (CBDR)
4. Public Participation
5. Global Cooperation

Agenda 21

Agenda 21, a key outcome of the Earth Summit, is a comprehensive action plan for achieving sustainable local, national, and global development. It is divided into four sections:

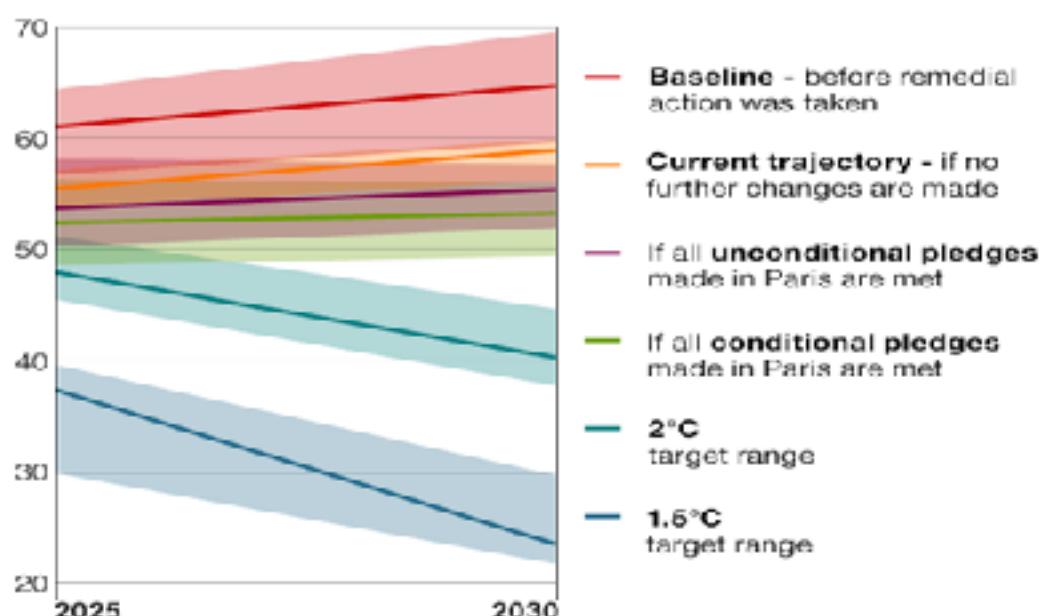
1. Social and Economic Dimensions
2. Conservation and Management of Resources.
3. Strengthening the Role of Major Groups

The Rio Declaration and Agenda 21 remain cornerstones of environmental policy, influencing frameworks like the Paris Agreement and the Sustainable Development Goals (SDGs). They underline the need for collaboration, innovation, and persistent effort to secure a sustainable future for all.

Fig. 5.1.1 Sustainable Development Goals (SDGs)

3. The Kyoto Protocol 1997

By the late 20th century, scientific evidence had unequivocally established the link between human activities, notably the burning of fossil fuels and global warming. The Intergovernmental Panel on Climate Change (IPCC) played a crucial role in consolidating data and highlighting the risks of unchecked emissions. Against this backdrop, the United Nations Framework Convention on Climate Change (UNFCCC) was established during the 1992 Rio Earth Summit. While the UNFCCC set broad goals, it lacked enforceable mechanisms to ensure compliance. The Kyoto Protocol emerged as a solution to bridge this gap.


The protocol aimed to operationalize the principles of the UNFCCC by setting concrete, enforceable targets for reducing emissions, particularly for industrialized nations. It recognized the historical responsibility of these countries for the majority of emissions

and sought to hold them accountable while supporting sustainable development in the global south.

The Kyoto Protocol, adopted in 1997 and entered into force in 2005, marked a groundbreaking moment in global environmental governance. It was the first international treaty to set legally binding targets for reducing greenhouse gas (GHG) emissions, reflecting a collective acknowledgment of the urgent need to combat climate change.

The Kyoto Protocol, adopted in 1997 under the United Nations Framework Convention on Climate Change (UNFCCC), was the first international treaty to set legally binding targets for greenhouse gas (GHG) emissions. It aimed to combat global warming by engaging industrialized nations and promoting sustainable development in less developed countries.

Global greenhouse gas emissions and the emissions gap in 2030

Source: UN Emissions gap report 2018

BBC

Fig. 5.1.2 Greenhouse Gas Emissions

4. The Paris Agreement 2015

The Paris Agreement emerged as a response to the perceived shortcomings of its predecessor, the Kyoto Protocol. While Kyoto established legally binding emission reduction targets for industrialized nations, it failed to secure universal participation and sufficient ambition. By the early 2010s, the urgency of addressing climate change had grown, spurred by mounting scientific evidence from the Intergovernmental Panel on Climate Change (IPCC) and visible impacts such as rising sea levels, extreme weather events, and melting glaciers.

The 21st Conference of the Parties (COP21) to the UNFCCC, held in Paris, France, sought to create a more inclusive and flexible framework. It emphasized the shared responsibility of all nations while acknowledging the principle of common but differentiated responsibilities and respective capabilities (CBDR-RC). This approach balanced the need for global solidarity with the realities of differing national circumstances, particularly for developing nations.

The Paris Agreement, adopted in 2015 under the United Nations Framework Convention on Climate Change (UNFCCC), represents a historic global commitment to combat climate change. It establishes a robust framework for nations to work collaboratively to limit global warming to below 2°C above pre-industrial levels, aiming to cap the increase at 1.5°C.

Key Features of the Paris Agreement

1. Global Temperature Goals
2. Nationally Determined Contributions (NDCs)
3. Transparency and Accountability
4. Adaptation and Resilience
5. Climate Finance

Significant Achievements of the Paris Agreement

1. Universal Participation
2. Flexibility and Inclusivity
3. Catalyst for Action
4. Focus on Equity

5. The Convention on Biological Diversity (CBD)

The Convention on Biological Diversity (CBD), adopted at the Earth Summit in 1992, represents a comprehensive global initiative to address the challenges of biodiversity conservation, sustainable resource use, and equitable benefit-sharing. Its objectives aim to ensure ecological balance, support sustainable development, and foster international cooperation. A primary goal of the CBD is to conserve the vast array of life forms, ecosystems, and genetic resources that sustain the planet's ecological balance. This includes initiatives to protect endangered species, preserve critical habitats, and maintain the integrity of ecosystems. Protected area networks, such as national parks, wildlife sanctuaries, and marine reserves, are central to these conservation efforts. Through safeguarding biodiversity hotspots, the CBD seeks to prevent the extinction of species and the degradation of ecosystems essential for life on Earth.

In addition, the CBD emphasizes the importance of genetic diversity, recognizing its role in agricultural resilience, medical advancements, and ecosystem stability. Conservation initiatives often incorporate traditional knowledge and community involvement to ensure long-term success and sustainability.

6. Nagoya Protocol (2010)

A landmark supplementary agreement to the CBD, the Nagoya Protocol establishes a framework for access to genetic resources and the equitable sharing of benefits

from their utilization. It strengthens legal mechanisms for recognizing the contributions of indigenous and local communities to biodiversity conservation. By promoting transparency and fairness, the protocol enhances international trust and cooperation.

7. Cartagena Protocol on Biosafety (2003)

The Cartagena Protocol addresses the safe handling, transport, and use of living-modified organisms (LMOs) from modern biotechnology. Its primary focus is to prevent potential adverse effects on biodiversity and human health. The protocol promotes biosafety measures, risk assessments, and public awareness to ensure that biotechnological advancements do not compromise ecological stability.

5.1.2 National Environmental Policies and Legislation in India

Environmental protection and sustainable development have become global imperatives, and India's legislative framework reflects its commitment to these goals. With a rich natural heritage and diverse ecosystems, India faces unique environmental challenges ranging from deforestation and biodiversity loss to pollution and climate change. The country has developed a robust legal and policy structure to address these issues while aligning with international environmental agreements.

The evolution of environmental legislation in India is deeply intertwined with its constitutional mandate and global developments. Recognizing the intrinsic link between environmental health and human well-being, India has enacted progressive laws and policies to ensure the sustainable use of natural resources. These measures emphasize the need for collective responsibility, with active government,

industry, and citizens' participation. This document explores the evolution and key provisions of India's major environmental laws, highlighting their significance and implementation mechanisms.

1. The Indian Constitution and Environment

India's commitment to environmental protection is enshrined in its Constitution, reflecting a visionary approach to sustainable development. Key constitutional provisions include:

- ◆ Article 48A: Introduced by the 42nd Amendment in 1976, this directive principle mandates the state to protect and improve the environment and safeguard forests and wildlife. It underscores the government's role in ensuring ecological balance. Article 48A frames long-term sustainability as a core governmental responsibility by integrating environmental protection into state policy. This has provided a legal basis for subsequent environmental legislation and judicial interventions.
- ◆ Article 51A(g): This fundamental duty obligates every citizen to protect and improve the natural environment, including forests, lakes, rivers, and wildlife, and to have compassion for living creatures. This provision fosters individual responsibility and promotes a culture of environmental stewardship. This duty is often promoted through schools and community programs, encouraging grassroots participation in environmental conservation efforts.

The Constitution provides the foundational framework for environmental governance in India, empowering the central and state governments to legislate and implement policies for ecological conservation. It also serves as a guiding principle for courts

to adjudicate environmental disputes, reinforcing the judiciary's role in upholding ecological rights.

2. The Water (Prevention and Control of Pollution) Act, 1974

The Water Act was a landmark legislation addressing India's growing water pollution problem. It established mechanisms to prevent and control water pollution, setting the stage for regulatory oversight. Key features include:

- ◆ Creation of central and state pollution control boards: These boards were entrusted with monitoring water quality, issuing permits for industrial discharge, and enforcing compliance with pollution standards. They play a critical role in conducting inspections, identifying sources of pollution, and recommending remedial measures.
- ◆ Prohibition of pollutant discharge: The act prohibits the discharge of pollutants into water bodies beyond prescribed limits. Industries must adhere to strict effluent standards, ensuring that untreated waste does not contaminate rivers, lakes, and groundwater.
- ◆ Legal accountability and penalties: Violators of the Water Act face penalties, including fines and imprisonment. This enforcement mechanism deters industries from neglecting their environmental responsibilities and promotes adherence to sustainable practices.

The Water Act marked the beginning of environmental regulation, emphasizing the need to maintain water quality for human and ecological health. Over time, its implementation has expanded to address emerging challenges such as groundwater contamination and urban sewage management.

3. The Environment (Protection) Act, 1986

Following the Bhopal gas tragedy in 1984, the Environment Protection Act (EPA) was enacted as an umbrella legislation to address various environmental challenges. It empowered the central government to:

- ◆ Formulate rules and standards: The EPA grants the central government authority to establish pollution standards across industries, ensuring nationwide uniformity in environmental protection measures. These standards cover air and water quality, waste management, and hazardous substances.
- ◆ Take preventive and corrective measures: The government is empowered to close or regulate industries that violate environmental norms, minimizing risks to public health and ecosystems. Emergency response mechanisms are also included to address environmental disasters.
- ◆ Mandate environmental impact assessments (EIAs): The act mandates EIAs for significant projects, ensuring that potential environmental impacts are evaluated before approval. This process encourages sustainable development and minimizes ecological harm.

The EPA serves as a comprehensive framework for implementing environmental policies and enforcing penalties for non-compliance. It has been instrumental in addressing air and water pollution, hazardous waste management, and environmental monitoring.

4. The Forest Conservation Act, 1980

India's forests are vital for ecological balance and supporting millions of livelihoods. The Forest Conservation Act

was enacted to prevent the indiscriminate diversion of forest land for non-forest purposes. Key provisions include:

- ◆ Central government approval for forest land diversion: The act requires state governments to seek approval from the central government before diverting forest land for projects such as mining, infrastructure, or agriculture. This centralized approval process ensures that ecological considerations are prioritized.
- ◆ Afforestation and compensatory reforestation: Developers must undertake afforestation initiatives to compensate for deforestation. This provision aims to mitigate the loss of forest cover and biodiversity caused by development projects.
- ◆ Legal framework against deforestation: The act imposes strict penalties for unauthorized deforestation and promotes sustainable forest management practices. By protecting forest resources, the legislation ensures that they continue to provide ecosystem services such as carbon sequestration and soil conservation.

