

SREENARAYANAGURU OPEN UNIVERSITY

Vision

To increase access of potential learners of all categories to higher education, research and training,
and ensure equity through delivery of high quality processes and outcomes fostering inclusive educa-
tional empowerment for social advancement.

Mission

To be benchmarked as a model for conservation and dissemination of knowledge and skill
on blended and virtual mode in education, training and research for normal, continuing, and
adult learners.

Pathway

Access and Quality define Equity.

SREENARAYANAGURU OPEN UNIVERSITY
The State University for Education, Training and Research in Blended Format, Kerala

Programming in Java
Course Code: B21CA01SE

Semester - II

Skill Enhancement Course
Undergraduate Programme

Bachelor of Computer Applications
Self Learning Material

Course Code: B21CA01SE
Semester - II

Skill Enhancement Course
Bachelor of Computer Applications

PROGRAMMING IN JAVA

Academic Committee

Scrutiny

Design Control

Cover Design

Co-ordination
Development of the Content

Review and Edit

Linguistics
Dr. Aji S.
Sreekanth M. S.
P. M. Ameera Mol
Dr.Vishnukumar S.
Shamly K.
Joseph Deril K. S.
Dr. Jeeva Jose
Dr. Bindu N.
Dr. Priya R.
Dr. Ajitha R. S.
Dr. Anil Kumar
N. Jayaraj

Shamin S., Dr. Jennath H.S.,
Suramya Swamidas P.C.,
Greeshma P.P., Sreerekha V.K.

Azeem Babu T.A.

Jobin J.

January 2025

© Sreenarayanaguru Open University

Edition

Copyright

Director, MDDC :
Dr. I.G. Shibi
Asst. Director, MDDC :
Dr. Sajeevkumar G.
Coordinator, Development:
Dr. Anfal M.
Coordinator, Distribution:
Dr. Sanitha K.K.

Shamin S., Dr. Jennath H.S.,
Suramya Swamidas P.C.,
Greeshma P.P., Sreerekha V.K.,
Lekshmi A.C.

Dr. Aji S.

Dr. Aji S.

Scan this QR Code for reading the SLM
on a digital device.

Dear learner,

I extend my heartfelt greetings and profound enthusiasm as I warmly wel-
come you to Sreenarayanaguru Open University. Established in September
2020 as a state-led endeavour to promote higher education through open
and distance learning modes, our institution was shaped by the guiding
principle that access and quality are the cornerstones of equity. We have
firmly resolved to uphold the highest standards of education, setting the
benchmark and charting the course.

The courses offered by the Sreenarayanaguru Open University aim to
strike a quality balance, ensuring students are equipped for both personal
growth and professional excellence. The University embraces the wide-
ly acclaimed “blended format,” a practical framework that harmonious-
ly integrates Self-Learning Materials, Classroom Counseling, and Virtual
modes, fostering a dynamic and enriching experience for both learners
and instructors.

The University aims to offer you an engaging and thought-provoking ed-
ucational journey. The undergraduate programme includes Skill Enhance-
ment Courses to introduce learners to specific skills or areas related to
their field of study. This is an important part of the university’s plan to
give learners new experiences with relevant subject content. The Skill En-
hancement Courses have been designed to match those offered by other
premier institutions that provide skill training. The Self-Learning Material
has been meticulously crafted, incorporating relevant examples to facili-
tate better comprehension.

Rest assured, the university’s student support services will be at your dis-
posal throughout your academic journey, readily available to address any
concerns or grievances you may encounter. We encourage you to reach
out to us freely regarding any matter about your academic programme. It
is our sincere wish that you achieve the utmost success.

Warm regards.
Dr. Jagathy Raj V. P.						 01-01-2025

Contents

Block 01	 Fundamentals of Java Programming			 1
Unit 1		 Understanding Java, Data Types and Setting up Java Environment	 2
Unit 2		 Class, Objects and Methods						 32
Unit 3		 Packages, I/O stream and Arrays					 72
Unit 4		 Abstraction Inheritance Overriding and Overloading		 110

Block 02	 Specific Features of Java Programming				 146
Unit 1		 String and String Buffer Class, Exception Handling			 147
Unit 2		 Multithreading							 172
Unit 3		 Applets and Event Handling						 183
Unit 4		 Java Database Connectivity						 200

Fundamentals
of Java
Programming

BLOCK 1

Understanding Java, Data
Types and Setting up Java
Environment

Learning Outcomes

Prerequisites

	♦ familiarise with the fundamental concepts of Java programming

	♦ understand the various data types in Java, such as integers, floats, characters,
and boolean

	♦ explore the use of operators in Java, including arithmetic, relational, and
logical operators

	♦ learn the process of setting up the Java programming environment

	♦ identify the purpose and function of the Java Virtual Machine (JVM)

You have already learned the building blocks of programming - basic logic, simple
algorithms, and perhaps even the structure of a few other programming languages.
Now, think of Java as the next level in your journey: a tool that combines these founda-
tional ideas with the power to build complex, scalable applications.

In your previous studies, you may have learned about different data types like integers,
floating-point numbers, and strings, perhaps in a language like Python or C. As you
explore Java, you’ll see how data types fit into a structured framework that helps Java
manage memory and run efficiently. Remember, how you used operators - like adding
numbers or comparing values? Java also has these operators, but it uses them with
added precision and structure.

Before jumping into Java, there’s some setup involved, like installing the Java Devel-
opment Kit (JDK) and configuring your environment, much like setting up any other
tool or device. Additionally, Java has a unique platform called the Java Virtual Machine
(JVM), which allows your code to run on any system, a powerful feature that makes
Java highly adaptable.

Let’s embark on this journey with Java, using the knowledge you already have and
discovering the nuances that make Java a favorite in the tech world.

UNIT 1

The learner will be able to:

2 SGOU - SLM - BCA - Programming in Java

Discussion

Keywords

Java, Object Oriented Programming, Java Ecosystem, Integer, String, Floating
point, Boolean, Arithmetic operator, Relational operator, Abstraction, Inheritance,
Overriding, Overloading

1.1.1 Introduction to Java Language

Java is a high-level, object-oriented programming language that was developed by Sun
Microsystems in 1995, and later acquired by Oracle Corporation. It was designed with
the goal of providing a platform-independent environment for software development,
making it one of the most versatile and widely-used programming languages in the
world.

Java follows the "write once, run anywhere" (WORA) philosophy, meaning that code
written in Java can be executed on any platform that supports the Java Virtual Machine
(JVM), without the need for recompilation. This feature has played a significant role
in Java’s adoption across various operating systems like Windows, macOS, and Linux.

1.1.1.1 Key Features of Java

	♦ Object-Oriented: This means that Java helps you organize your code in a
way that represents real-world things. You can use "objects" in your code,
which makes it easier to reuse parts of your program.

	♦ Platform-Independent: Java programs can run on any computer that has a
special program called the Java Virtual Machine (JVM). This means you
don’t need to rewrite your code for each different type of computer.

	♦ Simple and Easy to Learn: Java is designed so that new programmers can
pick it up quickly. If you already know other programming languages like C
or C++, Java will be easier for you to understand.

	♦ Secure: Java is built with security features that help protect your programs
from viruses and other threats.

	♦ Multithreading: Java can run many parts of a program at the same time,
which helps make it faster and more efficient.

	♦ Standard Library: Java comes with a big collection of pre-written code
that you can use to solve common problems, so you don’t have to write
everything from scratch.

1.1.1.2 Java Ecosystem

Java is not just a programming language - it's also a collection of tools and libraries that
help programmers build different types of applications:

3 SGOU - SLM - BCA - Programming in Java

	♦ Java Standard Edition (SE): This is the core version of Java that most people
start learning.

	♦ Java Enterprise Edition (EE): This is used for building large business applica-
tions.

	♦ Java Micro Edition (ME): This version is for smaller devices like mobile
phones or other electronic gadgets.

Java is widely used to build different types of applications such as desktop software,
websites, and even mobile apps for Android phones. Many programmers love using
Java because it has been around for a long time, has great community support, and
constantly gets updated to stay current.

1.1.1.3 Integrated Development Environment

An Integrated Development Environment (IDE) for Java is like a supercharged
workspace for programmers. It’s a software tool that brings together everything a
developer needs to write, test, and fix Java code - all in one place. Instead of juggling
multiple programs, the IDE combines tasks like writing code, running it, finding errors,
and organizing files into one easy-to-use environment.

Some cool features of Java IDEs include:

	♦ Code Editor: A smart text editor that highlights the syntax of your code and
even suggests what comes next, making coding faster and easier.

	♦ Compiler: This tool turns your Java code into something the computer can
understand and run.

	♦ Debugger: If your code isn’t working, the debugger helps you find out why
by letting you pause and examine it step by step.

	♦ Project Management: Helps you keep everything organized, from your code
files to the libraries your project needs.

	♦ Build Automation: Works with tools like Maven or Gradle to automatically
compile and organize your code, saving you time.

Examples of Java IDEs:

	♦ Eclipse: A popular, free IDE that’s great for Java development and has lots
of extra features you can add on.

	♦ IntelliJ IDEA: Known for being smart - offering helpful suggestions and
detecting problems in your code before you even run it. It has both a free
and a paid version.

	♦ NetBeans: Another free option that’s perfect for Java developers, especially
if you're working on web apps or JavaFX.

	♦ JDeveloper: A tool from Oracle designed to make building big Java apps
easy, especially for web-based projects.

4 SGOU - SLM - BCA - Programming in Java

	♦ BlueJ: A simple, easy-to-learn IDE, perfect for beginners who are just getting
started with Java.

1.1.1.4 Writing Your First Java Program

Writing your first Java program is an important step toward learning to code. Java
programs are created by writing instructions in a text file, which the computer will
follow. Here’s how to write and run a simple Java program step by step.

Step 1: Set Up Your Computer

Before you can write your Java program, you need to install something called the Java
Development Kit (JDK). The JDK gives you the tools to write and run Java programs.
You can also download a program called an IDE (like Eclipse or IntelliJ IDEA), which
makes writing code easier.

Step 2: Write Your First Java Program

Let’s start with a simple program called Hello World. This program will display the
words “Hello, World!” on the screen. Here’s the code you will write:

public class HelloWorld

{

	 public static void main(String[] args)

	 {

		 System.out.println("Hello, World!");

	 }

}

What This Code Does:

Class Declaration:

The program starts with the word class, followed by HelloWorld. A class is just a way
to organize your code.

Main Method:

The main method is where the program starts running. The program will look for this
part of the code to know what to do.

Printing:

The statement System.out.println("Hello, World!"); tells the computer to show the text
“Hello, World!” on the screen.

Step 3: Compile the Program

To run your program, you first need to compile it. This means changing the code you
wrote into something the computer can understand. Here’s how you do it:

5 SGOU - SLM - BCA - Programming in Java

1.	 Save the file as HelloWorld.java.

2.	 Open the command prompt (on Windows) or terminal (on macOS or Linux).

3.	 Go to the folder where you saved your file.

4.	 Type this command to compile it:

		 javac HelloWorld.java

If there are no mistakes, a new file called HelloWorld.class will be created.

Step 4: Run the Program

Now that your program is compiled, you can run it. In the same command prompt or
terminal, type:

java HelloWorld

You should see:

	 Hello, World!

This means your program worked!

How Java Programs Work:

	♦ You write the program in a .java file (source code).

	♦ The javac command compiles it into a .class file (bytecode).

	♦ The java command runs the program and shows the result.

1.1.2 Java Program Structure

When you write a Java program, you need to follow a specific structure so the computer
can understand and run it. This structure is the same for all Java programs, no matter
how simple or complex. Let’s break it down step by step.

1. Package Declaration (Optional)

At the very top of some Java programs, you might see something called a package
declaration. This is like a folder where your program is stored. You only need this if
your program belongs to a package, but it’s optional.

	 package myFirstProgram;

2. Import Statements (Optional)

Sometimes, Java programs use code from other libraries, which are collections of useful
code already written for you. To use these, you need to import them into your program.
It’s like telling Java, “Hey, I need some extra tools!”

Example:
	 import java.util.Scanner;

6 SGOU - SLM - BCA - Programming in Java

Here, the program is importing a tool to read input from the user.

3. Class Declaration

Every Java program must have a class. A class is like a container that holds the
instructions for your program. The class name should match the file name (e.g., the
class HelloWorld should be in a file called HelloWorld.java).

The class declaration looks like this:

	 public class HelloWorld

	 {

		 // The rest of the program goes here

	 }

4. Main Method

The main method is where your program starts running. It’s the first thing Java looks
for when it starts your program. Every program needs this main method for it to work.

	 public static void main(String[] args)

	 {

		 // Program instructions go here

	 }

5. Statements

Inside the main method, you write the actual instructions for what you want the program
to do. These instructions are called statements, and each one ends with a semicolon (;).
For example, if you want the program to display something on the screen, you write:

	 System.out.println("Hello, World!");

6. Comments

Comments are notes you can write in your code that Java ignores. They are helpful
for explaining what your code does, making it easier for you (or someone else) to
understand it later. There are two types of comments:

	♦ Single-line comment: Starts with // and only comments on one line.

	 Example:

		 // This is a single-line comment

	♦ Multi-line comment: Starts with /* and ends with */, so you can write
comments across multiple lines.