Fig. 5.1.3 Forest cover in India

The act reflects India's commitment to preserving its forest wealth while balancing developmental needs. It has also encouraged community participation in forest conservation through joint forest management programs.

5. The Wildlife Protection Act, 1972

India is home to diverse flora and fauna, many of which are endangered. The Wildlife Protection Act aims to safeguard the country's wildlife through:

- ◆ Prohibition of hunting and trade: The act bans hunting and trade of protected species, ensuring their survival in the wild. Schedules under the act categorize species based on their conservation status, with stringent protections for critically endangered species.
- ◆ Establishment of protected areas: The legislation facilitates the creation of national parks, wildlife sanctuaries, and biosphere reserves. These areas serve as safe habitats for wildlife, supporting conservation efforts and eco-tourism.
- ◆ Wildlife advisory boards: These boards oversee conservation initiatives, monitor species populations, and recommend measures to enhance protection. Their role is critical in ensuring the effective implementation of the act.

This legislation has played a crucial role in conserving iconic species like the tiger and rhinoceros and promoting biodiversity in protected habitats. It also addresses human-wildlife conflicts through compensation schemes and awareness campaigns.

6. The Air (Prevention and Control of Pollution) Act, 1981

Rapid industrialization and urbanization made air pollution a significant public health

and environmental concern. The Air Act was introduced to:

- ◆ Regulate air quality standards: The act sets permissible limits for particulate matter, sulphur dioxide, and nitrogen oxides. These standards are regularly updated to address emerging air quality challenges.
- ◆ Empower pollution control boards. State and central boards monitor air quality, identify pollution sources, and implement control measures. They also conduct research and develop strategies to reduce emissions. Technologies and practices, such as adopting renewable energy and improved fuel efficiency.
- ◆ Address pollution from multiple sources: The act targets industrial emissions, vehicular pollution, and construction dust, among other sources. It promotes cleaner

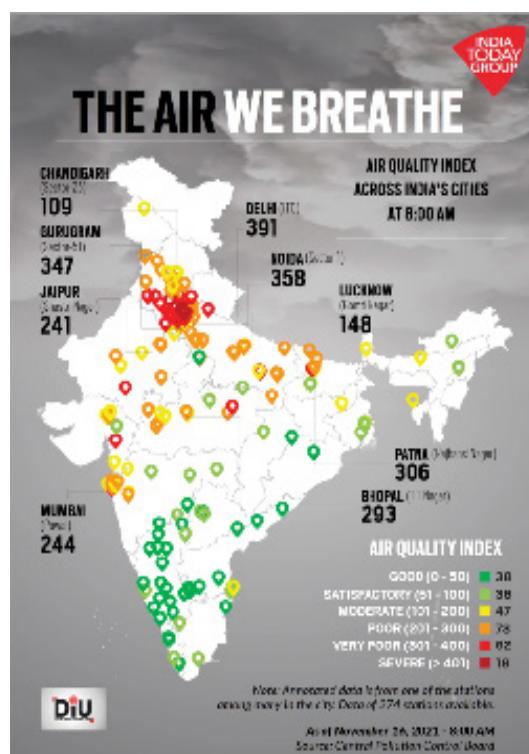


Fig. 5.1.4 Air quality index

The act highlights the importance of addressing environmental health issues for sustainable urban development by improving air quality. Public awareness campaigns and stricter enforcement have further strengthened its impact.

India's environmental policies and legislation reflect a proactive approach to conserving its natural heritage while addressing contemporary challenges. The evolution of these laws demonstrates a growing recognition of the interdependence between environmental protection and sustainable development. As India grapples with environmental issues, these legislations are vital for achieving ecological balance and ensuring a sustainable future.

5.1.2.1 Recent Initiatives and Policies

India's recent initiatives and policies reflect its commitment to environmental sustainability and climate resilience. These measures address critical environmental challenges, promote sustainable development, and align with global goals such as the Paris Agreement and the United Nations Sustainable Development Goals (SDGs). Three significant initiatives are highlighted below:

5.1.2.2 National Action Plan on Climate Change (NAPCC)

The National Action Plan on Climate Change, launched in 2008, represents India's strategic framework to combat climate change while achieving sustainable economic growth. It encompasses eight national missions, each addressing specific climate adaptation and mitigation aspects. Key missions include:

- ◆ National Solar Mission: This mission aims to promote the adoption of solar energy technologies to reduce dependence on fossil fuels and lower greenhouse gas emissions.

It sets ambitious targets for solar power capacity, focusing on grid-connected projects, rooftop installations, and solar parks. The mission contributes significantly to India's energy security and climate goals by encouraging innovation and investment in renewable energy.

- ◆ National Water Mission: Recognizing the critical importance of water resources, this mission seeks to ensure water security through efficient water use, groundwater recharge, and sustainable water management practices. It emphasizes the need to address water scarcity exacerbated by climate change and population growth.

Other missions under the NAPCC include:

- ◆ National Mission on Sustainable Agriculture – Advocates climate-resilient farming practices.
- ◆ National Mission on Enhanced Energy Efficiency – Aim to reduce industrial energy consumption through technological advancements and policy incentives.
- ◆ National Mission for a Green India – Aim to enhance ecosystem services through afforestation and biodiversity conservation.
- ◆ National Mission on Strategic Knowledge for Climate Change – Supports research, data collection, and capacity building to address climate challenges.
- ◆ National Mission for Sustainable Habitat – Emphasizes urban sustainability through waste management, energy efficiency, and improved public transportation.

5.1.2.3 The Compensatory Afforestation Fund Act, 2016

The Compensatory Afforestation Fund Act was enacted to address the environmental impact of deforestation caused by development projects. This legislation ensures that funds collected as compensation for forest land diversion are effectively utilized for afforestation and ecosystem restoration. Key provisions include:

- ◆ Establishment of funds: The act mandates the creation of National and State Compensatory Afforestation Funds, where developers must deposit fees for forest land diversion. These funds are earmarked exclusively for afforestation and related activities.
- ◆ Transparency and accountability: To ensure effective fund utilization, the act requires regular audits, monitoring, and public disclosure of activities. This enhances transparency and accountability in afforestation efforts.
- ◆ Support for biodiversity conservation: Beyond planting trees, the act emphasizes restoring ecological balance by promoting biodiversity conservation, soil enrichment, and habitat creation. It also supports the livelihoods of forest-dependent communities through community participation in afforestation projects.

Implementing this act underscores India's commitment to mitigating the environmental impact of infrastructure development and maintaining ecological integrity.

5.1.2.4 E-Waste Management Rules, 2016

With the rapid growth of technology and electronic devices, e-waste has emerged as a significant environmental challenge. The

E-Waste Management Rules, 2016, provide a comprehensive, environmentally sound electronic waste management framework. Key features include:

- ◆ Extended Producer Responsibility (EPR): Producers of electronic products must collect, recycle, and safely dispose of e-waste generated from their products. This approach incentivizes manufacturers to design products with longer lifespans and easier recyclability.
- ◆ Authorized recycling and dismantling units: The rules mandate establishing authorized e-waste recycling and dismantling facilities, ensuring that waste is processed safely and efficiently. These units must adhere to strict environmental and safety standards.
- ◆ Consumer awareness and participation: The rules promote public awareness about the importance of e-waste recycling and encourage consumers to dispose of electronic waste responsibly through designated collection centres.
- ◆ Reduction of hazardous substances: Manufacturers are encouraged to minimize the use of hazardous materials in electronic products, such as lead and mercury. This reduces the environmental and health risks associated with e-waste disposal.

The E-Waste Management Rules reflect India's proactive approach to addressing the impact of electronic waste on the environment and public health. By promoting sustainable recycling practices, the rules contribute to a circular economy and reduce the ecological footprint of technological advancements.

These recent initiatives and policies demonstrate India's evolving approach to environmental governance. The NAPCC addresses the multifaceted challenges of

climate change through targeted missions, while the Compensatory Afforestation Fund Act ensures ecological restoration in the face of development pressures. The E-Waste Management Rules tackle a critical aspect of modern environmental challenges by promoting sustainable electronic waste management practices.

5.1.3 Regional Environmental Policies and Legislations

Regional governance is pivotal in implementing environmental policies and addressing localized challenges. In India, state-specific initiatives and regional cooperation frameworks have fostered environmental sustainability.

State-Specific Initiatives in India

1. Kerala's Responsible Tourism Initiative: Kerala's Responsible Tourism Initiative promotes eco-friendly tourism practices emphasizing natural and cultural heritage conservation. The program engages local communities, enabling them to benefit economically from tourism while preserving the environment. By encouraging the use of sustainable resources, minimizing waste, and protecting biodiversity, Kerala has become a model for sustainable tourism practices. The initiative has also led to innovative practices such as waste-free zones in tourist areas and partnerships with local artisans to support green livelihoods.
2. Gujarat's Solar Energy Policy: Gujarat's Solar Energy Policy reflects the state's proactive approach to harnessing renewable energy. The policy aims to reduce dependence on fossil fuels and decrease greenhouse gas emissions by establishing large-scale solar parks and incentivizing

rooftop solar installations. The policy has attracted significant private investment, making Gujarat a hub for solar power generation and contributing to national renewable energy targets. Additionally, the policy includes measures for skill development in solar energy technologies, creating employment opportunities.

3. Maharashtra's Plastic Ban Initiative: Maharashtra implemented a comprehensive ban on single-use plastics to address the growing issue of plastic pollution. The initiative includes penalties for non-compliance, promotion of alternatives to plastic products, and awareness campaigns to educate citizens about the environmental hazards of plastic waste. The policy has seen significant impact, with reduced plastic waste in urban areas and increased adoption of biodegradable alternatives by businesses and consumers alike. Enforcement drives and community-led clean-up initiatives have further strengthened the ban's implementation.

5.1.3.1 Regional Cooperation in South Asia

SAARC Environmental Action Plan, The South Asian Association for Regional Cooperation (SAARC) has developed an Environmental Action Plan to address familiar environmental challenges member states face, including disaster risk reduction, biodiversity conservation, and climate adaptation. Collaborative projects under this framework include afforestation programs in degraded areas, joint research on climate-resilient crops, and cross-border wildlife corridors to protect migratory species. SAARC also facilitates policy dialogues among member

nations, promoting harmonized approaches to environmental regulation.

BIMSTEC (The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation) fosters regional collaboration on climate resilience and the sustainable use of marine resources. By leveraging the shared geography of the Bay of Bengal, member states work together to address challenges like coastal erosion, overfishing, and marine pollution. Key initiatives include developing early warning systems for cyclones and tsunamis, promoting sustainable fishing practices, and establishing marine protected areas. BIMSTEC's focus on technology transfer and capacity building strengthens regional efforts to mitigate environmental risks and adapt to climate change.

Regional environmental policies and legislation demonstrate the importance of localized and cooperative approaches to sustainability. State-specific initiatives in India address unique environmental challenges, while regional frameworks like SAARC and BIMSTEC emphasize collective action and knowledge sharing.

5.1.3.2 Significance of Regional Policies

Regional policies are significant as they address environmental challenges that are often unique to specific regions. Their localized approach ensures that strategies are tailored to a region's ecological, cultural, and socioeconomic conditions, making them more effective than broad, generalized policies.

Regions often face distinct environmental challenges influenced by geography, climate, and population dynamics. For instance, coastal areas may prioritize marine biodiversity conservation and climate resilience, while arid regions focus on water scarcity and desertification. Regional policies allow for targeted solutions, such as Kerala's

Responsible Tourism Initiative, which addresses the state's unique combination of biodiversity and tourism potential, or Gujarat's Solar Energy Policy, designed for its high solar insolation levels.

Regional policies foster greater community involvement by aligning environmental goals with local interests. By engaging local stakeholders, these policies ensure better implementation and sustainability. For example, Maharashtra's Plastic Ban Initiative involved communities through awareness drives, local enforcement, and incentives to adopt alternatives, creating a sense of ownership and shared responsibility. Local participation also ensures that traditional knowledge and practices are integrated into policy implementation, enriching conservation strategies.

Environmental challenges such as air and water pollution, biodiversity loss, and climate change often transcend political boundaries, requiring collaborative regional efforts. Frameworks like SAARC and BIMSTEC demonstrate how neighbouring states and countries can pool resources, share expertise, and coordinate actions to address common issues. Such cooperation enhances the effectiveness of policies and builds trust and interdependence among participating regions, promoting broader regional stability.