	 Example:

7 SGOU - SLM - BCA - Programming in Java

	 /* This is a comment across

	 multiple lines */

7. Curly Braces

Java uses curly braces {} to group parts of the program together. The opening { starts a
block of code, and the closing } ends it. For example, every class and method must be
inside a pair of curly braces.

Example:

public class HelloWorld

{

	 public static void main(String[] args)

	 {

		 System.out.println("Hello, World!");

	 }

}

In this program, the braces group the code into blocks for the class and the main method.

8. Optional: Other Methods and Variables

Apart from the main method, a Java program can have other methods and variables
(data storage). These extra methods help organize the code and perform different tasks.

Example:

public class HelloWorld

{

	 public static void main(String[] args)

	 {

 		 printMessage();

	 }

	 public static void printMessage()

	 {

		 System.out.println("Hello, World!");

	 }

}

In this example, printMessage() is a separate method used to print the message.

8 SGOU - SLM - BCA - Programming in Java

1.1.3 Role of the main() Method

The main() method is a crucial part of any Java program. It’s the starting point where
Java programs begin to run. If you want your program to do anything, it needs a main()
method to get things going.

The main() method is where Java begins to execute the code. When you run your
program, Java looks for this method to know what to do first. If your program doesn't
have a main() method, it won't work.

Each part of the main() method is important:

	♦ public: This means the method can be accessed from anywhere. Java needs
this so it can start running your program.

	♦ static: This lets the main() method run without creating an object of the class.
It means the method is part of the class itself, not an instance of it.

	♦ void: This tells Java that the main() method doesn't return anything. It just
runs the program.

	♦ String[] args: This is a way for your program to accept inputs from the user
when they run the program. These inputs are stored in an array of strings
(text).

Fig 1.1.1 Classification of data types in java

9 SGOU - SLM - BCA - Programming in Java

The main() method is where you write the instructions for what you want your program
to do. This is where the action happens! The String[] args part of the main() method
allows your program to take inputs when it's started. These inputs are stored as a list of
strings, and you can use them inside your program.

1.1.4 Data Types

A variable in java can store data of different size and value. The main two categories
of data types in java are primitive and non primitive data types. The below given figure
1.1.1 shows different data types and their further classification.

1.1.5 Primitive data type

In Java, primitive data types serve as fundamental building blocks from which other
data types and structures can be created. There are 4 main categories of primitive data
types in java. The main categories of primitive data types are:

1.	 Integer data type

2.	 Floating Point data type

3.	 Boolean data type

4.	 Char data type

The integer and floating point data type are the main types of numeric data types and
boolean and char data type are the main types of non numeric data types as shown in
figure 1.1.1. First we will discuss Integer data types in detail.

1.1.5.1 Integer data type

Java includes four integer types: byte, short, int, and long. Each of these types can
represent whole numbers, including both positive and negative values.

Table 1.1.1 Types of integer data type

 Data type Size Description

byte 1 byte Stores whole numbers from -128 to 127

short 2 bytes Stores whole numbers from -32,768 to
32,767

int 4 bytes Stores whole numbers from -2,147,483,648
to 2,147,483,647

long 8 bytes Stores whole numbers from -9,223,372,
036,854,775, 808 to 9,223,372, 036,854,
775,807

10 SGOU - SLM - BCA - Programming in Java

a) byte

The byte data type is the smallest integer type, represented by 8 bits, and its value
ranges from -128 to 127. Variables of byte data type are defined by using byte keyword.
For example, the following declares two byte variables called a and b:

 byte a, b;

b) short

The short data type is a signed 16-bit type, with a range spanning from -32,768 to
32,767. It is one of the least commonly used types in Java. A variable of short data type
is defined by using short keyword. Below are some examples of how to declare short
variables.

short a;

short b;

c) int

The int data type is the most frequently used integer type. It is a signed 32-bit type with
a value range of -2,147,483,648 to 2,147,483,647. A variable of int data type is defined
by using the keyword int. Below are some examples of how to declare int variables.

int a;

int b;

d) long

The long data type is a signed 64-bit type, ideal for situations where the int type cannot
accommodate the required value. With its large range, long is useful for handling very
large whole numbers. A variable of long data type is declared by using long keyword.
Below are some examples of how to declare int variables.

long b;

long c;

1.1.5.2 Floating Point data type

Floating-point numbers, often referred to as real numbers, are utilized in calculations
that require fractional accuracy. For example, computations like square root, logarithms
or exponential functions yield values that necessitate the use of floating-point types
to maintain the required level of precision. Floating-point types are mainly in two
forms: float and double, representing single-precision and double-precision numbers,
respectively.

a) float

The float type defines a single-precision value that occupies 32 bits of memory. It
holds fractional numbers and is adequate for storing 6 to 7 digits after the decimal

11 SGOU - SLM - BCA - Programming in Java

point. Variables of float data type are defined by using float keyword. Example of float
variables are shown below:

 float AvgMarks;

b) double

Double precision, represented by the keyword double, utilizes 64 bits for storing a
value. All transcendental mathematical functions, like sin(), cos(), and sqrt(), return
values of the double type. Example of declaring a variable of double type is shown
below:

double radius;

double temperature;

1.1.5.3 Char data type

In Java, the char data type is used for storing characters. The char data type in java
and char data type in c/c++ language are not same. In C and C++, the char type is 8
bits in size. This is not applicable in Java. Instead, Java utilizes Unicode for character
representation. The char data type is employed to store individual 16-bit Unicode
characters, such as 'A', '1', or '$'. The character should be enclosed in single quotes.
A variable of char data type is declared by using char keyword. An example of
initialization of char type variable is shown below:

char letter=’a’;

char digit=’2’;

1.1.5.4 Boolean

In java the boolean data type is used to represent two possible values that is true or
false. This is the type produced by all relational operators, such as in the expression
a < b. The keyword boolean is used to create a variable of boolean type. An example of
declaration of boolean type variable is given:

 boolean a;

 boolean b;

1.1.6 Non Primitive data types
A non primitive data type also known as reference type, which is used to refer to
objects. Non-primitive types are defined by the programmer and are not built into Java.
A Primitive data types directly contain their values within the variable, which means
the variable has the actual data. On the other hand, non-primitive types do not keep
the data directly; instead, they maintain a reference that indicates the memory location
where the data is stored. Some examples of non primitive data types are listed below:

1.	 Array

2.	 String

12 SGOU - SLM - BCA - Programming in Java

1. Array

An array is a group of data values of the same type. A single array variable name can
be used to store and access multiple values of the same type. The syntax for declaring
an array variable is:

 Data_type Array_name[array_size];

Example:

 int a[10];

The above example declares an array named a that can hold 10 elements and all the data
values are of integer type.

There are two types of array in java which are:

1.	 Single dimensional array: A single-dimensional array is a group of elements
of the same data type arranged in a continuous segment of memory.

2.	 Multi dimensional array: A multi-dimensional array is an array that
includes one or more arrays as its elements.

2. String

A string data types is a sequence of characters. The syntax for declaring string variable
is:

 String variable_name;

The syntax for initialization of string variable is:

 String s=”hello world”;

1.1.7 Operators in java

An operator is used to perform specific mathematical or logical operations on values.
The values that the operators work on are called operands. In java there are different
types of operators.

1.1.7.1 Arithmetic Operators

The basic arithmetic operations are addition, subtraction, multiplication, and division.
The following simple example program demonstrates the arithmetic operators.
Program 1

class BasicMath

{

 public static void main(String args[])

 {

13 SGOU - SLM - BCA - Programming in Java

 System.out.println("Integer Arithmetic");

 int a = 1 + 1;

 int b = a * 3;

 int c = b / 4;

 int d = c - a;

 int e = -d;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 System.out.println("d = " + d);

 System.out.println("e = " + e);

 }

}

Output

Integer Arithmetic

a = 2

b = 6

c = 1

d = -1

e = 1

1.1.7.2 The Modulus Operator

The modulus operator, denoted as %, gives the remainder from a division operation. It
can be utilized with both floating-point and integer types. The following example pro-
gram demonstrates the %:

Program 2

class Modulus

{

 public static void main(String args[])

14 SGOU - SLM - BCA - Programming in Java

Output

x mod 10 = 2

y mod 10 = 2.25

1.1.7.3 Arithmetic Compound Assignment Operators

Java offers unique operators that allow for the combination of an arithmetic operation
and an assignment in one step. For example:

 a = a + 2;

In Java, you can rewrite this statement as shown here:

 a += 2;

1.1.7.4 Increment and Decrement

The ++ and the – – are Java’s increment and decrement operators. The increment
operator increases its operand by one. The decrement operator decreases its operand by
one. For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly,

x = x - 1;

is equivalent to x--;

1.1.7.5 Bitwise Operators

Java includes a variety of bitwise operators that can be used with integer types such as

 {

 int x = 42;

 double y = 42.25;

 System.out.println("x mod 10 = " + x % 10);

 System.out.println("y mod 10 = " + y % 10);

 }

 }

15 SGOU - SLM - BCA - Programming in Java

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

1.1.7.6 Bitwise Logical Operators

The bitwise logical operators consist of &, |, ^, and ~. The table below illustrates the
results of each operation.

Table 1.1.3 Bitwise Logical Operators

A B A|B A&B A ^ B ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

long, int, short, char, and byte. These operators operate on the individual bits of their
operands. They are summarized in the following table 1.1.2

Table 1.1.2 Bitwise Operator

16 SGOU - SLM - BCA - Programming in Java

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value.

1.1.7.8 Boolean Logical Operators

The Boolean logical operators displayed here function exclusively on boolean oper-
ands. All binary logical operators combine two boolean values to produce a resulting
boolean value.

Table 1.1.5 Boolean Logical Operators

Operator Result

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

1.1.7.7 Relational Operators
Relational operators establish the relationship between two operands, specifically
assessing equality and order. The following table 1.1.4 shows the relational operators:

Table 1.1.4 Relational Operators

17 SGOU - SLM - BCA - Programming in Java

1.1.7.9 Assignment Operator

The assignment operator is represented by a single equal sign, =. In Java, the assignment
operator functions similarly to how it does in other programming languages. Its general
format is as follows:

 var = expression;

In this case, the type of var must be compatible with the type of expression. For example:

 int x, y, z;

 x = y = z = 100; // set x, y, and z to 100

1.1.8 Java Environment Set Up

Java is a versatile programming language designed for general-purpose use. It supports
concurrency, is class-based, and follows an object-oriented approach. Java applica-
tions are typically compiled into bytecode, which can be executed on any Java Virtual
Machine (JVM), regardless of the underlying hardware architecture. Setting up an effi-
cient Java development environment is crucial for streamlining the coding process and
boosting productivity.

Fig 1.1.2 Java Environment

== Equal to

!= Not equal to

?: Ternary if-then-else

& Logical AND

18 SGOU - SLM - BCA - Programming in Java

In this guide, we explain the essential steps to set up your Java environment, including
installing the Java Development Kit (JDK), selecting an Integrated Development Envi-
ronment (IDE), and configuring the necessary tools and libraries to ensure a smooth
workflow. While the JVM, JRE, and JDK are platform-dependent due to differences in
operating system configurations, Java itself remains platform-independent. Before set-
ting up the environment, it is important to understand the JVM, JDK, and JRE. Figure
1.1.2 illustrates the relationship between the JVM, JDK, and JRE.

1.1.8.1 The Java Development Kit (JDK)

Java Development Kit (JDK) is a software development environment used for building
applications, applets, and components using the Java programming language. It includes
tools and libraries necessary for developing Java applications. Key Components of JDK
are Java Compiler (javac), Java Runtime Environment (JRE), Java Virtual Machine
(JVM), Development Tools, Javadoc, Jar, and a debugger.

JDK Versions:

Java is continuously updated with new versions. The latest version as of now is Java
22, which includes several new features and performance improvements.

1.1.8.2 The Java Runtime Environment (JRE)

It is a software package that provides the libraries, Java Virtual Machine (JVM), and
other components needed to run Java applications and is intended for end users. It is the
implementation of the runtime portion of the Java Development Kit (JDK), allowing
users to run, but not develop, Java applications. JRE can be viewed as a subset of JDK.
Key Components of JRE, Java Virtual Machine (JVM), Class Libraries, Class Loader,
Runtime Libraries.

1.1.8.3 JVM: JVM (Java Virtual Machine)

The Java Virtual Machine (JVM) is a core component of the Java programming
language. It is an abstract machine and also a part of the Java Runtime Environment
(JRE) that executes Java programs by converting the platform-independent bytecode
(compiled from Java source code) into machine-specific instructions. JVMs are
available for many hardware and software platforms. JVM Components are, Class
Loader, Runtime Data Area, Execution Engine.

Key Features of the JVM:

1. Platform Independence:

Java achieves platform independence through its compilation process. When Java
source code is compiled, it is converted into bytecode, which is not tied to any specific
platform. The Java Virtual Machine (JVM) interprets this bytecode and translates it
into platform-specific machine code at runtime. This enables Java programs to run
seamlessly on any operating system that has a compatible JVM, embodying the "Write
Once, Run Anywhere" principle.

19 SGOU - SLM - BCA - Programming in Java

2. Memory Management:

The Java Virtual Machine (JVM) handles memory management by allocating memory,
managing its usage, and performing garbage collection. This ensures that system
resources are used efficiently, freeing up memory that is no longer needed and preventing
memory leaks.

3. Execution Engine:

The Execution Engine is the heart of the JVM, responsible for running bytecode. It does
this either by interpreting the bytecode or using Just-In-Time (JIT) compilation, which
converts frequently used bytecode into native machine code to improve performance.