Environmental policies and legislation, whether at the international, national, or regional level, are indispensable for fostering sustainable development. International agreements set the stage for global cooperation, providing a unified framework to address climate change, pollution, and resource depletion. These agreements, such as the Paris Agreement and the Convention on Biological Diversity, enable countries to commit to collective actions that have a global impact.

At the national level, laws like the Environment Protection Act, Forest Conservation Act, and E-Waste Management Rules address individual countries' unique challenges. These legislations empower nations to tackle environmental issues concerning their geography, population, and economic development. They also ensure that sustainability principles are integrated into national development strategies.

Regional policies and collaborations, such as those under SAARC and BIMSTEC, emphasize the importance of addressing localized challenges and shared concerns. They cater to region-specific ecological contexts, foster community participation, and promote cross-border cooperation to combat environmental threats. For instance, marine conservation efforts in the Bay of Bengal and climate adaptation programs in South Asia exemplify how regional approaches can complement national and international initiatives.

Together, these levels of governance form a cohesive and interconnected framework that seeks to balance ecological preservation with economic growth. However, the success of these policies depends on robust implementation, adequate funding, and widespread public participation. Governments, industries, and citizens must work collaboratively to ensure that environmental goals are set and achieved.

In an era where environmental degradation poses existential threats, the role of policies and legislation cannot be overstated. They provide the tools and pathways necessary to transition toward a sustainable future. By fostering a culture of responsibility, innovation, and cooperation, these frameworks pave the way for a world where economic progress and environmental stewardship go hand in hand, ensuring a healthier planet for future generations.

Recap

- ◆ Global Agreements key treaties include the Stockholm Declaration , the Rio Summit & Agenda 21, the Kyoto Protocol , and the Paris Agreement .
- ◆ The Water Act (1974), Environment Protection Act (1986), Forest Conservation Act (1980), and Wildlife Protection Act (1972) regulate pollution, conservation, and resource management. The E-Waste Rules (2016) address electronic waste disposal.
- ◆ State programs like Kerala's Responsible Tourism, Gujarat's Solar Policy, and Maharashtra's Plastic Ban promote sustainability. SAARC and BIMSTEC focus on regional climate adaptation and conservation.
- ◆ Weak enforcement, financial constraints, and conflicts between economic development and environmental protection hinder policy effectiveness.
- ◆ Strengthening global cooperation, innovation, and public participation is essential for achieving sustainability and climate resilience.

Objective Questions

1. When was the Kyoto Protocol enacted?
2. What is the expansion of BIMSTEC?
3. The Paris Agreement emerged as a response to the perceived shortcomings of which of its predecessor?
4. Which protocol addresses the safe handling, transport, and use of living-modified organisms?
5. Which act was enacted to address the environmental impact of deforestation caused by development projects?
6. Agenda 21 is the outcome of which summit?

Answers

1. 1997
2. The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation
3. The Kyoto Protocol
4. The Cartagena Protocol
5. The Compensatory Afforestation Fund Act
6. Earth Summit

Assignments

1. Critically analyse the Paris Agreement, emphasise on its shortcomings, successes and future challenges.
2. Conduct an evaluation of the Environment Protection Act (1986) and Implementation.
3. Compare and contrast between the environmental initiatives of SAARC and BIMSTEC.
4. Evaluate the success and challenges in Kerala's Responsible Tourism Initiative.
5. Describe the role of public participation and community led initiative in environmental conservation in India.

Suggested Reading

1. Birnie, P., Boyle, A., & Redgwell, C. (2009). *International law and the environment* (3rd ed.). Oxford University Press.
2. Sands, P., Peel, J., Fabra, A., & MacKenzie, R. (2018). *Principles of international environmental law* (4th ed.). Cambridge University Press.

3. Desai, V. (2010). *Environmental law and policy in India* (2nd ed.). LexisNexis Butterworths.
4. Leal Filho, W. (Ed.). (2020). *Climate change and the role of education*. Springer.
5. Rosencranz, A., Divan, S., & Noble, M. L. (2001). *Environmental law and policy in India: Cases, materials and statutes* (2nd ed.). Oxford University Press.

Reference

1. Chasek, P., & Downie, D.L. (2020). Global Environmental Politics (8th ed.). Routledge. <https://doi.org/10.4324/9780429276743>
2. Carter, N. (2018). *The politics of the environment: Ideas, activism, policy*. Cambridge University Press.
3. Nanda, V., & Pring, G. R. (2012). *International environmental law and policy for the 21st century* (Vol. 9). Martinus Nijhoff Publishers.
4. Divan, S., & Rosencranz, A. (2022). *Environmental law and policy in India: cases and materials*. Oxford University Press.
5. Stern, N. (2008). The economics of climate change. *American Economic Review*, 98(2), 1-37.

Environment and Development

Development and Environmental Consequences

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ examine the relationship between economic development and environmental degradation
- ◆ analyze the causes and consequences of deforestation on ecosystems, biodiversity, and climate change
- ◆ evaluate the impact of species extinction on ecological balance and long-term environmental sustainability

Prerequisites

Picture yourself by a thriving river, surrounded by dense forests full of life. Now, imagine the same place transformed into a city with skyscrapers and a dammed river supplying water to millions. How can we balance development with environmental conservation? The interaction between nature and human progress has shaped civilizations, but unchecked exploitation threatens the delicate balance that sustains life. To navigate this complexity, we must delve into the core issues of deforestation, species extinction, and the impact of developmental projects, which form the backbone of our understanding of sustainable development.

Keywords

Global warming, Afforestation, Urbanization, Industrialization, Ecology

Discussion

6.1.1 Deforestation

Deforestation is a major global environmental concern, fueled mostly by agriculture, urbanization, and industrial expansion. One of the primary causes is slash-and-burn agriculture, in which forests are removed for cultivation, but plots are frequently shifted, resulting in ongoing forest loss. Between 1990 and 2020, almost 420 million hectares of forest were lost worldwide, with the Amazon Rainforest, Congo Basin, and Southeast Asian forests suffering from severe deforestation caused by cattle ranching, palm oil plantations, and logging. This widespread damage helps with climate change by depleting carbon sinks. Between 2001 and 2021, India lost nearly 2 million hectares of forest cover, primarily due to agriculture, mining, and infrastructural developments. In 2010, India possessed 31.3 million hectares of natural forest. However, by 2023, it lost 134,000 hectares, resulting in a projected 81.9 million tons of CO₂ emissions. The northeastern states, Western Ghats, and Central India are especially vulnerable. Large-scale projects like dams, highways, and industrial corridors hasten deforestation. Forest degradation persists despite government initiatives such as the Compensatory Afforestation Program and the Green India Mission. Addressing deforestation necessitates balancing development and conservation through sustainable land-use practices, afforestation, and tighter environmental restrictions.

6.1.1.1 Causes of Deforestation

Deforestation refers to the large-scale removal of forests for non-forest uses. The driving forces behind deforestation are diverse and interconnected. Let us explore some of the causes of deforestation:

Expanding farmland for crops and livestock is a leading cause of deforestation, especially in tropical regions. As global demand for food, biofuels, and cash crops like palm oil rises, vast tracts of forests are cleared to meet these needs. In countries like Brazil and Indonesia, large-scale deforestation is driven by the expansion of soybean plantations and palm oil estates, directly threatening biodiversity hotspots like the Amazon Rainforest and Southeast Asian rainforests.

Building roads, railways, urban settlements, and industrial zones often results in significant forest clearance. Urbanization in developing nations accelerates the demand for infrastructure, leading to encroachment into forested areas. Highways and railroads fragment habitats, creating barriers to wildlife movement and exposing forests to further exploitation. The Delhi-Mumbai Industrial Corridor in India is an example of industrial development consuming large, forested landscapes.

Logging for construction materials, furniture, and paper industries significantly contributes to forest loss. Both legal and illegal logging operations deplete valuable timber resources. In regions like Central Africa and Southeast Asia, illegal logging for high-value timber like mahogany and teak disrupts ecosystems and undermines conservation efforts. Additionally, excessive reliance on wood for fuel in rural areas exacerbates the issue.

Mining operations require large tracts of land, leading to habitat destruction and pollution. Mineral-rich regions like the Western Ghats in India and the Amazon basin face intense mining activities for coal, iron ore, and bauxite. These activities destroy forests, pollute water sources, and

displace local communities. Open-pit mining, in particular, leaves large areas barren and disrupts the delicate ecological balance.

Traditional farming practices in some regions involve clearing forest patches, often without reforestation. While sustainable on a small scale, slash-and-burn agriculture becomes a significant driver of deforestation when practiced intensively. In parts of Africa, Southeast Asia, and Latin America, shifting cultivation contributes to soil degradation and loss of forest cover, making these areas prone to desertification.

6.1.1.2 Consequences of Deforestation

Deforestation has cascading effects on the environment, wildlife, and human societies. These consequences highlight the need for urgent action to mitigate their impacts.

The Western Ghats, a UNESCO World Heritage Site and one of the world's major biodiversity hotspots, faces severe deforestation due to agricultural expansion, plantations, mining, and large infrastructure projects. Converting forests into tea, coffee, and rubber plantations has reduced native vegetation, while roads and hydropower projects further fragment habitats. This has led to habitat loss for species such as the Lion Tailed Macaque and Malabar Civet. Deforestation has also increased soil erosion, landslides, and reduced water availability, affecting major rivers like the Godavari and Krishna. Conservation efforts, including protected areas, are ongoing, but unregulated tourism and development continue to threaten the region's ecological balance.

Forests are rich in biodiversity, housing about 80% of terrestrial species. Their destruction causes habitat loss and

fragmentation, endangering countless species. For instance, deforestation in the Amazon and Borneo has put jaguars, orangutans, and hornbills at risk. The loss of even one species can disrupt food webs, leading to unpredictable ecological impacts.

Forests act as vital carbon sinks, absorbing large amounts of atmospheric CO₂ and mitigating global warming. Deforestation releases this stored carbon, significantly contributing to climate change. The Amazon Rainforest, often called the "lungs of the Earth," has increasingly become a net carbon emitter due to extensive deforestation and forest degradation. This accelerates the greenhouse effect, intensifying weather extremes such as heatwaves, hurricanes, and droughts.

Tree roots stabilize soil and prevent erosion. When forests are removed, the topsoil is easily washed away by rainfall, reducing soil fertility and agricultural productivity. This erosion also leads to sedimentation in rivers and reservoirs, disrupting aquatic ecosystems and reducing the capacity of hydroelectric dams. In regions like the Himalayas, deforestation has intensified soil erosion, leading to frequent landslides and loss of arable land.

Forests play a critical role in maintaining the hydrological cycle by absorbing rainfall, replenishing groundwater, and releasing water vapour into the atmosphere. Deforestation disrupts these processes, leading to altered precipitation patterns, reduced groundwater levels, and increased risk of droughts. In tropical regions, reduced forest cover has been linked to decreased rainfall, threatening water security for millions of people.

Indigenous and forest-dependent communities rely on forests for food, medicine, shelter, and cultural practices. Deforestation displaces these communities, leading to the loss of traditional knowledge and livelihoods. For instance, the deforestation of

the Sariska Tiger Reserve in India displaced local tribes, severing their deep cultural and spiritual ties to the land. This often results in social and economic marginalization of these communities.

Forests provide invaluable ecosystem services, including air purification, climate regulation, and pollination. The loss of these services affects agriculture, human health, and overall quality of life. For example, deforestation has increased air pollution and reduced crop yields in many deforested regions, exacerbating poverty and food insecurity.

The Amazon Rainforest, known as the “lungs of the Earth,” is rapidly being cleared by human activities such as cattle ranching, soybean farming, illegal logging, and infrastructure development. Cattle farming alone accounts for about 80% of this deforestation, while roads and hydropower projects further fragment habitats. This destruction has led to significant biodiversity loss, increased global carbon emissions, and displacement of indigenous communities who depend on the forest for survival. Despite conservation efforts and international pressure, deforestation remains alarmingly high.

6.1.1.3 Solutions to Deforestation

Addressing deforestation requires coordinated efforts at the local, national, and global levels:

Afforestation involves planting trees in areas without recent forest cover, such as abandoned farmland, urban spaces, or

desertified regions. It helps reduce CO₂ levels, improve soil quality, and prevent desertification while also supporting wildlife, protecting soil, and enhancing water quality. Initiatives like India’s Green India Mission and the Trillion Trees Initiative aim to restore ecosystems through afforestation. Reforestation, however, replaces trees where forests have been chopped down or destroyed, restoring the original ecosystem and its advantages. This helps to restore biodiversity, boost carbon sequestration, and mitigate the detrimental effects of deforestation. In essence, afforestation creates forests in areas that were not previously forested, while reforestation restores forests that have been lost due to human activities or natural events.

Adopting selective logging, agroforestry, and sustainable forest management practices ensures that forests are utilized without causing long-term harm. Certification programs like the Forest Stewardship Council (FSC) promote responsible forestry and discourage illegal logging.

Empowering local communities to manage forest resources has significantly reduced deforestation. For instance, India’s Joint Forest Management (JFM) program involves communities in forest conservation while ensuring they share the benefits of sustainable resource use.

Strong legal frameworks, like the Forest Conservation Act 1980, must be strictly enforced. Governments should enhance monitoring through technologies like satellite imagery to track deforestation in real time and hold violators accountable.

Integrating trees into agricultural landscapes balances productivity with conservation. Agroforestry practices improve soil fertility, provide shade, and create habitats for wildlife, reducing the need for further forest clearance.

International agreements like the REDD+ (Reducing Emissions from Deforestation and Forest Degradation) initiative provide financial incentives to developing countries for conserving forests. Collaborative efforts among nations are crucial to addressing the global drivers of deforestation, such as the demand for palm oil and timber.

Deforestation is one of today's biggest environmental challenges. By understanding its causes and connections, we can create comprehensive solutions that balance human development with the protection of nature. This balance is key to ensuring a sustainable and resilient future for all.

The Sundarbans, the world's largest mangrove forest spanning India and Bangladesh, is under severe threat from deforestation driven by human encroachment, shrimp farming, and climate change. Illegal logging and conversion to aquaculture degrade its natural defenses against coastal erosion and cyclones, while rising sea levels and extreme events like Cyclone Amphan accelerate mangrove loss. This destruction endangers the region's biodiversity, including the Bengal tiger, and affects local communities by increasing freshwater salinization. Despite efforts such as mangrove afforestation and ecotourism, persistent environmental and human pressures continue to challenge the region's sustainability.

6.1.2 Extinction of Species

Extinction means the permanent loss of a species and its unique genetic information. While species adapt to environmental changes, many fail to survive, resulting in extinction. Over five billion species have gone over Earth's history owing to natural occurrences such as temperature fluctuations. Yet, today, between 10 and 14 million species are estimated to exist, with just 1.2 million examined, leaving the vast majority undiscovered.

Human actions such as habitat degradation, pollution, climate change, and overexploitation have hastened extinctions, resulting in irreparable losses. This disturbs ecosystems and biodiversity, impacting food webs and critical ecological functions. Extinction reduces genetic variety, which lowers future evolutionary potential.

6.1.2.1 Decline in Wild Vertebrate Populations

A World Wildlife Fund (WWF) report indicates a staggering 73% decline in global wild vertebrate populations between 1970 and 2020. This decline is attributed to human-induced threats such as habitat loss, overexploitation, climate change, pollution, and invasive species. The report emphasizes the need for comprehensive strategies to halt biodiversity loss and prevent irreversible environmental changes.

6.1.2.2 Causes of Species Extinction

Species extinction, the irreversible biodiversity loss, stems from various human and natural factors. Each cause interconnects with others, amplifying the risk to species across ecosystems.

a. Habitat Destruction

Urbanization, deforestation, and

agricultural expansion are the primary drivers of habitat loss. As cities grow, forests and wetlands are converted into residential, industrial, and agricultural spaces. For example, deforestation in the Amazon Rainforest has reduced vital habitats for species like jaguars, sloths, and frogs. Habitat fragmentation further isolates species, reducing genetic diversity and weakening populations.

b. Climate Change

Rising global temperatures, altered rainfall patterns, and extreme weather events disrupt ecosystems. Many species cannot adapt to rapid climate shifts, leading to migration or extinction. Polar bears in the Arctic face dwindling ice habitats, while coral reefs suffer mass bleaching events due to warming seas. Species dependent on specific temperature ranges or seasonal cues for breeding are particularly vulnerable.

c. Pollution

Contamination of air, water, and soil directly affects species' survival. Plastic pollution in oceans entangles marine animals and is ingested by species like turtles and seabirds, often with fatal consequences. Industrial waste and agricultural runoff pollute freshwater habitats, causing oxygen depletion and threatening aquatic life. Airborne toxins from industrial emissions and pesticides harm terrestrial species, impacting reproduction and health.

d. Overexploitation

Unsustainable hunting, fishing, and poaching deplete wildlife populations. Species like elephants and rhinoceroses are targeted for their ivory and horns, while overfishing has drastically reduced marine species such as tuna and cod. In many cases, the rate of exploitation far exceeds the species' natural capacity to recover, pushing them toward extinction.

e. Invasive Species

Non-native species introduced into new environments often outcompete native flora and fauna, disrupting ecosystems. For instance, introducing Nile perch into Lake Victoria led to the decline of native fish species, drastically altering the lake's ecology. Similarly, invasive plants like lantana in India crowd out native vegetation, impacting herbivorous species and their predators.

6.1.2.3 Impacts of Species Extinction

The loss of a species greatly impacts nature, the economy, and people's lives. Its effects go beyond just one species disappearing.

Each species plays a role in its ecosystem, whether as a predator, prey, pollinator, or decomposer. The loss of keystone species such as bees for pollination or apex predators like tigers can destabilize ecosystems, leading to cascading effects. For instance, the extinction of wolves in certain areas led to the overpopulation of deer, which overgrazed vegetation and disrupted forest regeneration. Without key species, ecosystems often fail to function properly, reducing biodiversity and weakening ecosystem resilience.

A striking example is the coral reefs, often called "rainforests of the sea," which support thousands of marine species. Coral bleaching due to rising ocean temperatures eliminates coral ecosystems and devastates fish populations and dependent human livelihoods.

Biodiversity contributes significantly to industries like agriculture, forestry, and pharmaceuticals. Pollinators such as bees and butterflies are crucial for producing fruits, vegetables, and nuts. Their decline threatens global food security, with potential losses estimated at billions of dollars annually. Similarly, medicinal plants and animals

provide invaluable drug compounds, but their extinction limits future discoveries.

The ecotourism industry, which relies heavily on diverse and thriving wildlife, suffers when species are lost. National parks and wildlife sanctuaries see reduced visitation when iconic species such as tigers, elephants, or gorillas decline. This affects local economies that depend on tourism for livelihoods, particularly in developing nations.

Indigenous communities often have deep cultural ties to local species. These animals and plants are central to their spiritual beliefs, traditional practices, and sustenance. For instance, North America's decline in salmon populations has disrupted indigenous fishing traditions, ceremonial practices, and nutritional diets.

The loss of culturally significant species erodes not only biodiversity but also the heritage and identity of these communities. Such declines exacerbate social inequalities and contribute to the marginalization of indigenous groups.

Healthy ecosystems provide vital services like air and water purification, soil fertility, and climate regulation. The extinction of species disrupts these services, leading to environmental degradation. For example, mangrove forests, home to diverse species, protect coastal areas from erosion and storm surges. Their loss increases the vulnerability of coastal regions to natural disasters.

Another example is the role of forest-dwelling animals, such as fruit bats and birds, in seed dispersal. Their decline hinders forest regeneration, reducing carbon storage capacity and accelerating climate change impacts.

Each extinct species has a unique genetic blueprint that could hold answers to scientific, medical, and agricultural challenges. For

example, compounds derived from rainforest plants have led to ground-breaking treatments for cancer and heart diseases. The extinction of species diminishes this genetic library, reducing humanity's ability to innovate and adapt to future challenges.

Loss of genetic diversity also affects domestic crops and livestock, making them more vulnerable to pests, diseases, and climate change. This threatens global food security and the resilience of agricultural systems.

The loss of biodiversity can increase the risk of zoonotic diseases—diseases transmitted from animals to humans. Deforestation and habitat destruction bring humans closer to wildlife, increasing the likelihood of pathogen spillovers. The COVID-19 pandemic highlights the devastating global consequences of such interactions.

The impacts of species extinction extend far beyond the immediate loss of individual species. They disrupt ecosystems, threaten economies, erode cultural identities, and compromise essential ecosystem services. Addressing these impacts requires urgent action to conserve biodiversity, restore ecosystems, and adopt sustainable practices. By valuing the interconnectedness of all life forms, humanity can work towards a future where development and conservation coexist harmoniously.

Fig. 6.1.1 Endangered Species - The Indian Cheetah (*Acinonyx Jubatus Venaticus*)
Extinct Species – The Dodo bird

6.1.2.4 Conservation Efforts

Addressing species extinction requires global collaboration, robust policies, and community-driven initiatives. Conservation efforts aim to protect endangered species, restore ecosystems, and mitigate human impacts.

a. Protected Areas

Establishing national parks, wildlife sanctuaries, and marine protected areas provides safe habitats for species. For example, the Sundarbans in India and Bangladesh protect the habitat of the Bengal tiger while supporting mangrove ecosystems. These areas act as refuges, allowing species to recover and thrive.

b. Legislation and Enforcement

Laws like the Wildlife Protection Act of 1972 in India and international agreements like CITES (Convention on International Trade in Endangered Species) regulate hunting, trade, and exploitation of endangered species. Effective enforcement ensures compliance and deters illegal activities such as poaching.

c. Community-Based Conservation

Involving local communities in conservation efforts fosters stewardship and ensures long-term success. Programs like Joint Forest Management in India

empower communities to protect wildlife while benefiting from sustainable resource use. Ecotourism initiatives provide economic incentives for conservation.

d. Ex-Situ Conservation

Conservation efforts outside natural habitats include captive breeding programs, seed banks, and botanical gardens. Zoos play a critical role in breeding endangered species like pandas and reintroducing them into the wild. Seed banks preserve genetic material for future use, safeguarding agricultural biodiversity.

e. Climate Action

Addressing climate change is essential for conserving species vulnerable to temperature and habitat shifts. Initiatives like reforestation, renewable energy adoption, and carbon offset programs reduce greenhouse gas emissions, benefiting biodiversity.

f. Awareness and Education

Public awareness campaigns help people understand the importance of biodiversity and promote eco-friendly habits. Teaching students about the environment in schools encourages them to care for nature and become future conservation advocates.

g. Global Collaboration

International efforts like the Convention

on Biological Diversity (CBD) and the United Nations' Sustainable Development Goals (SDGs) emphasize biodiversity conservation. Collaborative projects like the Global Tiger Initiative unite nations to address shared conservation challenges.

Species extinction threatens ecosystems, economies, and cultures globally. Human activities drive this loss through habitat destruction, climate change, pollution, and overexploitation. However, conservation efforts, policies, and global cooperation can help protect biodiversity. Preserving species is both an environmental need and a moral duty for future generations.

6.1.3 Impact of Developmental Projects

Developmental projects are vital for economic growth, driving technological advancements, improving living standards, and fostering regional and global integration. They enable the construction of infrastructure like transportation networks, energy production facilities, and industrial hubs, which are essential for national development. However, these projects often come with significant environmental and social costs, sparking debates about their long-term sustainability. Projects such as dams, roads, railways, and Special Economic Zones (SEZs) are particularly impactful, serving as both instruments of progress and sources of ecological degradation and social displacement.

The dual nature of these projects arises from their potential to transform economies while simultaneously disrupting ecosystems. For example, dams provide renewable energy and water security, but submerge forests and displace communities. Similarly, roads and railways connect remote regions to urban centers, boosting trade and accessibility yet fragmenting habitats and escalating pollution. SEZs attract investment and create jobs, but

often lead to land acquisition at the expense of natural habitats and local livelihoods. These projects embody the complex interplay between development and conservation, necessitating a balance that ensures economic benefits while mitigating ecological and social harms.

This balancing act becomes more challenging in the context of rapidly growing populations and climate change. Developing nations, in particular, face intense pressure to accelerate industrialization and urbanization to meet the needs of their citizens. As a result, developmental projects are often prioritized over environmental considerations, leading to unsustainable exploitation of resources. The cumulative impacts of these projects, from deforestation and biodiversity loss to water pollution and greenhouse gas emissions, underscore the urgent need for integrated planning and innovative solutions.