4. Security:

The JVM ensures a secure execution environment by implementing access controls and
sandboxing, which protect against the execution of malicious code.

1.1.8.4 Java Compiler (javac):

Converts human-readable Java code (.java files) into bytecode (.class files) that the
JVM can execute.

1.1.9 Setting up Java Environment

To develop and run Java programs, it is essential to set up a proper Java environment
on your system. This process involves installing the necessary tools and configuring
your system for a smooth development experience. .To set up a Java development
environment on your machine, follow these steps:

1.1.9.1 Install JDK (Windows / macOS / Linux)

1.	 Go to the Oracle JDK download page or OpenJDK for an open-source
version.

2.	 Download the appropriate JDK version for your OS.

3.	 Install the JDK by following the on-screen instructions.

1.1.9.2 Install on Your Operating System:

Windows:
1.	 Download the .exe installer file for Windows.
2.	 Run the installer and follow the installation wizard steps.

	♦ During installation, ensure that the "Set JAVA_HOME" option is checked.
This will set up the environment variables.

Linux :
Download the .dmg installer or use a package manager like Homebrew:

To install via Homebrew, open the Terminal and run:

20 SGOU - SLM - BCA - Programming in Java

brew install openjdk

Linux (Ubuntu/Debian):

Open a terminal and update the package index:

sudo apt update

1. Install OpenJDK:

sudo apt install openjdk-17-jdk

1.1.9.3 Verify Installation:

Open Command Prompt (Windows) or Terminal (macOS/Linux).

Type:

java -version and javac -vrsion.

If installed correctly, it will display the JDK version.

1.1.9.4 Set Up Environment Variables (Windows):

After installation, you need to set up the JAVA_HOME variable. The first step you
need to take before setting the JAVA_HOME environment variable, is to know the
installation directory of the JDK. Take note of the path where the JDK is installed on
your machine.

On Windows:

1. Open Control Panel → System → Advanced System Settings.

2. Go to the Advanced tab and click on Environment Variables.

3. Under System Variables, click New and set:

	♦ Variable Name: JAVA_HOME

	♦ Variable Value: Path to your JDK installation (e.g., C:\Program Files\Java\
jdk-17)

4. In the Path variable under System Variables, add a new entry: %JAVA_HOME%\bin.

On macOS/Linux:

	♦ Edit the .bashrc or .zshrc file to include

	 export JAVA_HOME = /path/to/jdk

	 export PATH = $JAVA_HOME/bin:$PATH

	♦ Save the file and run source .bashrc or source .zshrc.

21 SGOU - SLM - BCA - Programming in Java

1.1.10 Choose an Integrated Development Environment (IDE):

We can also use an Integrated Development Environment (IDE) to simplify the process
of coding in Java. An IDE is a powerful software application that combines various
tools and features in a single interface, making development faster and more efficient.
It provides functionalities such as code completion, which suggests and auto-completes
code as you type, saving time and reducing errors.

Additionally, IDEs come with built-in debugging tools that help identify and fix issues
in your code by allowing you to inspect variables, step through your program line by
line, and analyze error messages in detail. They also include project management tools
that organize your files, manage dependencies, and streamline workflows, especially
for larger and more complex projects.

Popular IDEs like IntelliJ IDEA, Eclipse, and NetBeans offer extensive customization
options and support for plugins, enabling developers to tailor the environment to their
specific needs. With these features, an IDE not only enhances productivity but also
makes it easier for both beginners and experienced developers to write clean and
efficient Java code

	♦ Eclipse:

Eclipse is a free, open-source IDE that is widely used for Java development. It offers
extensive plugin support, making it highly customizable for various types of projects.
Eclipse is ideal for large-scale enterprise applications and supports other languages like
C++ and Python with additional plugins.

	♦ IntelliJ IDEA:

IntelliJ IDEA is a feature-rich IDE known for its intelligent code assistance, streamlined
interface, and productivity-boosting features. Its Community Edition is free and
perfect for beginners, while the paid Ultimate Edition includes advanced tools for
web and enterprise development. IntelliJ is praised for its smooth navigation, smart
suggestions, and ease of use.

	♦ NetBeans:

NetBeans is a lightweight and user-friendly IDE, making it a great choice for beginners
and educational purposes. It provides an integrated environment with built-in tools
for debugging, testing, and managing projects. NetBeans is also flexible, supporting
multiple programming languages beyond Java, such as PHP and JavaScript.

1.1.11 Hello World Example:

To confirm your Java environment is set up correctly, write a simple Java program:

1. Open your IDE or any text editor and write a simple "Hello, World!" program

public class HelloWorld

{

22 SGOU - SLM - BCA - Programming in Java

	 public static void main(String[] args)

	 {

 	 System.out.println("Hello, World!");

	 }

}

2. Save the file as HelloWorld.java.

3. Compile it using the command:

javac HelloWorld.java

3. Run the program with:

	 java HelloWorld

If the message "Hello, World!" is displayed, your setup is successful.

1.1.13 Java Virtual Machine (JVM) Platform

Java Virtual Machine (JVM) runs Java applications as a run-time engine. JVM is the one
that calls the main method present in a Java code. JVM is a part of JRE(Java Runtime
Environment). The JVM platform is a powerful and versatile computing environment
that allows developers to write and execute programs in various languages that compile
to JVM bytecode. It was originally designed to run Java applications but now supports
many languages such as Kotlin, Scala, Groovy, Clojure, and others. Java applications
are called WORA (Write Once Run Anywhere). This means a programmer can develop
Java code on one system and expect it to run on any other Java-enabled system without
any adjustment. This is all possible because of JVM.

When we compile a .java file, .class files(contains byte-code) with the same class names
present in the .java file are generated by the Java compiler. This .class file goes into
various steps when we run it. These steps together describe the whole JVM.

1.1.13.1 Key Features of the JVM Platform

	♦ Platform Independence: Java code is compiled into bytecode, a platform-
neutral intermediate representation. The JVM interprets or compiles this
bytecode into platform-specific machine code, allowing the same Java
application to run on any system with a compatible JVM.

	♦ Security: The JVM ensures secure execution by performing bytecode
verification, access control, and sandboxing. This prevents malicious code
from harming the system or accessing unauthorized resources.

	♦ Automatic Memory Management: The JVM manages memory allocation
and deallocation automatically through garbage collection, reducing the risk
of memory leaks and improving application stability.

23 SGOU - SLM - BCA - Programming in Java

Fig 1.1.3 JVM Platform

	♦ Multithreading Support: The JVM provides built-in support for
multithreading, allowing Java applications to perform multiple tasks
concurrently. This is crucial for modern, high-performance applications.

	♦ Just-In-Time (JIT) Compilation: The JVM uses JIT compilation to
optimize performance. Frequently executed bytecode is compiled into native
machine code at runtime, making execution faster.

	♦ Interoperability with Native Code: Through the Java Native Interface
(JNI), the JVM allows Java applications to interact with code written in
other languages like C and C++.

Figure 1.1.3 shows the architecture of JVM Platform

Here are the key aspects of the JVM platform:

1.1.13.2 Core Components:

The core components of the JVM are designed to handle various aspects of Java
application execution, such as loading, verifying, and running bytecode. Here are the
key components of the JVM platform:

1.1.13.2.1 Class Loader

Class loader loads class files and bytecode into memory, enabling the JVM to dynamically
load classes when required. It follows the delegation model, which ensures classes are
loaded in the correct order. Key tasks include:

	♦ Loading classes from different sources (e.g., .class files or JAR files).

	♦ Linking classes by verifying bytecode for correctness and preparing static

24 SGOU - SLM - BCA - Programming in Java

variables.

	♦ Initializing classes by executing static blocks and initializing static variables.

1.1.13.2.2 Execution Engine:

The Execution Engine is the core of the JVM, responsible for executing Java bytecode.
It includes:

	♦ Interpreter: Executes bytecode instructions line by line, ensuring portability
but slower performance.

	♦ Just-In-Time (JIT) Compiler: Compiles frequently executed bytecode into
native machine code at runtime, improving performance.

	♦ Garbage Collector: Automatically manages memory by reclaiming unused
objects, preventing memory leaks.

1.1.13.2.3 Java Memory Area (Runtime Data Areas):

The JVM allocates memory into different areas to manage data efficiently:

	♦ Heap: Stores objects and class instances; shared among all threads.

	♦ Stack: Stores method call frames, including local variables and partial
results; specific to each thread.

	♦ Method Area (or Permanent Generation in older JVMs): Stores class-
level information, such as method code and static variables.

	♦ Program Counter Register: Keeps track of the current instruction address
for each thread.

	♦ Native Method Stack: Stores native method calls, which are written in
languages like C or C++.

1.1.13.2.4 Native Method Interface (JNI):

The Java Native Interface (JNI) enables Java applications to call native methods written
in languages like C or C++. This component ensures interoperability between Java and
non-Java code.

1.1.13.2.5 Garbage Collection Subsystem:

The Garbage Collector manages automatic memory deallocation. It identifies objects
that are no longer in use and removes them to free memory, ensuring efficient utilization
of system resources.

1.1.13.2.6 Bytecode Verifier:

The Bytecode Verifier ensures the integrity and safety of the bytecode before it is
executed. It checks for illegal bytecode, ensures type safety, and verifies that bytecode
adheres to the Java language specifications.

25 SGOU - SLM - BCA - Programming in Java

1.1.13.2.7 Java Native Libraries:

The JVM uses a set of platform-specific native libraries to interact with the underlying
hardware

1.1.13.3 JVM Languages:

Although Java is the primary language for the JVM, many other languages can compile
down to JVM bytecode, such as:

	♦ Kotlin: Modern language interoperability with Java, widely used for Android
development.

	♦ Scala: A functional and object-oriented programming language used for
applications such as big data processing (e.g., Apache Spark).

Groovy: A dynamic language that is often used for scripting, building DSLs (domain-
specific languages), and automation.

1.1.13.4 JVM in Enterprise and Cloud Environments:

JVM is extensively used in enterprise systems and cloud environments. Technologies
like Spring Framework, Hibernate, and Apache Tomcat are commonly used for
large-scale Java-based web applications and microservices. JVM is also integrated into
modern cloud-native environments, with containers like Docker and orchestration plat-
forms like Kubernetes allowing JVM-based applications to scale efficiently.

Recap

	♦ Java is a high-level, object-oriented programming language that was
developed by Sun Microsystems.

	♦ Java follows the "write once, run anywhere" (WORA) philosophy.

	♦ Key features of Java are Object-Oriented, Platform-Independent, Simple
and Easy to Learn, Secure, Multithreading.

	♦ Java Standard Edition (SE): This is the core version of Java that most people
start learning.

	♦ Java Enterprise Edition (EE): This is used for building large business
applications.

	♦ Java Micro Edition (ME): This version is for smaller devices like mobile
phones or other electronic gadgets.

	♦ The JDK gives you the tools to write and run Java programs.

	♦ A class is like a container that holds the instructions for your program. In
Java class name should match the file name.

	♦ The main method is where your program starts running.

26 SGOU - SLM - BCA - Programming in Java

	♦ Comments are notes you can write in your code that Java ignores.

	♦ Java uses curly braces {} to group parts of the program together.

	♦ Primitive Data Types in Java

	♦ 8 different data types

	♦ Main categories: Integer, Floating Point, Boolean, Char

	♦ Numeric types: Integer and Floating Point

	♦ Non-numeric types: Boolean and Char

	♦ Operators in Java

	♦ Arithmetic Operators

	♦ Basic operations: +, -, *, /, and unary + and -

	♦ Modulus Operator (%)

	♦ Returns remainder of division

	♦ Arithmetic Compound Assignment Operators

	♦ Combine arithmetic operation and assignment (e.g., a += 4)

	♦ Increment (++) and Decrement (--) Operators

	♦ Bitwise Operators

	♦ Include bitwise NOT, AND, OR, XOR, and shift operators

	♦ Relational Operators

	♦ Compare values (e.g., ==, !=, >, <, >=, <=)

	♦ Boolean Logical Operators

	♦ Logical OR, XOR, short-circuit AND, short-circuit OR, NOT

	♦ Assignment Operator (=)

	♦ Setting up java environment

	♦ Java Development Kit (JDK)

	♦ Java Virtual Machine (JVM)

	♦ Java Runtime Environment (JRE)

	♦ Installation of JDK

	♦ JVM Platform

	♦ Core Components of JVM

27 SGOU - SLM - BCA - Programming in Java

Objective Type Questions

1.	 Who developed Java?

2.	 What philosophy does Java follow?

3.	 What is the core version of Java?

4.	 What do curly braces {} do in Java?

5.	 What is the smallest integer data type in Java?

6.	 Which data type in Java is used to store decimal numbers?

7.	 What is the default value of a boolean variable in Java?

8.	 How many primitive data types are there in Java?

9.	 What type of data does a String variable hold?

10.	Which operator is used to find the remainder of a division operation in Java?

11.	Which operator is used for bitwise AND operation?

12.	What type of operators compare two operands for equality?

13.	What keyword is used to declare a boolean variable in Java?

14.	Which operator is used for assignment in Java?

15.	What is the core component responsible for loading Java classes into memory
in the JVM?

16.	Which of the following tools is NOT part of the JDK?

17.	The JIT Compiler in the JVM is responsible for:

18.	Which of the following is a feature of JVM that allows Java programs to run
on any platform?

19.	Which class loader is responsible for loading core Java API classes in JVM?

20.	What is the correct sequence of operations during the "Linking" phase in
JVM?

21.	What does the acronym WORA stand for in the context of Java?

22.	Which JVM component is responsible for automatic memory management?

23.	In the context of Java, what is the purpose of the JAVA_HOME environment
variable?

24.	Which of the following is NOT a JVM language?

28 SGOU - SLM - BCA - Programming in Java

Answers to Objective Type Questions

1.	 Sun Microsystems

2.	 WORA

3.	 Java SE

4.	 Group code

5.	 byte

6.	 float

7.	 False

8.	 8

9.	 Characters

10.	%

11.	 &

12.	Relational

13.	boolean

14.	 =

15.	Class Loader

16.	Garbage Collector

17.	Just-in-time compilation of bytecode to native machine code

18.	Platform Independence

19.	Bootstrap class loader

20.	 Verification → Preparation → Resolution

21.	Write Once, Run Anywhere

22.	Garbage Collector

23.	 It stores the location of the JDK installation directory

24.	Python

29 SGOU - SLM - BCA - Programming in Java

Assignments

1.	 Explain the architecture of the Java Virtual Machine (JVM) in detail. Include
a diagram showing the components of the JVM such as the Class Loader,
Runtime Data Area, and Execution Engine.