Moreover, the social consequences of developmental projects are profound. Communities displaced by large-scale projects often face economic insecurity, loss of cultural heritage, and psychological distress. Indigenous populations, who are disproportionately affected, lose access to traditional lands and resources, further marginalizing them. The trade-offs between development and environmental preservation are particularly stark in regions where ecosystems support biodiversity and human livelihoods, such as the Western Ghats in India or the Amazon Rainforest in South America.

To address these challenges, developmental projects must incorporate sustainability principles from the outset. This includes conducting thorough environmental impact assessments (EIAs), ensuring transparent decision-making processes, and engaging local communities in project planning and execution. Technological innovations, such as green infrastructure and renewable

energy solutions, can also play a pivotal role in reducing the ecological footprint of development. By adopting a holistic approach that values economic progress and environmental integrity, societies can chart a course toward sustainable development that benefits current and future generations.

6.1.3.1 Dams

Dams are monumental engineering structures that play a critical role in modern development. By regulating river flows, they provide water for irrigation, generate hydroelectric power, and control floods. These structures have been central to human progress, transforming arid regions into fertile lands and supporting urbanization and industrialization. However, the construction and operation of dams also have significant environmental and social repercussions, necessitating a balanced approach to their planning and implementation.

India's National River Linking Project (NRLP) seeks to address regional water imbalances by transferring water from surplus river basins to water-deficient areas. The initiative aims to mitigate water scarcity, enhance irrigation, and manage flood risks, promoting agricultural productivity and regional water security. However, the project has raised significant environmental and social concerns, including the potential disruption of aquatic ecosystems, loss of biodiversity, and the displacement of local communities. Moreover, it poses challenges related to groundwater depletion and long-term ecological sustainability. A thorough and balanced approach, supported by comprehensive environmental assessments, is essential to ensure that the project's benefits do not come at an unsustainable cost to the environment and affected populations.

Advantages

- ◆ Irrigation and Drinking Water: Dams store water for irrigation and provide

drinking water to millions, especially in arid and semi-arid regions. Projects like the Bhakra Nangal Dam in India have transformed barren lands into fertile agricultural zones, ensuring food security and supporting rural economies. By stabilizing water supplies, dams also mitigate the effects of droughts, making communities more resilient to climate variability.

- ◆ Hydroelectric Power Generation: Dams harness river currents by generating clean, renewable energy. Hydropower is a sustainable alternative to fossil fuels, reducing greenhouse gas emissions and promoting energy security. The Three Gorges Dam in China, the largest hydroelectric project in the world, exemplifies the potential of dams to produce vast amounts of energy while supporting national development goals.
- ◆ Flood Control: By regulating river flow, dams help prevent downstream flooding, protecting human settlements, agricultural land, and infrastructure. The Hirakud Dam in Odisha, India, is a prime example of a project designed to control the Mahanadi River's floods. This dam has significantly reduced the frequency and severity of flooding in the region, safeguarding lives and livelihoods.

Environmental Impact

The construction of dams often involves flooding vast areas and submerging forests, agricultural land and wildlife habitats. This leads to the loss of biodiversity and the displacement of species dependent on these ecosystems. For instance, creating reservoirs behind dams has led to the extinction of certain freshwater species and the destruction of critical wetlands.

Dams disrupt natural river flows, affecting sediment transport and aquatic ecosystems. Migratory fish, such as salmon, face barriers in reaching their breeding grounds, leading to population declines. Changes in water temperature and flow patterns also impact aquatic biodiversity, often favoring invasive species over native ones.

Large dam projects displace millions, particularly indigenous and rural populations. These communities are often relocated to areas with limited resources, resulting in loss of livelihoods, cultural heritage, and social cohesion. The social costs of displacement are frequently underestimated, leading to prolonged economic and psychological hardships for affected populations.

The Sardar Sarovar Dam on the Narmada River in India is one of the country's largest and contentious development projects. The dam was designed to provide irrigation, drinking water, and hydroelectric power to drought-prone districts in Gujarat, Madhya Pradesh, Maharashtra, and Rajasthan, and it has made a substantial contribution to economic development. However, it has also had significant environmental and societal implications. The dam displaced approximately 320,000 people, flooding extensive areas of forest, farmland, and tribal settlements, sparking long-running protests led by the Narmada Bachao Andolan. Environmental issues include biodiversity loss, damage to river ecology, and increased seismic activity in the region. Furthermore, while the project attempted to address water scarcity, challenges such as unequal water distribution and soil salinity have prompted concerns about its long-term viability. It embodies the struggle between large-scale development and

environmental justice, making it an important case study for reconciling infrastructural expansion with ecological and social responsibility.

Fig. 6.1.2 The Sardar Sarovar Dam

6.1.3.2 Roads and Railways

Roads and railways are a critical part of a country's infrastructure. It promotes connectivity, economic development and tourism promotion. Roads and railways improve access to markets, healthcare, and education, driving regional economic growth. Projects like the Golden Quadrilateral in India have boosted trade and mobility across states. Improved connectivity encourages tourism, bringing economic benefits to remote and rural areas.

Environmental Impacts

Roads and railways cut through forests, fragmenting habitats and isolating wildlife populations. This fragmentation increases the risk of extinction for species like elephants and tigers, which require large, connected territories. Increased vehicular traffic contributes to air and noise pollution, adversely affecting human health and wildlife. Construction activities accelerate soil erosion, leading to sedimentation in nearby water bodies and affecting aquatic ecosystems.

The Konkan Railway Project faced criticism for its impact on the Western Ghats, a UNESCO World Heritage site. While enhancing connectivity in coastal India, the project disrupted biodiversity in one of the country's richest ecological zones. The railway line fragmented critical wildlife corridors, increasing incidents of animal deaths, particularly elephants. Conservationists also raised concerns about landslides and soil erosion caused by the extensive cutting of hills for the railway's construction. Despite these challenges, mitigation measures such as building underpasses for wildlife and reforestation projects have been introduced, though their effectiveness remains debated.

6.1.4 Special Economic Zones (SEZs)

A specific Economic Zone (SEZ) is a defined territory within a country that works under specific economic restrictions intended to attract investment, promote industrialization, and stimulate economic growth. These zones provide numerous benefits, such as tax breaks, lower corporate taxes, and exemptions from import/export charges, making them attractive to enterprises. Furthermore, SEZs feature reduced restrictions, such as loosened labour laws, streamlined customs procedures, and faster permits for new sectors. SEZs serve as trade, manufacturing, and service hubs due to their world-class infrastructure, which includes industrial parks, ports, and reliable connectivity. Countries such as China, India, the United Arab Emirates, and the United States have effectively used SEZs to fuel economic development. While SEZs help to create jobs, promote foreign direct investment, and boost exports, they also present issues such as environmental

degradation, land acquisition disputes, and the possibility of labour abuse. Despite these difficulties, SEZs continue to be an important tool for governments looking to increase their global economic competitiveness.

Environmental Impact

SEZs convert farmland and forests into industrial zones, leading to deforestation, soil erosion, and biodiversity loss. SEZs can exacerbate air, water, and soil pollution from industrial activity, particularly in locations with inadequate environmental controls. Untreated trash from factories may be discharged into local bodies of water, and industries may emit dangerous gases into the atmosphere, causing pollution that affects the surrounding ecosystem. SEZs frequently utilize local resources such as water, minerals, and energy, sometimes to unsustainable levels. This can lead to resource depletion, which negatively influences the ecology. Industrial activity in SEZs is energy-intensive, resulting in increased energy consumption. The energy derived from non-renewable sources can worsen environmental deterioration and contribute to climate change.

Impact on Humans

SEZs boost economies by attracting investment and creating jobs, but benefits may not reach local communities. Many jobs are low-wage, and land acquisition can displace residents. Industrial pollution from SEZs can cause serious health issues like respiratory diseases and cancer. Poor waste management contaminates water and farmland, harming public health. SEZ development often forces locals to relocate, disrupting communities and livelihoods. Inadequate compensation can lead to social unrest.

Impact on Other Organisms

The development and operation of

SEZs frequently causes habitat damage to indigenous flora and wildlife. Deforestation, wetland drainage, and pollution can all directly harm plant and animal species, causing them to become extinct or less common in the region. SEZs can intentionally or unintentionally foster the spread of invasive species, disrupting local ecosystems and outcompeting native species. Alterations to land and water systems, such as shifting river channels or lowering groundwater levels, can disrupt natural biological processes. This can upset the balance of species and habitats, disrupting food webs and ecosystem functions such as pollination, water purification, and soil fertility.

Mitigating the Negative Impacts

While the negative repercussions are severe, initiatives to alleviate the environmental, social, and health consequences of SEZs may include:

Sustainable Planning entails ensuring that SEZs are placed in locations with minimal environmental impact and are built with green technologies and practices. Environmental regulations involve enforcing strict environmental standards and monitoring to prevent pollution and habitat degradation. Community engagement entails involving residents in decision-making and assuring equitable compensation, resettlement, and development possibilities. Incorporating conservation measures into SEZ development, such as keeping green spaces and safeguarding neighboring natural habitats. While SEZs can encourage economic growth, their development frequently has

substantial environmental, human, and ecological impacts that must be controlled with rigorous planning and regulation to assure sustainability.

Mundra SEZ in Gujarat, developed by Adani Ports in 2001, spans over 45,000 acres and houses industries like power, textiles, and chemicals. It has boosted infrastructure, exports, and job creation, contributing to economic growth. However, it has caused environmental damage, including mangrove destruction, pollution, and biodiversity loss. Displaced farmers and fishermen received little compensation, losing their livelihoods. Rising pollution has also raised health concerns. Legal issues over land acquisition and environmental clearances have led to protests and court cases. While the SEZ supports economic progress, it highlights the need for sustainable industrialization.

Developmental projects like dams, roads, railways, and SEZs highlight the complex interplay between economic growth and environmental conservation. While these projects contribute to infrastructure, energy security, and economic development, sustainable planning and mitigation measures must address their ecological and social costs. Incorporating environmental impact assessments, involving local communities in decision-making, and promoting green technologies can ensure that development does not come at the expense of ecological integrity.

Recap

- ◆ Agriculture, infrastructure expansion, logging, and mining all contribute to deforestation, which in turn causes biodiversity loss, climate change, and soil degradation.
- ◆ Species extinction is caused by habitat degradation, climate change, pollution, overexploitation, and invasive species.
- ◆ Dams, roads, trains, and special economic zones (SEZs) influence ecosystems, displace communities, and change water and land use.
- ◆ Afforestation and reforestation, conservation regulations, and sustainable infrastructure development are all examples of sustainable solutions.

Objective Questions

1. What is the expansion of SEZ?
2. Who led the Narmada Bachao Andolan?
3. The practice of integrating trees into agricultural landscapes balances productivity with conservation is known as what?
4. The large-scale removal of forests for non-forest uses is referred to as?
5. What is Habitat Fragmentation?
6. What structure can regulate river flows, provide water for irrigation, generate hydroelectric power, and control floods?

Answers

1. Special Economic Zone
2. Medha Patkar
3. Agroforestry
4. Deforestation

5. Fragmenting habitats and isolating wildlife populations due to the development of transportation infrastructure
6. Dams

Assignments

1. Explain the major causes of deforestation and their impact on ecosystems.
2. Describe how does species extinction affect ecological balance and biodiversity?
3. Discuss the environmental and social consequences of large-scale infrastructure projects.
4. Evaluate the role of conservation policies in mitigating deforestation.
5. Analyze the impact of Special Economic Zones (SEZs) on land use and environmental sustainability.

Suggested Reading

1. Gadgil, M., & Guha, R. (2013). *Ecology and equity: The use and abuse of nature in contemporary India*. New York: Routledge.
2. Gadgil, M., & Guha, R. (1994). Ecological conflicts and the environmental movement in India. *Development and change*, 25(1), 101-136.
3. Omvedt, G. (1994). The environmental movement and the search for alternatives. In *reinventing revolution: New social movements and socialist traditions in India*. New York: Routledge.
4. Schnaiberg, A. (1980). *The environment*. New York: Oxford University Press.
5. UNDP (1987). *Sustainable development: World commission on environment and abuse of nature in contemporary India*. New Delhi: OUP.