2.	 Differentiate between JDK, JRE, and JVM. Provide detailed explanations of
their roles, components, and how they interact with one another during the
development and execution of Java programs.

3.	 Describe the Class Loading process in the JVM. Explain the steps involved
in loading, linking, and initializing classes in the JVM. Discuss how the
Bootstrap, Extension, and Application class loaders function.

4.	 Write a detailed step-by-step guide for setting up the Java Development
Environment (JDK) on Windows and Linux systems. Include instructions
for installing the JDK, setting up environment variables, and verifying the
installation.

5.	 Discuss the significance of "Write Once, Run Anywhere" (WORA) in Java.
Explain how the JVM contributes to this principle and provide examples to
demonstrate Java's platform independence.

6.	 Explain the role of the Garbage Collector in the JVM. Discuss different types
of garbage collection algorithms supported by the JVM and how garbage
collection improves memory management.

7.	 What is the role of the Just-In-Time (JIT) Compiler in JVM? Explain how
the JIT compiler works to optimize the performance of Java applications
during runtime.

8.	 Compare and contrast the various types of JVM languages (Java, Kotlin,
Scala, Groovy, etc.). Explain how these languages are compiled to JVM
bytecode and discuss their interoperability with Java.

9.	 Illustrate how memory is managed in the JVM. Discuss the different types of
memory areas such as Heap, Stack, and Method Area, and explain how they
are used during the execution of a Java program.

10.	Write a simple Java program that demonstrates the use of static variables and
static blocks. Explain how the JVM initializes static variables and executes
static blocks during class loading and initialization phases.

30 SGOU - SLM - BCA - Programming in Java

References

1.	 "Effective Java" by Joshua Bloch Edition: 3rd Edition 2018 Addison-Wesl

2.	 "Effective Java" by Joshua Bloch, 3rd Edition, 2018, Addison-Wesley

3.	 "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition, 2005,
O'Reilly Media

4.	 "Java Concurrency in Practice" by Brian Goetz, 1st Edition, 2006 Addison-
Wesley

5.	 "Core Java Volume I – Fundamentals" by Cay S. Horstmann, 12th Edition,
2022, Pearson

Suggested Reading

1.	 Herbert, Schildt. "Java: The complete Reference 9th edition." (2014).

2.	 Balagurusamy, Emir. Programming in Java: A Primer. McGraw-Hill
Education, 2010.

3.	 Sierra, Kathy, and Bert Bates. Head First Java: A Brain-Friendly Guide. "
O'Reilly Media, Inc.", 2005.

31 SGOU - SLM - BCA - Programming in Java

Class, Objects and Methods

Learning Outcomes

Prerequisites

	♦ familiarise the concept of Classes in java

	♦ describe the use of objects and methods in java

	♦ make aware of the access specifiers used in java

	♦ narrate the uses of Static and final keywords

In a car rental application, we might have a Car class that holds details like make,
model, and rentalPrice. Each individual car can be represented as an object, allowing
us to track individual characteristics and behaviors.

This organization simplifies code maintenance and enhances readability. For example,
if we need to add new features, like a method to calculate rental costs, we can modify
the Car class without affecting other parts of the program. By using classes, it promotes
code reuse, as we can create multiple objects from the same class, reducing redundancy.
Classes and objects help structure our code in a way that reflects real-world relation-
ships, making it easier to develop and manage applications.

UNIT 2

The learner will be able to:

Keywords

Abstraction, Blue print, Nested class, Parameterized Constructor, Copy Constructor,
Interface, Immutable

32 SGOU - SLM - BCA - Programming in Java

Discussion
In Java, classes and objects are central to the structure of Object-Oriented Programming
(OOP), it is designed to represent real-world entities in a more understandable and
practical manner. For example, a class named "Dog" would define common traits or
actions that all dogs possess, such as breed, color, or methods like bark() or run(). An
object, like "Tommy," would be a specific instance of the Dog class, representing one
particular dog with its own unique values for the class attributes.

A class acts as a template or blueprint that defines the properties and behaviors shared
by all objects of that type. Objects, on the other hand, are individual instances created
from that class.

This system of defining a class and creating objects allows for efficient and scalable
code, mirroring the real world by enabling the creation of multiple objects with similar
characteristics but unique individual properties. By using classes and objects, Java
offers a structured way to encapsulate data and behavior, making programs easier to
manage, modify, and expand.

1.2.1 Understanding Java Classes

A class in Java is a foundational structure that groups together objects with similar
characteristics and behaviors. It functions as a user-defined blueprint or prototype
from which individual objects, or instances, are created. If we define a class named
"Student," it would represent the general concept of a student, with attributes like name,
age, and grade. A specific student, such as "Ravi," would be an object or instance of
the "Student" class, containing unique values for these attributes. This encapsulation
of data (attributes) and methods (behaviors) within a class is a key principle of Object-
Oriented Programming (OOP) in Java.

1.2.1.1 Properties of java Classes

A Java class acts as a blueprint or template for creating objects, defining the shared
characteristics and behaviors they will possess. It's a conceptual construct that doesn't
exist physically in memory until an object is instantiated from it. Unlike objects, which
occupy memory space, a class itself doesn't require any memory allocation. Its primary
function is to provide a framework for future objects. Within a class, data members
(variables) and methods (functions) are organized. Variables store the specific data or
state of an individual object, while methods define the actions or behaviors that the
object can perform. This structural organization promotes code clarity, maintainability,
and reusability.

1.2.1.2 A Class in Java can Contain :

1.	 Data members are variables that store the specific characteristics or state
of an object. In the "Car" class, for example, data members might include
attributes like "color," "model," and "engineType." These variables define
the unique properties of each car object.

33 SGOU - SLM - BCA - Programming in Java

2.	 Methods are functions that define the actions or behaviors that an object
can perform. The "Car" class might have methods like "drive()," "brake(),"
and "turn()." These methods specify how a car moves, stops, or changes
direction.

3.	 Constructors are special methods that are automatically called when a new
object is created. They initialize the data members of the object to their
default or specified values, ensuring that each instance of the class starts in
a valid state.

4.	 Nested classes are classes that are defined within another class. They provide
a way to logically group related components, improving code organization
and encapsulation. For instance, a "Car" class might have a nested "Engine"
class to represent the engine's specific properties and functions.

5.	 Interfaces are contracts that define a set of methods that a class must
implement. By implementing an interface, a class can adhere to a specific
behavior or functionality without having to inherit from a particular class.
This promotes flexibility and reusability, allowing unrelated classes to share
common behavior.

Through the use of classes, Java organizes complex systems into modular components,
improving code clarity, reusability, and scalability.

1.2.1.3 Example of a Java Class

To demonstrate the concept of classes in Java, let's consider the example of a class
named "Book". In this case, the Book class will have attributes (data members) such as
the title, author, and year of publication. Additionally, the class will include a constructor
to initialize these properties and a method to display the book's information.

public class Book

{

 // Data members

 String title;

 String author;

 int yearPublished;

 // Constructor

 public Book(String title, String author, int yearPublished)

 {

 	 this.title = title;

 	 this.author = author;

34 SGOU - SLM - BCA - Programming in Java

 	 this.yearPublished = yearPublished;

 }

 // Method to display book information

 public void displayInfo()

 {

 	 System.out.println("Title: " + title);

 	 System.out.println("Author: " + author);

 	 System.out.println("Year Published: " + yearPublished);

 }

}

In this example, the Book class has three main components:

1.	 Data Members:

 Title: Stores the title of the book.

 Author: Stores the author's name.

 YearPublished: Holds the year when the book was published.

2.	 Constructor: The constructor Book(String title, String author, int yearPublished)
is used to initialize a new Book object with specific values for the title, author,
and publication year when it is created. This ensures that every book object
starts with proper values.

3.	 Method: The method displayInfo() prints the book's details (title, author, year
of publication) to the console, allowing us to view the book's information in a
readable format.

For example, you could create an instance of the Book class like this:

public class Main

{

 public static void main(String[] args)

 {

 // Creating a new Book object

 Book myBook = new Book("1984", "George Orwell", 1949);

 // Displaying the book's information

35 SGOU - SLM - BCA - Programming in Java

 myBook.displayInfo();

 }

}

In this instance, the Book class encapsulates the properties and behaviors of a book. The
object myBook is created from the Book class with specific values ("1984," "George
Orwell," 1949), and the displayInfo() method outputs these details.

1.2.1.4 Significance of classes and objects in java

Classes and objects in Java are essential components that help developers structure their
code in an organized, modular, and reusable manner. By defining classes, programmers
can create blueprints for real-world entities (like books) and easily generate multiple
instances (objects) that share the same structure but have unique data. This approach is
a core principle of Object-Oriented Programming (OOP), allowing developers to write
scalable, maintainable, and efficient code.

1.2.2 Methods in Java

In Java, a method is a collection of statements that perform a specific task and may
return a result to the caller. Methods allow programmers to define reusable code that can
be invoked as needed throughout a program. Unlike other programming languages like
C, C++, and Python, in Java, methods must always be defined within a class. Methods
in Java are comparable to functions in other languages, representing the behavior of an
object and encapsulating the logic required to perform a task.

A method is essentially a set of instructions that can be executed when the method is
called, providing the ability to structure code into reusable, modular components. One
of the key benefits of using methods is that they prevent repetition of code, allowing for
better code reusability and optimization.

Syntax of a Method definition:

<access_modifier><return_type><method_name>(list_of_parameters)

{

 //body of the method

}

The syntax of a Java method involves several components, including the access modifier,
return type, method name, and optional parameters. The access modifier defines the
visibility of the method (whether it can be accessed from other classes or within the
same class), while the return type specifies the type of data the method will return. If
the method does not return any value, the return type is set to void.

1.2.2.1 Advantages of java methods

Java methods offer several significant advantages that enhance the efficiency and

36 SGOU - SLM - BCA - Programming in Java

maintainability of code. One of the primary benefits is code reusability; once a method
is defined, it can be called and utilized in multiple locations throughout the program,
which saves developers time and effort by eliminating the need to write the same code
repeatedly. This feature is especially useful in large projects, where certain operations
may need to be performed multiple times. Additionally, using methods contributes to
code optimization by allowing programmers to break complex tasks into smaller, more
manageable segments. This not only helps avoid redundant coding but also makes it
easier to read and maintain the program. Furthermore, when a method needs to be updated
or fixed, developers can do so in one place without having to search through the entire
codebase, thereby enhancing overall program efficiency and reducing the likelihood
of errors. Overall, leveraging methods in Java promotes cleaner, more organized code,
making it simpler for developers to collaborate and build robust applications.

Java methods act as time-saving constructs, enabling developers to write code that can
be used again without retyping. This improves both efficiency and readability within
the program.

1.2.2.2 Key Components of method declaration

In Java, a method declaration typically comprises six essential components that define
how the method operates and how it can be accessed.

The first component is the modifier, which indicates the access level or visibility of the
method. Java provides four types of access specifiers: public methods can be accessed
from any other class, protected methods are accessible within their own class and
subclasses, private methods are restricted to the defining class, and methods with
default access (no modifier specified) can only be accessed within the same package.

Next is the return type, which specifies the data type of the value that the method will
return. If the method does not return a value, the return type is declared as void. This
return type is mandatory and must be clearly defined in the method syntax. Following
the return type is the method name, which serves as the identifier used to call the
method. The naming conventions for methods are similar to those for variables, but it
is customary for method names to start with a lowercase letter and use camelCase for
readability. The fourth component is the parameter list, which is a comma-separated
list of inputs that the method can accept, along with their respective data types. If no
parameters are required, the parentheses will remain empty. While parameters are
optional, they are crucial for passing data into the method and enabling it to operate
on different inputs. The other one is the exception list, which is optional and allows
the method to declare any exceptions that it might throw during execution. This is
particularly important for robust error handling, as it informs the caller about potential
issues that may arise. Lastly, the method body is the block of code enclosed in curly
braces that contains the actual logic of the method. This is where the operations intended
to be performed by the method are written, defining how the method processes its inputs
and what it returns. Together, these components form a complete method declaration,
making it a fundamental aspect of programming in Java.

Example of a Simple Java Method:

37 SGOU - SLM - BCA - Programming in Java

public class Geometry

{

// Method to calculate the area of a rectangle

	 public double calculateArea(double length, double breadth)

	 {

	 	 return length * breadth; // Returns the area of the rectangle

	 }

	 public static void main(String[] args)

	 {

	 	 Geometry geometry = new Geometry();

	 	 double area = geometry.calculateArea(5.0, 10.0); // Calling the calcu	
	 lateArea method

	 	 System.out.println("The area of the rectangle is: " + area);

	 }

}

In this example, the class Geometry contains a method named calculateArea() that
takes two parameters (double length and double breadth) and returns their area. The
method is reusable; it can be called anytime you need to find the area of a rectangle,
demonstrating both code reusability and optimization. Fig. 1.2.1 shows syntax for Java
method declaration.

Fig. 1.2.1 Java method declaration

38 SGOU - SLM - BCA - Programming in Java

1.2.2.3 Types of methods in java

In Java, methods are primarily classified into two main types:

	♦ Predefined methods

	♦ User-defined methods

Predefined methods are those that come built into Java's class libraries, also known as
the standard library or built-in methods. Java offers an extensive collection of these
methods, which can be readily utilized in a program without requiring any additional
code from the user. For instance, methods like System.out.println(), which is used to
print output to the console, and Math.max(), which determines the maximum of two
numbers, are examples of predefined methods. These methods save developers time
and effort by providing ready-to-use functionality that addresses common programming
tasks, making the development process more efficient.

On the other hand, user-defined methods are those crafted by the programmer to fulfill
specific tasks tailored to the application’s needs. These methods provide a high degree
of customization and flexibility, allowing programmers to define their own operations,
parameters, and return types. For example, a programmer might create a user-defined
method to calculate the area of a circle, which could take the radius as a parameter
and return the calculated area. This ability to design methods that address particular
requirements empowers developers to create more modular and maintainable code,
as they can encapsulate specific functionalities within their custom methods. Both
predefined and user-defined methods play a crucial role in Java programming, with
predefined methods offering convenience and efficiency, while user-defined methods
provide adaptability and specificity to meet the unique demands of applications.

Ways to Create Methods in Java

Java allows methods to be created in two main ways:

1. Instance Method:

An instance method is tied to an instance of a class (i.e., an object). It can access instance
data (variables that belong to the object) using the object’s name. These methods
are declared inside the class and can be called after an object of the class is created.
Syntax:

void method_name()

{

	 // instance area

}

2. Static Method:

A static method is associated with the class itself, rather than an instance of the
class. It can access static data (variables that belong to the class) using the class

39 SGOU - SLM - BCA - Programming in Java

name. Static methods are declared inside the class using the static keyword.
Syntax:

static void method_name()

{

	 // static area

}

1.2.2.4 Method Signature

The method signature in Java is a unique identifier for a method, comprising the
method’s name and its parameter list (which includes the number of parameters, their
types, and their order). The return type and exceptions thrown by the method are not
part of the method signature.

Example:

For the method max(int x, int y), the signature includes two parameters of type int.

Naming a Method

When naming a method in Java, it is important to follow specific conventions to ensure
readability and consistency. Method names should usually be verbs written in lowercase.
If the method name contains multiple words, each subsequent word should begin with
an uppercase letter (camel case), but the first word should remain in lowercase.

Rules for Naming a Method:

	♦ The method name must be a verb and start with a lowercase letter.

	♦ If the method name consists of more than one word, the first word can be a
verb, followed by an adjective or noun.

	♦ In multi-word method names, capitalize the first letter of each word except
the first one (e.g., findSum(), computeMax(), setX(), getX()).

While methods typically have unique names within a class, Java allows multiple
methods to share the same name through method overloading. This means methods
with the same name can exist within the same class as long as they have different
parameter lists (number, types, or order of parameters).

Example of Methods:

public class Calculator

{

 	 // Instance method

	 public int add(int a, int b)

40 SGOU - SLM - BCA - Programming in Java

	 {

 		 return a + b; // Adds two numbers

	 }

 	 // Static method

	 public static int multiply(int a, int b)

	 {

		 return a * b; // Multiplies two numbers

	 }

	 public static void main(String[] args)

	 {

		 Calculator calc = new Calculator(); // Creating an object

 	 int sum = calc.add(5, 10); // Calling instance method

 	 int product = Calculator.multiply(5, 10); // Calling static method

 	 System.out.println("Sum: " + sum); // Outputs: Sum: 15

 	 System.out.println("Product: " + product); // Outputs: Product: 50

 	 }

}

In this example both an instance method (add()) and a static method (multiply()). The
instance method requires an object of the class to be called, while the static method is
called directly using the class name.

By following these principles, developers can create methods that are efficient, reusable,
and easy to understand, enhancing both code quality and maintainability.

1.2.2.5 Method Calling in Java

In Java, methods must be called to utilize their functionality. There are three scenarios
in which a method is called:

1.	 The method completes all the statements within its body.
2.	 It reaches a return statement that sends back a value to the caller.
3.	 An exception occurs, which interrupts the method execution.

Let's consider an example to illustrate method calling:

class Addition

{

41 SGOU - SLM - BCA - Programming in Java

	 int sum = 0;

	 // Method to add two integers

 	 public int addTwoInt(int a, int b)

	 {

		 sum = a + b;

		 return sum;

	 }

}

public class Main

{

	 public static void main(String[] args)

	 {

 		 Addition add = new Addition();

 		 int result = add.addTwoInt(1, 2); // Calling the method

 		 System.out.println("Sum: " + result);

		 // Output: Sum: 3

	 }

}

In the above example, the addTwoInt() method is called within the main() method to
add two integers. The method performs its task, returns the result, and control goes back
to the calling code.

Method Calling via Different Approaches

Java supports various ways to call methods, including calling instance methods and
static methods.

Example of calling a method via object creation:

class Test

{

 public static int count = 0;

// Constructor

	 Test()

42 SGOU - SLM - BCA - Programming in Java

	 {

 		 count++;

	 }

	 public static int getCount()

	 {

 		 return count;

	 }

	 public int instanceMethod()

	 {

 		 System.out.println("Inside instance method");

 	 	 this.staticMethod();

 		 return 1;

	 }

	 public void staticMethod()

	 {

 		 System.out.println("Called static method");

 	 }

}

public class Main

{

	 public static void main(String[] args)

	 {

		 Test obj = new Test(); // Creating an object of Test

		 int result = obj.instanceMethod(); // Calling instance method

		 System.out.println("Control returned after instanceMethod: " + result);

		 int noOfObjects = Test.getCount(); // Calling static method

		 System.out.println("Number of objects created: " + noOfObjects);

 	 }

}

43 SGOU - SLM - BCA - Programming in Java

In this example:

The instanceMethod() calls another method within the same class (staticMethod()).

Static methods, like getCount(), can be called directly using the class name without
creating an object.

1.2.2.6 Passing Parameters to methods
Java offers several mechanisms to enhance the flexibility of method parameters:

	♦ Passing Arrays: You can pass an entire array as an argument to a method.
This allows you to pass a variable number of elements without explicitly
declaring each one individually.

	♦ Variable Arguments (Varargs): Using varargs, a method can accept a variable
number of arguments of the same type. This is particularly useful when you
don't know the exact number of arguments needed beforehand.

	♦ Method Overloading: Multiple methods can have the same name but different
parameter lists. This allows you to create methods with the same name but
different behaviors based on the types or number of arguments passed.

Example of parameter passing in methods in Java

public class Example

{

	 private int number;

	 private String name;

	 // Get methods

	 public int getNumber()

	 {

 	 	 return number;

 	 }

	 public String getName()

 	 {

 		 return name;

 	 }

	 // Set methods

	 public void setNumber(int number)

44 SGOU - SLM - BCA - Programming in Java

	 {

 		 this.number = number;

 	 }

	 public void setName(String name)

	 {

 		 this.name = name;

 	 }

	 // Method to print details

	 public void printDetails()

	 {

 		 System.out.println("Number: " + number);

 		 System.out.println("Name: " + name);

 	 }

}

public class Main

{

	 public static void main(String[] args)

	 {

 	 Example example = new Example();

 		 example.setNumber(123); // Calling setter method

 		 example.setName("John"); // Calling setter method

 		 example.printDetails(); // Calling method to display details

 	 }

}

In this example, the methods setNumber(), setName(), and printDetails() are used to
interact with an object of the Example class.

1.2.2.7 Advantages of using methods in java

Using methods in Java offers several significant advantages that enhance the overall
quality of code and the efficiency of the development process.

Reusability is one of the primary benefits of methods; once a method is written, it

45 SGOU - SLM - BCA - Programming in Java

can be called multiple times throughout the program, reducing code duplication and
saving development time. This not only streamlines the coding process but also ensures
consistency in how certain tasks are performed, minimizing the likelihood of errors.

Abstraction is another key advantage, as methods can encapsulate complex logic,
allowing programmers to use descriptive method names instead of diving into intricate
code details. This abstraction makes it easier for developers to understand the code
at a glance, which is particularly helpful when collaborating on larger projects with
multiple contributors.

Breaking code into smaller, well-named methods enhances readability. Clear method
names serve as documentation, indicating the purpose and functionality of each method,
which helps others (or even the original developer at a later date) quickly grasp what the
code is intended to accomplish.

Methods promote encapsulation by containing specific logic within defined boundaries,
making it simpler to manage changes. When a modification is necessary, developers
can update the method without affecting other parts of the program, thus enhancing
maintainability.

Methods also facilitate a separation of concerns, allowing developers to assign different
tasks to different methods. This organized approach improves the overall structure of
the code, making it easier to navigate and debug.

Methods contribute to modularity by breaking down larger problems into smaller,
manageable units. Each method can address a specific aspect of a problem, making it
easier to develop, test, and maintain individual components of a larger application.

Improved testability is another significant advantage, as isolating functionality within
methods allows for focused testing of individual components. Developers can create
unit tests for each method, ensuring that each piece of functionality works as intended
without the need to run the entire program.

It is a well-organized method that can enhance performance by optimizing execution
time and improving code management. By reducing redundancy and focusing on
efficient code structure, methods can lead to better-performing applications that are
easier to scale and maintain.

1.2.3 Constructors

In Java, constructors are special methods used to initialize objects. When an object is
created, the constructor is automatically called. Constructors can be used to set initial
values for object attributes.

Example:

public class Car

{

	 String model;

46 SGOU - SLM - BCA - Programming in Java

	 int year;

	 // Constructor

	 public Car(String model, int year)

	 {

 		 this.model = model;

 		 this.year = year;

	 }

 	 // Display car details

 	 public void display()

	 {

 		 System.out.println("Model: " + model + ", Year: " + year);

 	 }

}

public class Main

{

	 public static void main(String[] args)

	 {

 		 Car car1 = new Car("Toyota", 2021); // Constructor called

 		 car1.display();

 		 // Output: Model: Toyota, Year: 2021

 	 }

}

In this case, the constructor initializes the Car object's attributes when it's created,
demonstrating the importance of constructors in setting up object states.

A constructor is named as such because it initializes values when an object is created.
Writing a constructor for a class is optional. If no constructor is defined in the class, a
default constructor is automatically called. In this case, the Java compiler generates a
default constructor by default.

1.2.3.1 Need for Constructors in java

Consider the Box class. If we define a Box class, it will have variables such as length,
breadth, and height. When we create an object of this class (i.e., when the Box exists

47 SGOU - SLM - BCA - Programming in Java

in the computer's memory), can the box have undefined dimensions? The answer is no.
Constructors are necessary to assign values to these class variables when the object is
created. This can either be done explicitly by the programmer or automatically by Java
through a default constructor.

Every time an object is created using the new() keyword, at least one constructor (which
could be the default constructor) is called to initialize the class's data members.

There are specific rules for writing constructors:

	♦ The constructor must have the same name as the class it belongs to.

	♦ In Java, a constructor cannot be abstract, final, static, or synchronized.

	♦ Access modifiers can be applied to a constructor to control which classes
can access it. Constructors, like methods, consist of a set of statements that
execute when the object is created, helping to set the object's initial state.

1.2.3.2 Difference Between constructors and methods in java

	♦ The constructor is used to initialize the state of an object, while a method is
used to expose the behavior of an object.

	♦ Constructors must have the same name as the class they are defined in, while
methods in Java can have any name.

	♦ Constructor is invoked implicitly, while method is invoked explicitly.

	♦ Constructors do not have a return type, whereas methods must specify a
return type or use void if they do not return a value.

	♦ Constructors are invoked only once when an object is created, whereas
methods can be called multiple times throughout the program.

Example of Java Constructor

// Java Program for Constructor

import java.io.*;

// Driver Class

class Box

{

	 // Constructor

	 Box()

	 {

		 super();

48 SGOU - SLM - BCA - Programming in Java

 		 System.out.println("Constructor is Called");

 	 }

	 // main function

	 public static void main(String[] args)

	 {

 		 Box box1 = new Box();

	 }

}

Output

Constructor is Called

The first line of a constructor is either a call to super() or this(), which invokes a
constructor from the superclass or an overloaded constructor. If you don’t explicitly
include a call to super, the compiler automatically inserts a no-argument call to super
as the first line. The superclass constructor must always be invoked to create an object.
Even if your class doesn't explicitly extend another class, it is still a subclass of the
Object class in Java, as all classes inherit from Object by default.