Reference

1. Chakravarty, S., Ghosh, S. K., Suresh, C. P., Dey, A. N., & Shukla, G. (2012). Deforestation: causes, effects and control strategies. *Global Perspectives on Sustainable Forest Management*, 1, 1-26.
2. Kolbert, E. (2014). *The sixth extinction: An unnatural history*. Henry Holt and Company.
3. Goldsmith, E., & Hildyard, N. (1984). *The social and environmental effects of large dams. Volume 1: overview* (pp. 346pp-+).
4. Kumar, D. B. (2013). *Special economic zones in India: Recent developments and future new challenges*. Available at SSRN 3826775.

Environmental Degradation and Sustainable Development

UNIT

Learning Outcomes

Upon completing this unit, the learner will be able to:

- ◆ understand the causes and consequences of excessive natural resource consumption
- ◆ analyze the effects of pollution, climate change, and ecosystem degradation
- ◆ explain the importance of sustainability and global efforts like the SDGs
- ◆ propose solutions for responsible resource management and environmental protection

Prerequisites

Understanding renewable and non-renewable resources is essential to managing their use and impact. Human activities like deforestation, pollution, and overuse have led to biodiversity loss, climate change, and resource depletion. Ecosystem mismanagement disrupts balance, causing global crises. The UN Sustainable Development Goals emphasize the link between environmental, economic, and social well-being. Issues like desertification, groundwater depletion, and deforestation require local solutions. Governments, communities, and individuals must work together to conserve resources and ensure a sustainable future.

Keywords

Resource exploitation, Climate change, Pollution, Ecological footprint, Circular economy

Discussion

6.2.1 The Concept of Resource Exploitation

Natural resources, such as water, forests, minerals, and fossil fuels, are the foundation of human civilization. From ancient agricultural societies to modern industrial economies, these resources have been harnessed to sustain life, fuel innovation, and drive economic growth. However, the unsustainable exploitation of natural resources has emerged as a significant concern in environmental sociology. This field examines the social dimensions of environmental issues, emphasizing the interactions between human societies and the environment. Resource exploitation, the excessive use of natural resources for economic gain, poses profound ecological, financial, and social challenges, necessitating a critical understanding of its causes, impacts, and potential solutions.

6.2.1.1 Types of Resource Exploitation

Forests offer vital ecosystem services such as carbon storage, oxygen production, and climate regulation. However, widespread deforestation for timber, agriculture, and infrastructure development has led to serious environmental impacts. For example, the Amazon Rainforest, often called the “lungs of the Earth,” is being rapidly cleared, endangering global biodiversity and exacerbating climate change.

Deforestation is driven not only by commercial logging but also by subsistence farming in developing countries. Small-scale farmers clear forests for crops, leading to land degradation, soil erosion, and reduced agricultural productivity due to unsustainable practices. Urban expansion causes deforestation as growing populations

demand more land for housing, roads, and industries. This is especially common in rapidly urbanizing areas of Asia and Africa, where forests are replaced by concrete infrastructure.

Over-extraction of freshwater from rivers, lakes, and aquifers has caused severe water scarcity worldwide, as seen in India, where declining groundwater levels threaten food security and access to clean water. Pollution from industrial effluents, agricultural runoff, and untreated sewage further exacerbates water scarcity. Contaminants such as heavy metals, pesticides, and pathogens degrade water quality, endangering aquatic ecosystems and human health. Climate change compounds water resource challenges by altering precipitation patterns and increasing the frequency of droughts and floods. Melting glaciers, which feed significant rivers like the Ganges and Yangtze, are shrinking, reducing freshwater availability for millions.

Mining for minerals and metals is essential for manufacturing, construction, and technology. However, extraction processes often result in deforestation, habitat destruction, and soil erosion. For instance, bauxite mining in the Western Ghats of India has led to severe ecological damage, affecting both biodiversity and local communities. The environmental costs of mining include contamination of water bodies with heavy metals and chemicals used in extraction processes. Acid mine drainage from abandoned mines can persist for decades, poisoning rivers and groundwater. Social impacts of mining include the displacement of indigenous communities, the loss of traditional livelihoods, and conflicts over land rights. In regions like Africa’s Congo Basin, mining for valuable minerals like coltan has fueled armed conflicts and human rights violations.

Fossil fuels, coal, oil, and natural gas are the backbone of modern energy systems, but are the most significant contributors to greenhouse gas emissions. Burning fossil fuels for electricity, transportation, and industry accounts for approximately 75% of global CO₂ emissions, driving climate change. Extraction processes, such as oil drilling and coal mining, often lead to land degradation, water contamination, and air pollution. The Deepwater Horizon oil spill in 2010 highlighted the devastating environmental consequences of offshore drilling, with long-term impacts on marine life and coastal communities. Relying on fossil fuels creates economic inequality, as countries rich in resources often face political instability and wealth concentration. Moving to renewable energy is crucial to tackle these

environmental and social issues.

Overfishing depletes fish stocks, disrupts marine food chains, and threatens the livelihoods of millions who depend on fisheries. Unsustainable practices, such as trawling and illegal fishing, destroy habitats like coral reefs and seagrass beds, further undermining marine ecosystems. Oil and gas extraction in marine environments pose significant risks to biodiversity. Spills and leaks pollute the ocean, affecting species from plankton to whales. Additionally, seismic surveys for oil exploration disrupt marine mammals' communication and navigation. Plastic pollution is another critical issue affecting marine resources. Microplastics ingested by fish and other marine organisms enter the food chain, ultimately impacting human health and well-being.

Fig. 6.2.1 Plastic Pollution

A staggering 91% of all plastic ever produced has not been recycled. Plastic can decompose for up to 400 years, leading to long-term environmental contamination. Plastic pollution is a major environmental problem, with 400 million tonnes of plastic waste produced annually, 60% of which ends up in landfills or the environment. Around 8 million tonnes enter the oceans each year, impacting marine life through ingestion and entanglement. By 2019, the

ocean contained about 171 trillion plastic particles. This pollution harms ecosystems and affects millions of people. To address this, we need to reduce plastic use, improve waste management, and promote recycling, with global efforts like a proposed plastic treaty aiming for a coordinated solution.

6.2.1.2 Causes of Resource Exploitation

Rapid population growth increases

resource demand, including food, water, energy, and housing. As the global population approaches 8 billion, the strain on natural resources has reached unprecedented levels. Urbanization exacerbates this pressure by concentrating resource consumption in densely populated areas. In developing countries, population growth often leads to deforestation and overfishing as communities rely on natural resources for sustenance. In urban areas, high population densities drive excessive energy use and waste generation. Policies addressing population growth, such as family planning and education, can reduce resource pressures while improving quality of life.

Industrialization and infrastructure development drive large-scale resource extraction. Developing nations prioritize resource-intensive industries to boost GDP, often at the cost of environmental sustainability. For example, China's rapid industrial growth has resulted in severe air and water pollution. Urban expansion requires vast construction materials like sand, gravel, and limestone, leading to environmental degradation. The demand for energy-intensive commodities like steel and aluminum further amplifies resource exploitation. Global economic systems prioritize short-term profits over long-term sustainability. Unsustainable trade practices and subsidies for resource extraction perpetuate environmental harm.

Innovations in extraction technologies, such as hydraulic fracturing (fracking) and deep-sea mining, enable access to previously untapped resources. While these technologies increase resource availability, they also intensify environmental degradation. Automation and mechanization in agriculture and forestry lead to large-scale deforestation and habitat loss. Advanced fishing technologies deplete marine stocks faster than ecosystems can recover. Balancing technological progress with

sustainable practices is crucial to mitigate its environmental impact.

The globalized economy fosters high consumption levels, driving resource overexploitation to meet market demands. Developed nations consume disproportionate resources, often at the expense of resource-rich but economically underdeveloped countries. Consumer culture promotes disposable products and fast fashion, contributing to resource wastage and environmental degradation. For instance, the textile industry is a significant polluter, consuming vast amounts of water and energy. Transitioning to circular economy models focusing on reuse, recycling, and sustainable production can alleviate the pressures of global trade and consumerism.

Corruption, inadequate environmental regulations, and a lack of enforcement mechanisms enable unsustainable resource exploitation. In many developing nations, illegal logging, mining, and fishing persist due to weak institutional frameworks. Poorly planned development projects often prioritize economic gains over environmental considerations. For example, large dams built without proper environmental impact assessments have caused extensive ecological damage. Strengthening governance through transparent decision-making, public participation, and international cooperation is essential to address these issues effectively.

6.2.1.3 Impact of Resource Exploitation

Environmental Impacts

Resource exploitation, including habitat destruction, pollution, and climate change, leads to species extinction and ecosystem disruption. In the Amazon, deforestation alone causes the loss of thousands of species each year. Fossil fuel combustion and deforestation release greenhouse gases, contributing to global warming.

Rising temperatures exacerbate extreme weather events, threatening both natural and human systems. Overgrazing, mining, and deforestation strip soil of nutrients, reducing agricultural productivity. In arid regions, desertification caused by resource overuse renders land uninhabitable.

Economic Impacts

Resource depletion increases the cost of essential commodities like food, water, and energy, disproportionately affecting low-income populations. Scarcity-driven inflation exacerbates economic inequalities. Overdependence on resource-based industries creates economic vulnerabilities. For instance, oil-dependent economies experience severe recessions during price crashes. Investments in sustainable technologies and practices can mitigate these economic risks while promoting long-term growth.

Social Impacts

Indigenous communities often bear the brunt of resource exploitation, losing access to traditional lands and livelihoods. Displacement caused by mining, dams, and deforestation disrupts cultural heritage and social cohesion. Environmental degradation exacerbates health disparities as marginalized populations face higher exposure to pollution and resource scarcity. Social movements advocating for environmental justice are crucial in addressing these inequities and promoting sustainable development.

6.2.1.4 Sustainable Resource Management

Establishing protected areas, promoting afforestation, and adopting sustainable forestry practices help preserve natural habitats. Efforts like the REDD+ initiative (Reducing Emissions from Deforestation and Forest Degradation) incentivize conservation in developing countries. Rehabilitating degraded ecosystems through rewilding

and soil restoration enhances biodiversity and ecosystem resilience. Integrating traditional ecological knowledge with modern conservation methods fosters sustainable resource use.

Shifting from fossil fuels to renewable energy sources like solar, wind, and hydropower reduces environmental degradation and greenhouse gas emissions. Investing in clean energy infrastructure can create jobs while mitigating climate change. Policies supporting energy efficiency and clean technology adoption are crucial for a successful energy transition.

Implementing resource-efficient technologies in agriculture, industry, and urban planning minimizes waste and optimizes consumption. Drip irrigation and precision agriculture conserve water and improve crop yields. Recycling and waste management initiatives reduce the demand for virgin materials, promoting a circular economy.

Empowering local communities to manage forests, water bodies, and fisheries fosters sustainable practices and equitable resource distribution. Community forestry programs in Nepal have successfully reduced deforestation while improving local livelihoods. Participatory approaches ensure that conservation initiatives respect the rights and knowledge of indigenous populations.

Strengthening environmental laws, enforcing regulations, and promoting international agreements like the Paris Agreement address resource exploitation at multiple levels. Transparent governance frameworks and accountability mechanisms ensure resource management aligns with sustainability goals. Exploiting natural resources has fueled human progress but also creates major environmental and social issues. Environmental sociology helps us understand the complex connections between societies and their environments, highlighting

the importance of sustainable resource management. By balancing economic growth with ecological conservation, we can secure a sustainable future that respects the planet's limits and supports human well-being.

6.2.2 Impact of Environmental Degradation

The important global environmental issues are:

- ◆ Biodiversity Loss
- ◆ Desertification
- ◆ Depletion of the Ozone Layer
- ◆ Acid Rain
- ◆ Oil Spills
- ◆ Dumping of Hazardous Wastes
- ◆ Climate change due to the greenhouse effect and global warming
- ◆ Environmental degradation is making the environment unfit or less suitable for the survival of different life forms, thereby causing immense ecological damage
- ◆ Population explosion, urbanization, and increased human needs and comforts have resulted in rapid industrialization
- ◆ Rapid industrialization, in turn, has led to the overexploitation of natural resources
- ◆ The consequences of such exploitation are evident in soil erosion, desertification, loss of biodiversity, and pollution of land, air, and water bodies.