1.2.3.3 Types of constructors in java

There are three main types of constructors in Java: Default Constructor, Parameterized
Constructor, and Copy Constructor.

Default Constructor in Java:

A default constructor is a constructor that has no parameters. It is automatically provided
by the compiler if no constructor is explicitly written in the class. However, if we write
a constructor with no arguments, the compiler does not generate a default constructor;
instead, it is considered as overloaded, turning it into a parameterized constructor. This
means a default constructor can be either implicit (automatically generated) or explicit
(manually written). If a parameterized constructor is defined, the default constructor is
no longer available unless explicitly declared. Fig 1.2.2 shows default constructor.

Fig 1.2.2 Default constructor

49 SGOU - SLM - BCA - Programming in Java

// Example program for Default Constructor

import java.io.*;

// Driver class

class Area

{

	 // Default Constructor

 	 Area() { System.out.println("Default constructor"); }

 	 // Driver function

	 public static void main(String[] args)

	 {

		 Area area1 = new Area();

	 }

}

Output :

Default constructor

Parameterized Constructor in Java:

A constructor that accepts parameters is called a parameterized constructor. It is used
when you want to initialize the class fields with specific values provided at the time of
object creation. By passing arguments to the constructor, you can customize how the
object is initialized, ensuring that the class variables have user-defined values.

// Java Program for Parameterized Constructor

import java.io.*;

public class Area

{

	 // Data members to store length and width

	 private double length;

	 private double width;

	 // Parameterized constructor to initialize length and width

	 public Area(double length, double width)

	 {

50 SGOU - SLM - BCA - Programming in Java

		 this.length = length; this.width = width;

		 System.out.println("Area object created for a rectangle with length: " + 	
		 length + " and width: " + width);

	 }

	 // Method to calculate the area of the rectangle

	 public double calculateArea()

	 {

		 return length * width;

	 }

	 public static void main(String[] args)

	 {

		 Area rectangle = new Area(5.0, 10.0); // Create an Area object for a 	
		 rectangle with length 5.0 and width 10.0

		 double area = rectangle.calculateArea();

		 System.out.println("The area of the rectangle is: " + area);

	 }

}

Output

Area object created for a rectangle with length: 5.0 and width: 10.0

The area of the rectangle is: 50.0

Copy Constructor in Java:

A copy constructor is unique in that it takes another object as a parameter and copies
the data from that object into the newly created one. Unlike languages like C++ that
provide built-in copy constructors, Java does not have an inbuilt copy constructor. It
can be manually created, a copy constructor by passing an object of the same class and
copying its values into the new object. This allows for creating duplicates of objects
with the same state.

Example of Copy Constructor

public class Area

{

	 // Data members to store length and width

	 private double length;

51 SGOU - SLM - BCA - Programming in Java

	 private double width;

	 // Parameterized constructor to initialize length and width

	 public Area(double length, double width)

	 {

		 this.length = length;

		 this.width = width;

		 System.out.println("Area object created with length: " + length + " and 	
		 width: " + width);

	 }

	 // Copy constructor to create a new object with the same values as an existing 	
	 object

	 public Area(Area other)

	 {

		 this.length = other.length;

		 this.width = other.width;

		 System.out.println("Copy constructor called. Creating a new Area 		
		 object 	with the same values.");

	 }

	 // Method to calculate the area of the rectangle

	 public double calculateArea()

	 {

		 return length * width;

	 }

	 public static void main(String[] args)

	 {

		 Area rectangle1 = new Area(5.0, 10.0);

		 // Create an Area object

		 Area rectangle2 = new Area(rectangle1);

		 // Create a copy of rectangle1 using the copy constructor

		 System.out.println("Rectangle1 area: " + rectangle1.calculateArea()); 	

52 SGOU - SLM - BCA - Programming in Java

		 System.out.println("Rectangle 2 area: " + rectangle2.calculateArea());

	 }

}

Output:

Area object created with length: 5.0 and width: 10.0

Copy constructor called. Creating a new Area object with the same values.

Rectangle 1 area: 50.0

Rectangle 2 area: 50.0

The program working steps:

1.	 Class Definition: The Area class is defined, containing data members for
length and width, a parameterized constructor, a copy constructor, and a
method to calculate the area.

2.	 Object Creation:
	♦ An Area object named rectangle1 is created using the parameterized

constructor with length 5.0 and width 10.0.

	♦ A second Area object named rectangle2 is created using the copy constructor,
passing rectangle1 as an argument.

3.	 Copy Constructor Execution:

	♦ The copy constructor is called, copying the length and width values from
rectangle1 to rectangle2.

4.	 Area Calculation:

	♦ The calculateArea method is called on both rectangle1 and rectangle2 to
calculate their areas.

5.	 Output:

	♦ The areas of both rectangles are printed. Since rectangle2 is a copy of
rectangle1, both have the same length and width, resulting in the same area.

The program demonstrates how the copy constructor can be used to create a new object
that is a deep copy of an existing object.

1.2.4 Access Specifier / Modifiers in java

In Java, access modifiers control the visibility and accessibility of classes, constructors,
variables, methods, and data members. They play a key role in ensuring security and
restricting access depending on the modifier applied. Understanding and using access
modifiers correctly is essential for defining the scope of different elements in a program.

There are four main types of access modifiers in Java:

53 SGOU - SLM - BCA - Programming in Java

1.	 Default Access Modifier
2.	 Private
3.	 Protected
4.	 Public

1.2.4.1 Default Access Modifier:

When no specific access modifier is mentioned for a class, method, or data member, it
defaults to the "default" access modifier. This means that such elements are accessible
only within the same package. For example, a class in one package cannot be accessed
by another class in a different package if it has default access.

Example Program for default access modifier

// Java program to illustrate default modifier

package p1;

// Class Greet is having Default access modifier

class Greet

{

	 void display()

	 {

		 System.out.println("Hello World!");

	 }

}

// Java program to use a class from different package with default modifier

package p2;

import p1.*;

// This class is having default access modifier

class GreetNew

{

	 public static void main(String args[])

	 {

 		 // Accessing class Greet from package p1

 		 Greet obj1 = new Greet();

 		 obj1.display();

54 SGOU - SLM - BCA - Programming in Java

	 }

}

Output:

Compile time error

1.2.4.2 Private Access Modifier

The private access modifier is used by adding the keyword private. When methods or
data members are declared as private, they are only accessible within the class where
they are defined. Other classes, even if they belong to the same package, cannot access
these private members. Top-level classes or interfaces cannot be declared as private
because private restricts visibility to within the same class only. This modifier is mainly
used for class-level encapsulation and cannot be applied to top-level classes, only to
nested classes. For example, if two classes A and B are in the same package, and class
A has a private method, class B will not be able to access that method.

// Java program to use class from different package with a private access specifier

package p1;

class First

{

	 private void display()

	 {

 		 System.out.println("Hello from class First ");

	 }

}

class Second

{

	 public static void main(String args[])

	 {

 		 First firstobj = new First();

 		 // Trying to access private method of class First

 		 firstobj.display();

 	 }

55 SGOU - SLM - BCA - Programming in Java

}

Output:

error: display() has private access in First firstobj.display();

1.2.4.3 Protected Access Modifier

The protected access modifier in Java is defined using the keyword protected.

Java packages group related classes and interfaces together to keep code organized.
They also help avoid name conflicts and control access to code through different access
modifiers.

Members declared as protected can be accessed within the same package and by
subclasses in other packages. This provides a level of accessibility beyond the private
modifier, allowing controlled sharing of data among related classes through inheritance,
while still restricting access from unrelated classes outside the package.

For example, if we have two packages, p1 and p2, and a class A in p1, we can make class
A public to allow access from other packages. Suppose class A has a protected method
display(). If class B in p2 extends class A, the display() method can be accessed by
class B through inheritance, even though they are in different packages. The protected
access enables the sharing of class functionality across package boundaries through
inheritance while still maintaining encapsulation for non-subclass external classes. By
creating an object of class B, the protected method display() in class A can be accessed
and executed.

// Java Program to Illustrate Protected access specifier

package p1;

public class First

{

	 protected void display()

	 {

 		 System.out.println("Hello from class First");

	 }

}

package p2;

// importing all classes in package p1

import p1.*;

// Class Second is subclass of class First

class Second extends First

56 SGOU - SLM - BCA - Programming in Java

{

	 public static void main(String args[])

	 {

 		 Second secondobj = new Second();

 		 secondobj.display();

 	 }

}

Output:

Hello from class First

1.2.4.4 Public Access Modifier

The public access modifier in Java is defined using the keyword public, and it offers
the broadest scope of all access modifiers. When a class, method, or data member is
declared as public, it becomes accessible from any part of the program, including across
different packages. Unlike other access modifiers, there are no restrictions on public
members, meaning that any class, regardless of its location, can access these public
elements.

This level of accessibility is useful for methods and classes that are intended to be
universally available throughout an application. The core utility classes in Java like
System or Math are declared as public, allowing developers to use them in any part
of their codebase without concern for package boundaries. Similarly, if a developer
creates a public method in one class, any other class, whether it's in the same package
or a completely different package, can invoke that method without needing special
permissions.

Public access is typically used for components that are designed to provide services
or functionalities that should be available throughout an application, ensuring ease of
access and integration across various parts of a program. However, using public access
extensively should be done with caution, as it reduces encapsulation, making code more
exposed and harder to control or modify.

Program 1:

// Java program using public modifier

package p1;

public class First

{

	 public void display()

 	 {

57 SGOU - SLM - BCA - Programming in Java

 		 System.out.println("Hello from class First");

 	 }

}

Program 2:

package p2;

import p1.*;

class Second

{

	 public static void main(String args[])

 	 {

		 First firstobj = new First();

 		 firstobj.display();

 	 }

}

Output:

Hello from class First

Table 1.2.1 Access modifiers in Java

The table 1.2.1 explains the visibility of class members (like variables or methods)
based on the access modifiers in Java:

1.	 Private: Accessible only within the same class. Not accessible outside the
class, even within the same package.

2.	 Default: Accessible within the same class and package. Not accessible in
other packages, even by subclasses.

3.	 Protected: Accessible within the same class, package, and by subclasses in

58 SGOU - SLM - BCA - Programming in Java

other packages. Not accessible by non-subclass classes in other packages.
4.	 Public: Accessible from everywhere – within the same class, package,

subclasses, and even outside the package.

This structure helps control the scope of access and ensures proper encapsulation in
object-oriented programming.

1.2.5 Static Methods in java

In Java, static methods are those that can be invoked without needing to create an
instance of the class. Instead of being tied to an object, static methods are associated
with the class itself and can be accessed using the class name directly or by using a
reference to an object of that class.

public class MyClass

{

	 public static void geek(String name)

	 {

		 // Code to be executed

		 System.out.println("Hello, " + name + "!");

	 }

	 public static int add(int a, int b)

	 {

		 return a + b;

	 }

	 public static float calculateArea(float radius)

	 {

		 return 3.14f * radius * radius;

	 }

	 public static void main(String[] args)

	 {

		 // Calling static methods

		 geek("Alice");

		 int sum = add(5, 10);

		 float area = calculateArea(2.5f);

59 SGOU - SLM - BCA - Programming in Java

		 System.out.println("Sum: " + sum);

		 System.out.println("Area: " + area);

	 }

Output:

Hello, Alice!

Sum: 15

Area: 19.625

Static methods are closely tied to the class they belong to and to call a static method,
by using the syntax:

ClassName.methodName(arguments).

These methods are intended to be shared among all instances of the class, meaning they
are not unique to any one object, but rather serve a common purpose for the class as a
whole.

Another important aspect is that static methods cannot be overridden because they are
resolved at compile time using static binding. Even if both the superclass and subclass
declare a static method with the same name, the method in the subclass will hide the
one in the superclass, a behavior known as method hiding, rather than true method
overriding. In this case, when calling the method, the version associated with the
class type (rather than the object) will be invoked. This distinction is important when
designing class hierarchies that use static methods.

1.2.6 Final Keyword in java

The final Keyword in Java is used as a non-access modifier applicable only to a
variable, a method, or a class. It is used to restrict a user in Java.

The following are different contexts where the final is used:

1.	 Variable

2.	 Method

3.	 Class

1.2.6.1 Final Variable

Final Variable is used to create a constant variable. When a variable is declared using the
final keyword, its value cannot be altered, making it essentially a constant. This requires
that the final variable be initialized at the time of declaration. If the final variable is a
reference to an object, the reference itself cannot point to a different object, but the
internal state of the object it references can still be modified. For example, you can add
or remove elements from a final array or collection. As a convention, it is considered

60 SGOU - SLM - BCA - Programming in Java

good practice to write final variable names in uppercase letters, with words separated
by underscores.

Syntax:

final <return type> <variable_name> = initialization;

Final variable Example Program

public class ConstantEx

{

	 public static void main(String[] args)

	 {

		 // Define a constant variable PI

 		 final double PI = 3.14;

 		 // Display the value of PI

 		 System.out.println("Pi value is:" + PI);

 	 }

}

Output

Pi value is: 3.14

Different Ways to Use Final Variables in Java

1. Final Variable

A final variable is a constant that cannot be changed once assigned.

Example of Final variable declaration:

final int THRESHOLD = 5;

2. Blank Final Variable

A blank final variable is declared without initialization and must be assigned a value
later, usually in the constructor.