Loss of Biodiversity Environmental degradation causes habitat destruction, putting many plant and animal species at risk of extinction. Tropical rainforests,

home to about 80% of terrestrial species, are disappearing rapidly due to deforestation, weakening ecosystems and their ability to cope with climate change. For instance, the loss of pollinators like bees directly impacts global food production. Coral reefs, called the "rainforests of the sea," are another casualty of environmental degradation. Rising sea temperatures and ocean acidification caused by excessive carbon emissions have led to widespread coral bleaching. The loss of coral ecosystems impacts marine biodiversity and the livelihoods of millions dependent on fisheries. Climate change is driven by activities like deforestation and burning fossil fuels, which release greenhouse gases and contribute to global warming. This leads to more extreme weather events, rising sea levels, and changed rainfall patterns, impacting both natural systems and human communities. Droughts and floods are becoming more common, affecting agriculture and water supply. The Arctic ice caps are melting at unprecedented rates, causing rising sea levels that threaten coastal cities worldwide. The displacement of communities from low-lying areas highlights the direct human cost of environmental degradation. Soil erosion, desertification, Overgrazing, deforestation, and unsustainable farming practices degrade soil quality, reducing agricultural productivity. Regions like the Sahel in Africa face desertification, exacerbating food insecurity and poverty. Soil erosion also causes sedimentation in rivers and dams, reducing their effectiveness and increasing the risk of flooding.

1. Economic Impacts

Increased Costs Environmental degradation raises the cost of essential resources. Water pollution requires costly treatment, while declining fish stocks impact fisheries and food prices. Depleting freshwater sources force investment in expensive desalination, and losing fertile land leads to increased agricultural imports, straining economies

and trade balances.

a. Economic Vulnerabilities

Nations reliant on natural resources experience economic instability as these resources deplete. For example, overexploitation of oil reserves can cause financial crises when prices fall, creating a boom-and-bust cycle that hinders long-term planning. Environmental degradation also reduces the productivity of key sectors like agriculture and tourism. The collapse of industries reliant on healthy ecosystems jeopardizes employment and regional economies.

b. Loss of Tourism Revenue

Degraded ecosystems harm ecotourism, which depends on untouched natural environments. For instance, coral reef

destruction affects coastal tourism in places like the Maldives, leading to revenue losses as tourists are drawn to areas of natural beauty.

2. Social Impacts

Health Issues Pollution of air, water, and soil harms human health. Polluted air causes respiratory and heart diseases, while contaminated water spreads illnesses like cholera and dysentery, especially among vulnerable groups. Poor waste management worsens these issues, particularly in cities. Indoor air pollution from biomass fuels used in cooking contributes to significant health issues in rural areas, especially among women and children. Globally, millions of deaths are attributed to environmental factors annually. A real example of the economic impact of environmental degradation is the air pollution crisis in Delhi, India.

Air pollution can shorten lives by almost 10 yrs in Delhi: Study

Air pollution can shorten lives by almost 10 years in Delhi, the world's most polluted city, says a report by a US research group.

142
Updated On Jun 16, 2023 at 06:08 AM IST

Chicago, Air pollution can shorten lives by almost 10 years in Delhi, the world's most polluted city, says a report by a US research group.

Fig. 6.2.2 Newsclipping depicting implication of air pollution in Delhi

The persistent smog and poor air quality, primarily caused by vehicular emissions, industrial activities, and crop stubble burning, have had severe economic consequences.

3. Economic Consequences

The increased incidence of respiratory and cardiovascular diseases has led to higher healthcare expenses for individuals and the government. A 2020 study estimated that

air pollution costs India about \$36 billion annually in healthcare and productivity losses. Poor air quality reduces worker efficiency and absenteeism, impacting industries and overall economic output. Delhi's air pollution has deterred international tourists, negatively affecting the local economy reliant on tourism and hospitality. Pollution and associated weather changes have affected crop yields in nearby regions, reducing income for farmers.

Environmental degradation often forces communities to migrate. Rising sea levels threaten small island nations, while desertification displaces rural populations, leading to urban overcrowding and social tensions. Climate refugees are becoming a growing demographic, posing challenges for receiving regions regarding resources and integration. For instance, the Sundarbans region in India and Bangladesh faces frequent cyclones and rising waters, compelling thousands to leave their homes. The loss of cultural identity among displaced communities highlights the intangible costs of environmental degradation. Marginalized communities are disproportionately affected by environmental degradation. They often reside in areas most vulnerable to pollution and climate change, lacking the resources to adapt or relocate. This disparity exacerbates social inequities, hindering inclusive development.

4. Political Impacts

The scarcity of resources like water and arable land fuels conflicts, as seen in disputes over river basins such as the Nile and Mekong. These conflicts destabilize regions and hinder development. Climate change intensifies resource scarcity, increasing geopolitical tensions. Water-sharing agreements and transboundary conservation efforts are often fraught with political challenges, delaying effective solutions. Policy Challenges Governments face difficulties balancing economic growth with environmental protection. Weak enforcement of ecological laws further exacerbates degradation. The lack of international consensus on key issues, such as carbon emissions, hampers coordinated global action.

6.2.3 The Need for Sustainable Development

Sustainable development meets the needs of the present without compromising the

ability of future generations to meet their own needs. It integrates economic growth, environmental stewardship, and social equity to create a balanced and resilient society. The concept acknowledges the interconnectedness of ecological health, economic prosperity, and human well-being.

Key Principles of Sustainable Development

- ◆ **Intergenerational Equity:** Ensuring future generations inherit a healthy environment and sufficient resources. This principle emphasizes the ethical responsibility to preserve the planet's integrity.
- ◆ **Integrated Approach:** Balancing economic, social, and environmental goals in policy-making and implementation. Integrated approaches foster synergies between sectors, minimizing trade-offs.
- ◆ **Precautionary Principle:** Take proactive measures to prevent environmental harm, even without complete scientific certainty. This principle is critical in addressing emerging challenges like climate change.
- ◆ **Participatory Governance:** Involving all stakeholders, including local communities, in decision-making processes to ensure inclusivity and accountability. Participatory governance empowers marginalized groups, enhancing the effectiveness of policies.

6.2.3.1 Strategies for Sustainable Development

- ◆ **Promoting Renewable Energy:** Transitioning from fossil fuels to solar, wind, and hydropower reduces greenhouse gas emissions and conserves finite resources. Investments in clean energy technologies create jobs and

stimulate economic growth.

- ◆ **Sustainable Agriculture:** Adopting crop rotation, organic farming, and precision agriculture enhances food security while minimizing environmental impacts. Sustainable agriculture also conserves water and soil resources, ensuring long-term productivity.
- ◆ **Conservation of Natural Resources:** Protecting forests, wetlands, and marine ecosystems ensures biodiversity and maintains ecosystem services like carbon sequestration and water purification. Restoration projects, such as reforestation and wetland revival, mitigate past degradation.
- ◆ **Circular Economy:** Emphasizing recycling, reusing, and reducing waste promotes resource efficiency and reduces environmental degradation. Circular economy models minimize reliance on virgin materials, fostering sustainability.
- ◆ **Education and Awareness:** Raising public awareness about sustainability fosters behavioral changes, encouraging eco-friendly practices and consumption patterns. Environmental education instils values of conservation in younger generations.

6.2.3.2 Global Initiatives and Frameworks

The United Nations Sustainable Development Goals (SDGs) are a global call to address critical issues like poverty, inequality, climate change, and environmental degradation, aiming for a sustainable future by 2030. SDG 13 (Climate Action) and SDG 15 (Life on Land) are particularly important when addressing the harmful effects of natural resource exploitation. Practices like deforestation, overgrazing, unregulated

mining, and excessive water use have led to biodiversity loss, soil degradation, and increased greenhouse gas emissions. SDG 13 emphasizes reducing carbon footprints, supporting renewable energy, and enhancing resilience to climate impacts, while SDG 15 focuses on protecting, restoring, and sustainably using land ecosystems, preventing deforestation, and conserving biodiversity.

These issues are especially visible in India. The rapid deforestation of the Western Ghats and the Himalayan region for infrastructure development and agriculture has devastated the habitat, putting animals like the Bengal tiger and the Indian elephant at risk. While mining activities in states such as Jharkhand and Chhattisgarh contribute to economic progress, they also cause widespread deforestation and soil erosion, altering local ecosystems. The Yamuna and Ganga rivers, intensively used for industrial and domestic purposes, are severely polluted and have dwindling biodiversity, endangering aquatic life. Climate change, exacerbated by unrestrained resource extraction, has resulted in more regular extreme weather occurrences in India, including heatwaves in Rajasthan, cyclones in Odisha, and catastrophic floods in Kerala and Assam.

India has implemented various measures to address climate change and environmental challenges in line with SDGs 13 and 15. The National Action Plan on Climate Change (NAPCC) includes sustainable development strategies, like afforestation programs such as the Green India Mission. The Compensatory Afforestation Fund Act (CAMPA) mandates companies to offset deforestation by planting trees in other areas. Additionally, India's goal to achieve 500 GW of non-fossil fuel energy capacity by 2030 is a significant step in reducing fossil fuel dependency and fighting climate change.

Despite these efforts, issues remain due to illegal logging, unregulated urban

development, and unsustainable farming methods. To strike a balance between economic development and environmental sustainability, environmental regulations must be strictly enforced, communities must participate in conservation activities, and there must be a change toward more sustainable consumption and production habits. By combining the ideas of SDG 13 and SDG 15, India and the rest of the world can work toward a future in which economic success is not at the expense of environmental damage, ensuring that natural resources are protected for future generations.

a. The Paris Agreement

The Paris Agreement, a historic worldwide agreement aimed at combating climate change, was negotiated and adopted in December 2015 during the United Nations Framework Convention on Climate Change's (UNFCCC) 21st Conference of the Parties (COP21). The pact aims to restrict global temperature rise to "well below 2°C" over pre-industrial levels to keep the increase to 1.5°C, recognizing the considerable hazards associated with higher warming. To accomplish this, the Paris Agreement asks countries to attain net-zero greenhouse gas emissions by the second half of the twenty-first century. The deal went into effect in November 2016 after being accepted by at least 55 countries, which accounted for at least 55% of global greenhouse gas emissions. As of 2019, 195 countries had signed the pact, with more than 180 countries having ratified it, including India, which signed and ratified it in 2016.

To meet the 1.5°C climate goal, global emissions must reach net-zero between 2030 and 2050. Developed countries committed to providing \$100 billion annually in climate finance to help developing nations, with this support planned until 2025. However, in 2017, the U.S. expressed its intention to withdraw from the Paris Agreement due to

economic concerns, though it remained a signatory until November 2020. In 2015, the UNFCCC launched the Climate Neutral Now program and added a new pillar under the Momentum for Change initiative in 2016 to encourage climate action.

The Climate Neutral Now campaign urges individuals, businesses, and governments to work toward a climate-neutral world by mid-century, aligning with the Paris Agreement's goals. This project consists of three steps: first, assess one's climate footprint; second, reduce emissions as much as practicable; and third, offset any leftover emissions through UN-certified emission reductions. The Paris Agreement is a critical worldwide effort to reduce climate change and promote global collaboration in attaining a sustainable, low-carbon future.

b. The Convention on Biological Diversity (CBD)

Biodiversity protection is a shared global responsibility that requires all nations' collaboration and dedication to maintain the planet's ecological equilibrium. One of the most notable worldwide efforts in this respect is the Convention on Biological Diversity (CBD), a legally binding multinational convention that promotes biodiversity conservation and sustainable usage. The CBD was initially announced at the Earth Summit in Rio de Janeiro in 1992 and came into force in 1993. This historic agreement requires all participating countries to implement adequate biodiversity conservation methods while ensuring the sustainable use of biological resources and an equitable distribution of benefits from genetic materials. The Convention is directed by three primary goals: (1) the protection of biological variety, (2) the long-term utilization of its components, and (3) the equitable distribution of benefits derived from genetic resources.

The CBD is recognized as a cornerstone

of global sustainable development, providing a framework for governments to establish laws and regulations to maintain ecosystems, protect endangered species, and promote responsible resource management. Currently, 195 UN member nations and the European Union are signatories to this treaty, with the United Nations being the only UN member that has not approved it. Over time, the CBD has facilitated tremendous advances in biodiversity protection, including creating norms to improve implementation. A significant development happened during

the 10th Conference of the Parties (COP 10) in Nagoya, Japan, in 2010, when the Nagoya Protocol was adopted. This protocol focuses on the fair and equitable distribution of benefits from genetic resources, ensuring that countries and people contributing to biodiversity protection receive adequate acknowledgement and benefits. The Convention on Biological Diversity is still important for tackling global environmental concerns and ensuring a sustainable future because it fosters international collaboration and enforces legally binding commitments.

Recap

- ◆ Overusing natural resources like forests, water, and minerals leads to depletion and environmental damage.
- ◆ Environmental degradation results in biodiversity loss, climate change, soil erosion, and pollution.
- ◆ Sustainable development balances economic growth with environmental and social responsibility.
- ◆ Key sustainability strategies include renewable energy, conservation, resource efficiency, and global environmental agreements.

Objective Questions

1. What is the expansion of CBD?
2. The commercial clearing of forest is known as what?
3. Expand CAMPA
4. What is REDD+ initiative?
5. Which area is often referred to as the lungs of the earth?
6. Overgrazing, mining, and deforestation strip soil of nutrients, reducing agricultural productivity leads to what?
7. The excessive use of natural resources for economic gain, poses profound ecological, financial, and social challenges is known as?

Answers

1. Convention on Biological Diversity
2. Deforestation
3. Compensatory Afforestation Fund Act
4. Reducing Emissions from Deforestation and Forest Degradation)
5. Amazon forest
6. Soil degradation
7. Resource exploitation

Assignments

1. Define resource exploitation and discuss its major consequences on the environment.
2. How does overfishing impact marine ecosystems, and what measures can be taken to control it?
3. Explain the relationship between environmental degradation and human health.
4. Discuss the significance of sustainable development and how it balances economic growth with environmental conservation.
5. What role do global initiatives like the SDGs and the Paris Agreement play in promoting sustainability?

Suggested Reading

1. Gadgil, M., & Guha, R. (2013). *Ecology and equity: The use and abuse of nature in contemporary India*. New York: Routledge.
2. Gadgil, M., & Guha, R. (1994). Ecological conflicts and the environmental movement in India. *Development and Change*, 25(1), 101-136.

3. Omvedt, G. (1994). The environmental movement and the search for alternatives. In *Reinventing Revolution: New Social Movements and Socialist Traditions in India*. New York: Routledge.
4. Schnaiberg, A. (1980). *The environment*. New York: Oxford University Press.
5. UNDP (1987). *Sustainable development: World commission on environment and abuse of nature in contemporary India*. New Delhi: OUP.

Reference

1. Wang, Y. (Ed.). (2014). *Encyclopedia of natural resources-Two-Volume Set*. CRC Press.
2. Clayton, T., & Radcliffe, N. (2018). *Sustainability: a systems approach*. Routledge.
3. Srinivasan, J. (2012). Impacts of climate change on India. In *Handbook of Climate Change and India* (pp. 29-40). Routledge.
4. De, A. K., & De, A. K. (2009). *Environment and ecology*. New Age International.

MODEL QUESTION PAPER SETS

SHREENARAYANAGURU
OPEN UNIVERSITY

SGOU - SLM - BA Sociology- Environmental Sociology

QP CODE:

Reg. No:

Name:

FOURTH SEMESTER BA SOCIOLOGY EXAMINATION
DISCIPLINE SPECIFIC ELECTIVE
B21SO02DE – ENVIRONMENTAL SOCIOLOGY
(CBCS - UG)
2023-24 - Admission Onwards
SET-1

Time: 3 Hours

Max Marks: 70

Section A

Objective Type Questions

Answer any 10 questions. Each question carries 1 mark

(10x1=10 marks)

1. Who coined the term Environmental Sociology?
2. Which international treaty specifically aims to phase out Ozone-depleting substances?
3. Who wrote the book *Silent Spring*?
4. What are the three R's of environmental conservation?
5. Anthropocentrism primarily places which entity at the center of the universe?
6. Which thinker introduced the Gaia Hypothesis?
7. Which philosopher supported the anthropocentric view by stating that nature exists for the sake of man?
8. To whom the concept of metabolic rift is primarily associated?
9. Who introduced the concept of formal rationality?
10. Which sociologist argued that “the problem of nature is a problem of capital”?
11. The Deonar Landfill is located in which Indian state?
12. Expand NAPCC.
13. What is the process of planting trees in areas without recent forest cover called?
14. What does extinction mean in the context of species?

15. In which report the concept of Sustainable Development was prominently introduced?

Section B

Very Short Answer Questions

Answer any 10 questions. Each question carries 2 marks

(10x2=20 marks)

16. What are the key causes of species extinction?
17. List any two social concerns related to the Kudankulam Nuclear Power Plant?
18. Digital Divide
19. Greenhouse effect
20. Explain metabolic rift
21. Ecofeminism
22. Deep ecology
23. Eco Marxism
24. What is the core principle of social ecology?
25. Briefly describe the concept of environmental racism.
26. What are autotrophs? Give an example
27. What was the primary outcome of the 1972 Stockholm Conference?
28. State the main objective of the Kyoto Protocol.
29. Mention two key principles outlined in the Rio Declaration.
30. Ex situ conservation

Section C

Short Answer Questions

Answer any 5 questions. Each question carries 4 marks

(5x4=20 marks)

31. Discuss the impacts of plastic pollution on marine resources.
32. Explain the social impacts of resource exploitation, particularly on indigenous communities.
33. Discuss the role of technology in both causing and solving environmental issues in India.
34. Discuss the role of community efforts in environmental protection in India,

using the Chipko Movement as an example.

35. Analyze how Talcott Parsons' theory of social action addresses environmental issues.
36. Describe Max Weber's perspective on the relationship between modernization and environmental alienation.
37. Explain how Jainism's principle of ahimsa influences its followers' environmental practices.
38. Explain the concept of environmental justice and its importance in addressing environmental issues.
39. Describe the primary provisions of India's Wildlife Protection Act, 1972, concerning the prohibition of hunting/trade, the establishment of protected areas, and the role of advisory boards.
40. Outline the main objectives of the Convention on Biological Diversity (CBD).

Section D

Long Answer/Essay Questions

Answer any 2 questions. Each question carries 10marks

(10x2=20 marks)

41. Critically analyze the role of industrialization in environmental degradation and suggest sustainable solutions.
42. Evaluate the contributions of Buddhist philosophy to environmental conservation, highlighting its core principles and practices.
43. Analyse the approaches of Durkheim, Weber, and Parsons in addressing environmental issues, highlighting their strengths and weaknesses.
44. Analyse the Rio Earth Summit as a landmark event. Discuss its key outcomes, including the Rio Declaration, Agenda 21, and the establishment of conventions like UNFCCC and CBD.

QP CODE:

Reg. No:

Name:

FOURTH SEMESTER BA SOCIOLOGY EXAMINATION
DISCIPLINE SPECIFIC ELECTIVE
B21SO02DE – ENVIRONMENTAL SOCIOLOGY
(CBCS - UG)
2023-24 - Admission Onwards
SET-2

Time: 3 Hours

Max Marks: 70

Section A

Objective Type Questions

Answer any 10 questions. Each question carries 1 mark

(10x1=10 marks)

1. Who developed the concept of social ecology?
2. What was the primary cause of the Minamata disease in Japan?
3. Who wrote the book *On Man in his Environment*?
4. Which international agreement regulates the trade of endangered species?
5. Who wrote the book *Hind Swaraj*?
6. Who introduced the concept of Deep Ecology?
7. The term ecofeminism was coined by?
8. Which sociologist discussed manufactured risks in the context of environmental hazards?
9. In which year the Chernobyl nuclear accident occurred?
10. Which international agreement aims to limit global temperature rise?
11. Which sector in India contributes significantly to greenhouse gas emissions?
12. Expand SEZ.
13. In which year Paris Agreement was adopted?
14. Which Indian legislation is considered an umbrella act empowering the central government to address various environmental challenges?

15. Expand BIMSTEC

Section B

Very Short Answer Questions

Answer any 10 questions. Each question carries 2 marks

(10x2=20 marks)

16. Define Environmental Sociology

17. What is the difference between Environmental Sociology and Sociology of Environment?

18. Define the term Nature

19. What are the five elements of nature in Jainism?

20. What are the key differences between shallow and deep ecology?

21. Describe the core argument of ecofeminism

22. What is the significance of formal rationality in Weber's analysis of environmental issues?

23. What are the manufactured risks?

24. Define global warming

25. Chipko movement.

26. What is the difference between afforestation and reforestation?

27. Give two disadvantages of dams in modern development.

28. What are the two main constitutional provisions in India related to environmental protection?

29. State the primary purpose of the Indian Forest Conservation Act, 1980.

30. What is the goal of the National Solar Mission under India's NAPCC?

Section C

Short Answer Questions

Answer any 5 questions. Each question carries 4 marks

(5x4=20 marks)

31. Explain the environmental impacts of roads and railways, focusing on habitat fragmentation and pollution.

32. Describe the effects of SEZs on local communities and the environment, highlighting the need for sustainable planning.

33. Discuss the impact of rising sea levels on coastal communities in India.

34. Explain how technological advancements contribute to both environmental challenges and solutions.
35. Describe the main arguments of eco-Marxism and its critique of capitalist environmental practices.
36. Examine the key differences between the realist and constructionist approaches in environmental sociology.
37. Analyze Gandhiji's critique of industrialization and its relevance to contemporary environmental issues.
38. Discuss the evolution of environmentalism from its ancient roots to contemporary movements.
39. Explain the significance of the Stockholm Conference and how it catalyzed the modern era of global environmental governance, including the formation of UNEP.
40. Discuss five key principles enshrined in the Rio Declaration, briefly explaining the relevance of each principle to global environmental policy.

Section D **Long Answer/Essay Questions**

Answer any 2 questions. Each question carries 10marks

(10x2=20 marks)

41. Discuss the concept of ecosystem in detail and explain its components.
42. Analyse the necessity and challenges of environmental conservation, highlighting the role of civic environmentalism and global environmental agreements.
43. Provide a comprehensive overview of India's environmental legislative framework. Discuss the constitutional basis and elaborate on the objectives, key provisions, and significance of the legislations.
44. Analyze the environmental and social impacts of large developmental projects, such as dams, roads, and railways, and propose strategies for sustainable development.

സർവ്വകലാശാലാഗീതം

വിദ്യയാൽ സ്വത്രന്തരാക്കണം
വിശ്വപ്രതരം മാറണം
ഗഹപ്രസാദമായ് വിളങ്ങണം
സുരൂപ്രകാശമേ നയിക്കണം

കൂദിരുട്ടിൽ നിന്നു തെങ്ങങ്ങളെ
സുരൂവീമിയിൽ തെളിക്കണം
സ്വനേഹദീപ്തിയായ് വിളങ്ങണം
നീതിവെജയത്തി പാറണം

ശാസ്ത്രവ്യാപ്തിയെന്നുമേക്കണം
ജാതിദേവമാകെ മാറണം
ബോധരശ്മിയിൽ തിളങ്ങുവാൻ
അതാനകേന്ദ്രമേ ജൂലിക്കണം

കുരീപ്പും ശ്രീകുമാർ

SREENARAYANAGURU OPEN UNIVERSITY

Regional Centres

Kozhikode

Govt. Arts and Science College
Meenchantha, Kozhikode,
Kerala, Pin: 673002
Ph: 04952920228
email: rckdirector@sgou.ac.in

Thalassery

Govt. Brennen College
Dharmadam, Thalassery,
Kannur, Pin: 670106
Ph: 04902990494
email: rctdirector@sgou.ac.in

Tripunithura

Govt. College
Tripunithura, Ernakulam,
Kerala, Pin: 682301
Ph: 04842927436
email: rcedirector@sgou.ac.in

Pattambi

Sree Neelakanta Govt. Sanskrit College
Pattambi, Palakkad,
Kerala, Pin: 679303
Ph: 04662912009
email: rcpdirector@sgou.ac.in

NO
TO
DRUGS

തിരിച്ചിറ്റാൻ
പ്രയാസമാണ്

ആരോഗ്യ കൂട്ടുംഖേഷണ വകുപ്പ്, കേരള സർക്കാർ

ENVIRONMENTAL SOCIOLOGY

COURSE CODE: B21SO02DE

ISBN 978-81-984025-6-1

9 788198 402561

Sreenarayananaguru Open University

Kollam, Kerala Pin- 691601, email: info@sgou.ac.in, www.sgou.ac.in Ph: +91 474 2966841