Example of Blank final variable declaration:

final int THRESHOLD;

3. Static Final Variable

A static final variable is both constant and associated with the class rather than any
instance. It is typically used for constant values shared across instances.

61 SGOU - SLM - BCA - Programming in Java

Example of Static final variable declaration:

static final double PI = 3.141592653589793;

4. Static Blank Final Variable

This is a blank final variable that is static and must be initialized within a static block.
Example of Static blank final variable declaration:

static final double PI;

Initializing a Final Variable

A final variable must be initialized; otherwise, the compiler will throw an error. Once
initialized, it cannot be changed. There are several ways to initialize a final variable:

	♦ During Declaration:

This is the most common approach where the final variable is assigned a value at the
time of declaration.

	♦ In the Constructor or Instance-Initializer Block:

For a blank final variable, you must assign a value in the constructor or an instance-
initializer block. If there are multiple constructors, the variable must be initialized in all
of them, or a compile-time error will occur.

	♦ In a Static Block:

A blank final static variable can be initialized in a static block to ensure that it is
initialized before the class is loaded.

1.2.6.2 Final methods

Final Methods are used to prevent method overriding. When a method is declared with
the final keyword, it is referred to as a final method. A final method cannot be overridden
by any subclass. This ensures that the implementation of that method remains consistent
across all subclasses and cannot be modified.

For instance, the Object class, which is the root of all classes in Java, contains several
final methods that cannot be overridden. These methods provide essential functionality
that Java developers rely on, so allowing them to be overridden would risk the integrity
of the behavior expected from those methods.

Declaring a method as final is particularly useful when you want to prevent subclasses
from changing the logic of that method. This ensures that the same implementation is
preserved across all derived classes. For example, if you have a method in a superclass
that performs a critical operation like security checks or resource handling, marking
it as final guarantees that its behavior remains unaltered, safeguarding the program’s
functionality.

class SuperClass1

{

62 SGOU - SLM - BCA - Programming in Java

 	 public final void printing()

	 {

 		 System.out.println("Final method example.");

 	 }

}

class SubClass extends SuperClass1

{

 	 // Attempting to override the final method will cause a compile-time error.

 	 public void printing()

 	 {

 	 	 System.out.println("overriding final method is not possible.");

	 }

}

Output:

The code will produce a compile-time error.

In this example, the printing method is declared as final in the superclass SuperClass1.
If you attempt to override it in the subclass SubClass, the compiler will throw an error.

Declaring methods as final, the method cannot be overridden, the Java compiler may
perform certain optimizations like inlining, which can make the method execution
faster. However, the primary reason for using final methods remains to preserve the
intended behavior across the inheritance hierarchy.

1.2.6.3 Final Classes

Final Classes are used to prevent Inheritance. When a class is declared with the final
keyword, it becomes a final class. A final class cannot be extended by any other class,
meaning it cannot be inherited. This restriction ensures that the functionality and
behavior of a final class remain unchanged and cannot be altered by subclassing.

Uses of Final Classes

Preventing Inheritance: The primary use of a final class is to prevent other
classes from inheriting it. By declaring a class as final, you safeguard its
implementation and prevent other developers from extending it and potentially
modifying its behavior. This is useful when the design of the class is
complete, and there is no need for further modification through inheritance.
Many of Java’s built-in wrapper classes, such as Integer, Float, Double, and Boolean,
are final classes. These classes represent immutable objects and are designed to be used

63 SGOU - SLM - BCA - Programming in Java

as it is, So without the need for customization through inheritance.

Example:

final class Finaldemo1

{

 // methods and fields

}

// The following class declaration will cause a compile-time error

class Finaldemo2 extends Finaldemo1

{

 // COMPILE ERROR: Cannot extend final class A

}

In the above example, class Finaldemo1 is declared as final, which means class
finaldemo2 cannot inherit from it. Any attempt to the class Finaldemo1 will result in a
compile-time error, ensuring the integrity of Finaldemo1.

Creating Immutable Classes: Another important use of final classes is in creating immutable
classes. An immutable class is one whose state cannot be changed after it is created.
To ensure immutability, the class must be declared as final. If the class were not final, a
subclass could potentially alter the state of the objects, breaking the immutability contract.
A classic example of an immutable class is Java’s built-in String class, which is declared
as final. Once a String object is created, its value cannot be changed, ensuring that it
remains constant throughout its lifecycle. By making the String class final, Java ensures
that no subclass can override its behavior and modify its immutability.

Example:

public final class ImmutableClass

{

	 private final int value;

 	 public ImmutableClass(int value)

	 {

 		 this.value = value;

 	 }

 	 public int getValue()

	 {

64 SGOU - SLM - BCA - Programming in Java

 		 return value;

 	 }

}

In this example, ImmutableClass is declared as final to prevent inheritance, and its field
value is declared as final to ensure it cannot be changed after the object is constructed.
This is the fundamental approach used to create immutable objects in Java.

By using final classes, developers can create secure, immutable, and well-defined
classes that cannot be altered or extended, ensuring better control over class behavior
and integrity.

1.2.6.4 Characteristics of the final keywords in java

The final keyword serves to indicate that certain elements such as variables, methods,
or classes, that cannot be modified or extended. Below are the key characteristics of the
final keyword:

1.	 Final Variables: A variable declared as final can only be assigned a value once,
making its value immutable after initialization. This is particularly useful
for defining constants or values that must remain unchanged throughout the
program.

2.	 Final Methods: When a method is marked as final, it cannot be overridden
by subclasses. This is valuable when a method's behavior is critical to the
class's functionality and must not be altered, ensuring consistency in the
method’s implementation.

3.	 Final Classes: Declaring a class as final means that it cannot be subclassed.
This is used for classes that are intended to provide a complete, non-
modifiable implementation, preventing inheritance from altering their
structure or behavior.

4.	 Initialization of Final Variables: Final variables must be initialized either
when they are declared or in the class constructor. This guarantees that
they have a set value and cannot be changed after their initial assignment,
ensuring data integrity.

65 SGOU - SLM - BCA - Programming in Java

The final keyword enhances code stability, security, and maintainability by
preventing unintended modifications to variables, methods, or classes. By
using final, developers can write more robust, secure, and optimized code.

5.	 Performance: The use of final can sometimes result in performance
improvements. Since the compiler knows that certain variables or methods
cannot change, it can apply optimizations, such as inlining method calls or
reducing memory usage.

6.	 Security: The final keyword helps bolster security by ensuring that critical
data or behavior cannot be modified, either accidentally or by malicious
code, making it a useful tool for safeguarding sensitive parts of a program.

Recap

	♦ Java is an Object-Oriented Programming (OOP) language, utilizing classes
and objects to represent real-world entities.

	♦ A class serves as a blueprint defining properties and behaviors common to
all objects of that type.

	♦ Objects are instances of classes, representing individual entities with unique
attribute values.

	♦ The concept of classes and objects allows for efficient code organization and
scalability.

	♦ A class encapsulates data (attributes) and methods (behaviors), promoting
clarity and reusability in programming.

	♦ Data members are variables that hold the state of an object, while methods
define the actions the object can perform.

	♦ Constructors are special methods that initialize an object’s attributes when
an instance is created.

	♦ Nested classes enhance code organization by grouping related components
logically within a parent class.

	♦ Interfaces define a contract of methods that classes must implement,
promoting flexibility in Java programming.

	♦ Classes allow developers to create multiple instances with shared structures
but unique data, adhering to OOP principles.

	♦ Java methods are collections of statements that perform specific tasks and
may return results.

66 SGOU - SLM - BCA - Programming in Java

Objective Type Questions

1.	 What is the blueprint or template used to define objects in Java?

2.	 What keyword is used to declare a class in Java?

3.	 What term describes an individual instance created from a class?

4.	 What keyword indicates that a variable's value cannot be changed?

5.	 What type of method is called when a new object is created?

	♦ Methods must be defined within a class, making them essential for
encapsulating object behavior in Java.

	♦ The syntax of a method includes an access modifier, return type, method
name, and optional parameters.

	♦ Methods promote code reusability, allowing developers to call them multiple
times throughout the program without redundancy.

	♦ There are two main types of methods: predefined methods, which are built
into Java's libraries, and user-defined methods, created by programmers for
specific tasks.

	♦ Instance methods are tied to specific objects, allowing them to access instance
variables and be invoked after an object is created.

	♦ Static methods are linked to the class and can be called without creating an
object.

	♦ The method signature includes the method's name and its parameters, but
not the return type.

	♦ Method names should start with a lowercase verb and use camel case for
multiple words.

	♦ Methods must be called explicitly to run, with instance methods requiring an
object and static methods not.

	♦ Methods can take different types of parameters, including arrays and variable
arguments.

	♦ Constructors initialize objects and must have the same name as the class,
with no return type.

	♦ There are three types of constructors: default (no parameters), parameterized
(with parameters), and copy (duplicates another object).

67 SGOU - SLM - BCA - Programming in Java

6.	 What keyword is used to declare a method that cannot be overridden?

7.	 What is the return type for methods that do not return any value?

8.	 What access modifier allows a method to be accessed from any other class?

9.	 What term describes a class defined within another class?

10.	What type of methods are built into Java's class libraries?

11.	What type of method initializes the properties of a class?

12.	What keyword is used to declare a variable that cannot be re-bound?

13.	What type of method is associated with an instance of a class?

14.	What access modifier restricts a method's visibility to the defining class only?

15.	What is the primary benefit of using methods in programming?

16.	What keyword is used to define a static method in Java?

17.	What does the method signature include?

18.	In Java, what naming convention is typically followed for method names?

19.	What keyword must a constructor have the same name as?

20.	How many types of constructors are there in Java?

21.	Which access modifier restricts access only to the defining class?

22.	What keyword is used to make a variable constant?

23.	What does a copy constructor do?

24.	Can a final class be inherited?

25.	What is the primary benefit of using methods in Java?

26.	What keyword prevents inheritance in Java?

27.	Which Java class is an example of an immutable class?

28.	What type of classes are the wrapper classes like Integer and Double?

29.	What must be done to a final variable after initialization?

30.	What does a final method prevent?

68 SGOU - SLM - BCA - Programming in Java

1.	 Class

2.	 class

3.	 Object

4.	 final

5.	 Constructor

6.	 final

7.	 void

8.	 public

9.	 Nested

10.	Predefined

11.	Constructor

12.	final

13.	Instance

14.	private

15.	Reusability

16.	static

17.	Method name and parameters

18.	Camel case

19.	Class name

20.	Three

21.	Private

22.	final

23.	Copies data from another object

Answers to Objective Type Questions

69 SGOU - SLM - BCA - Programming in Java

Assignments

1.	 Discuss the concept of classes and objects in Java, focusing on how classes
act as blueprints for creating objects and the role of encapsulation in this
structure.

2.	 Explain the components of a Java class, including data members, methods,
constructors, nested classes, and interfaces, with examples to demonstrate
their purpose in a class structure.

3.	 Describe the significance of methods in Java programming, including the
syntax of a method declaration, the different types of methods, and the
advantages they offer in terms of code reusability and optimization.

4.	 Define the four main access modifiers in Java and discuss their role in
controlling visibility and accessibility with proper example programs.

5.	 Explain the role of constructors in Java, highlighting the differences between
default, parameterized, and copy constructors. Include examples to illustrate
how these constructors initialize object states and their key characteristics.

6.	 Describe the concept of static methods in Java, focusing on their declaration,
calling, and significance compared to instance methods. Discuss the
implications of method hiding and why static methods cannot be overridden.

7.	 Discuss the role of the final keyword in Java, focusing on its use in preventing
inheritance and creating immutable classes.

24.	No

25.	Reusability

26.	final

27.	String

28.	final

29.	Unchanged

30.	Overriding

70 SGOU - SLM - BCA - Programming in Java

Suggested Reading

1.	 Schildt, Herbert. "Java™ The Complete Reference Twelfth Edition." (2022).

2.	 Jana, Debasish. Java and object-oriented programming paradigm. PHI
Learning Pvt. Ltd., 2005.

3.	 Baesens, Bart, Aimée Backiel, and Seppe Vanden Broucke. Beginning Java
programming: the object-oriented approach. John Wiley & Sons, 2015.

4.	 Eckel, Bruce. Thinking in JAVA. Prentice Hall Professional, 2003.

References

1.	 "Effective Java" by Joshua Bloch Edition: 3rd Edition 2018 Addison-Wesl

2.	 "Effective Java" by Joshua Bloch, 3rd Edition, 2018, Addison-Wesley

3.	 "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition, 2005,
O'Reilly Media

4.	 "Java Concurrency in Practice" by Brian Goetz, 1st Edition, 2006 Addison-
Wesley

5.	 "Core Java Volume I – Fundamentals" by Cay S. Horstmann, 12th Edition,
2022, Pearson

71 SGOU - SLM - BCA - Programming in Java

Packages, I/O stream and
Arrays

Learning Outcomes

Prerequisites

	♦ identify the concept of packages in Java.

	♦ define the purpose of import statements in Java.

	♦ recognize the concept of arrays in Java.

	♦ recall common operations performed on arrays.

	♦ describe the purpose of input streams in Java.

	♦ discuss the role of output streams in Java.

As you dive deeper into Java programming, you may recall your earlier explorations
of variables and control structures. These fundamental concepts are essential building
blocks that lead you to more complex data management and manipulation techniques.

Imagine you have a treasure trove of data, much like a library filled with countless
books. Each book represents a different piece of information, whether it be numbers,
text, or images. But how do we keep track of all this data efficiently? This is where
arrays come into play. Arrays allow you to store multiple values of the same type in a
single variable, enabling you to manage collections of data easily.

Now, think about how you would communicate with the outside world. Just as you send
letters or make phone calls to share information, your Java programs need to interact
with external sources, like files or user inputs. This is where input/output (I/O) streams
come into the picture. I/O streams allow your programs to read from and write to vari-
ous data sources, making your applications dynamic and responsive.

Lastly, let's consider the concept of packages. Recall how organizing your notes into
different folders makes studying easier. In Java, packages serve a similar purpose by
grouping related classes and interfaces together. This organization not only streamlines
your code but also enhances reusability and maintainability.

UNIT 3

The learner will be able to:

72 SGOU - SLM - BCA - Programming in Java

Keywords

Package, Import, InputStream, OutputStream, Array, Data Types, BufferedReader

As you prepare to embark on this journey into packages, I/O streams, and arrays, think
about the possibilities that await you. You'll unlock the power to manage data effec-
tively, communicate seamlessly with users, and write organized, efficient code. Get
ready to take your Java skills to the next level!

Discussion

1.3.1 Java Packages

A Java package is a container for grouping related classes, interfaces, and sub-packages,
helping developers manage and organize their code effectively. Java packages fall into
two types: built-in packages and user-defined packages. Built-in packages, like java,
lang, awt, javax, swing, net, io, util, and sql, are part of the Java standard library, while
user-defined packages are created by developers for customized code organization.

Packages serve several purposes in Java:

1.	 Avoiding Naming Conflicts: Packages allow unique class names by grouping
them under different package names.

2.	 Access Control: They regulate access levels for classes and interfaces.

3.	 Code Organization: They provide a structured, modular layout, especially
for large projects with numerous classes.

1.3.2 Types of Java Packages

1.3.2.1 Built-in Packages

Java includes predefined packages that offer extensive functionality, including input/
output processing, networking, and GUI development. Some key built-in packages are:

	♦ java.sql: Provides classes for database access and processing, with classes
like Connection, PreparedStatement, and ResultSet.

	♦ java.lang: Contains core classes fundamental to Java, such as String, System,
and Math.

	♦ java.util: Includes collection classes and utilities, like ArrayList, HashMap,
and Calendar.

73 SGOU - SLM - BCA - Programming in Java

	♦ java.net: Provides classes for network applications, including Socket and
URL.

	♦ java.io: Supports I/O operations with classes such as BufferedReader, File,
and PrintStream.

	♦ java.awt: Contains classes for building graphical interfaces, with classes like
Button, Font, and Graphics.

Fig. 1.3.1 shows Sample Java packages, subpackages and classes.

Example of Importing Built-in Packages. To use a class or package, you use the import
statement:

Syntax:

import package.name.Class; // Import a single class

import package.name.*; // Import the whole package

Example

import java.util.Scanner;

In the example above, java.util is a package, while Scanner is a class of the java.util
package.

To use the Scanner class, create an object of the class and use any of the available
methods found in the Scanner class documentation. In our example, we will use the
nextLine() method, which is used to read a complete line:

Given below is an example using the Scanner class to get user input:

import java.util.Scanner;

class MyClass

{

	 public static void main(String[] args)

	 {

 		 Scanner myObj = new Scanner(System.in);

 		 System.out.println("Enter username");

 		 String userName = myObj.nextLine();

 		 System.out.println("Username is: " + userName);

 	 }

}

74 SGOU - SLM - BCA - Programming in Java

1.3.2.2 User-Defined Packages

Java enables developers to create custom packages for better code modularity and
reuse. These user-defined packages improve code organization and maintainability by
grouping related classes together.

Benefits of User-Defined Packages

	♦ Code Organization: Easier navigation of related code.

	♦ Encapsulation: Restricts access levels within the package.

	♦ Reusability: Packages allow sharing and reusing code across different
projects.

Creating a User-Defined Package

1.	 Naming: Follow lowercase, reverse domain naming (e.g., com.example.
myapp).

2.	 Declaration: Start each file with the package keyword.
3.	 File Structure: Arrange Java files according to the package hierarchy.

Example of user defined package

package com.example;

public class Calculator

Fig. 1.3.1 Sample Java packages, subpackages and classes

75 SGOU - SLM - BCA - Programming in Java

{

	 public int add(int a, int b)

	 {

 		 return a + b;

 	 }

}

Using the User-Defined Package: To use classes from a user-defined package in another
file

import com.example.Calculator;

public class PackageExample

{

	 public static void main(String[] args)

	 {

 		 Calculator calculator = new Calculator();

 		 System.out.println("Addition: " + calculator.add(5, 3));

	 }

}

1.3.2.3 Accessing Classes from Different Packages

To access classes across different packages, you can:

1.	 Use package.*: Imports all classes within a package but excludes sub-
packages.

2.	 Use package.classname: Imports a specific class from a package.
3.	 Use Fully Qualified Name: Refers directly to the package path without

importing.

Example of Accessing Classes

// Accessing via package.*

import pack.*;

A obj = new A();

obj.msg();

// Accessing via package.classname

76 SGOU - SLM - BCA - Programming in Java

import pack.A;

A obj = new A();

obj.msg();

// Accessing via fully qualified name

pack.A obj = new pack.A();

1.3.2.4 Sub-Packages in Java

A sub-package is a package nested within another package, used for further categorization.
For example, java.util has sub-packages like java.util.zip.

Example of Sub-Package Creation

package com.javapower.more;

class Simple

{

	 public static void main(String args[])

	 {

 		 System.out.println("Hello subpackage");

 	 }

}

1.3.2.5 Organizing Classes with Subpackages

Java lets you organize your code further by using subpackages. Imagine a package as
a folder. A subpackage is like a subfolder inside that folder. This helps keep things tidy
and easier to find.

For example, Java has a big "java" package with lots of classes for different tasks.
To avoid clutter, Sun Microsystems (the original developers) created subpackages like
"lang" (for language-related stuff), "net" (for networking), and "io" (for input/output).

This way, similar classes are grouped together. Networking classes like "Socket" and
"ServerSocket" live in "net," while "Reader" and "Writer" for reading and writing data
are in "io."

1.3.2.6 Naming Conventions

Packages and subpackages usually follow a naming pattern like domain.company.
package. Think of it like an address: "com.javapower.more" or "org.ssit.dao."

Example: Creating a Subpackage

Let's create a subpackage called "more" inside a hypothetical "com.javapower" package.

77 SGOU - SLM - BCA - Programming in Java

Here's a simple class named "Simple" inside it:

package com.javapower.more;

public class Simple

{

	 public static void main(String[] args)

	 {

 		 System.out.println("Hello subpackage!");

 	 }

}

1.3.3 Import packages

In Java, the import statement is used to make classes or entire packages available within
a Java program, allowing developers to access classes and interfaces from various
packages without needing to type their fully qualified names repeatedly. Java provides
built-in packages like java.util, java.io, and java.lang, the last of which is imported
automatically in every program. By using import, developers can organize code more
efficiently, accessing only the necessary classes or packages.

For example, import java.util.Scanner; allows a program to use the Scanner class
directly to gather user input.

Using import package.name.*; includes all classes within a package, simplifying
access when multiple classes from the same package are needed. This approach helps
in structuring code more clearly and reducing redundancy.

Syntax

import package.name.Class; // Import a single class

import package.name.*; // Import the whole package

There are three ways to access the package from outside the package.

1.	 import package.*;
2.	 import package.classname;
3.	 fully qualified name.

1.3.3.1 Using packagename.*

If you use a package.* then all the classes and interfaces of this package will be
accessible but not subpackages.

The import keyword is used to make the classes and interface of another package
accessible to the current package.

78 SGOU - SLM - BCA - Programming in Java

Example of package that import the packagename.*

//save by A.java

package pack;

public class A

{

	 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B

{

	 public static void main(String args[])

	 {

 		 A obj = new A();

 		 obj.msg();

 	 }

}

Output:Hello

1.3.3.2 Using packagename.classname

If you import package.classname then only the declared class of this package will be
accessible.

Example of package by "import package.classname"

//save by A.java

package pack;

public class A

{

	 public void msg(){System.out.println("Hello");}

}

79 SGOU - SLM - BCA - Programming in Java

//save by B.java

package mypack;

import pack.A;

class B

{

	 public static void main(String args[])

	 {

 		 A obj = new A();

 		 obj.msg();

	 }

}

Output:Hello

1.3.3.3 Using fully qualified name

If you use a fully qualified name then only the declared class of this package will be
accessible. Now there is no need to import. But you need to use a fully qualified name
every time when you are accessing the class or interface.

It is generally used when two packages have the same class name e.g. java.util and java.
sql packages contain Date class.

Example of package by import fully qualified name

//save by A.java

package pack;

public class A

{

	 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

class B

{

	 public static void main(String args[])

80 SGOU - SLM - BCA - Programming in Java

	 {

		 pack.A obj = new pack.A();//using fully qualified name

 		 obj.msg();

	 }

}

Output: Hello

If you import a package, subpackages will not be imported. If you import a package,
all the classes and interface of that package will be imported excluding the classes and
interfaces of the subpackages. Hence, you need to import the subpackage as well.

Note: Fig. 1.3.2 shows Sequence of the program must be package then import then
class.

Fig. 1.3.2 Sequence of the program for importing subpackage

1.3.4 Default Java Package

Java automatically imports the java.lang package in every program. This package
contains core classes required for basic Java functionality, such as String, System, and
Math.

The java.lang package is automatically imported by the Java compiler, providing
essential classes needed for creating basic Java programs. Among the most important
classes in this package are Object, which serves as the root of all class hierarchies, and
Class, whose instances represent classes at runtime.

Consider a simple Java program that checks if a number is even or odd. In this example,
we do not explicitly import any packages. Despite this, the program can use the String
class directly. Normally, the fully qualified class name is required at the beginning of a
program using the import keyword, but the String belongs to java.lang package and the
compiler handles the import implicitly.

81 SGOU - SLM - BCA - Programming in Java

 Fig 1.3.3 sample Java Builtin Packages and classes

By default, java.lang includes foundational classes like Object without any visible
imports in the code. Fig. 1.3.3 shows sample Java Builtin Packages and class.

Example:

import java.io.PrintStream;

public class FindEvenOdd

{

	 public FindEvenOdd() { }

 	 public static void main(String[] paramArrayOfString)

 	 {

 		 int i = 87;

 		 if (i % 2 == 0)

		 {

 		 System.out.println(i + " is an even number.");

 		 }

	 else

82 SGOU - SLM - BCA - Programming in Java

		 {

 		 System.out.println(i + " is an odd number.");

 		 }

	 }

}

We do not need to explicitly import java.lang; all of its classes are accessible by default,
simplifying program design and eliminating the need for additional import statements
for this package.

By organizing classes into built-in and user-defined packages, Java allows for a more
modular, manageable code structure, making applications easier to maintain and scale.

1.3.5 Java InputStream

The InputStream class in Java, located in the java.io package, is an abstract class that
provides methods for reading bytes from various sources. It acts as the superclass for
all byte input streams and implements the Closeable and AutoCloseable interfaces
for efficient resource management. Essential methods include read(), which retrieves
individual bytes or arrays of bytes, and close(), which frees system resources. This
class simplifies input operations across files, network connections, and in-memory
data, making it vital for Java I/O processes. For more information, you can refer to
the official Java documentation. The InputStream class provides a simple and uniform
way to access data, making it easier for developers to handle input operations without
worrying about the details of the underlying data source. This class is essential when
working with files, network connections, or even in-memory data.

One of the key features of InputStream is its ability to read data in a byte-oriented
manner. This means that it can handle raw binary data efficiently. The class includes
several methods for reading data, such as read(), which reads a single byte, and
read(byte[] b), which reads multiple bytes into a byte array. These methods return the
number of bytes read, allowing programs to process the data accordingly. The read()
method will return -1 when the end of the stream is reached, which helps determine
when to stop reading data.

InputStream is designed to work with various data sources, including files and network
connections. For instance, the FileInputStream subclass reads data from files, while
ByteArrayInputStream allows reading from byte arrays. This flexibility makes
InputStream a powerful tool for developers, enabling them to create applications that
can interact with different types of data sources seamlessly. By using the appropriate
subclasses, developers can easily adapt their code to handle various input scenarios.

Error handling is also an important aspect when working with InputStream. It is
common for input operations to encounter exceptions, such as IOException, which may
occur due to issues like missing files or network problems. Therefore, developers need
to implement proper error-handling techniques to ensure that their applications remain

83 SGOU - SLM - BCA - Programming in Java

robust and user-friendly. By catching these exceptions and providing meaningful
error messages, developers can improve the overall user experience and maintain the
reliability of their applications.

Java's InputStream is a fundamental component of the Java I/O system that simplifies
data reading from various sources. Its ability to read bytes, work with different data
types, and handle errors makes it an essential tool for Java developers. Understanding
how to use InputStream effectively can lead to developing more efficient and reliable
Java applications, as it provides a consistent way to manage input operations.

Java's InputStream class is extended by several subclasses, each designed for specific
input sources. Key classes include:

	♦ FileInputStream: Reads bytes from a file.

	♦ ByteArrayInputStream: Reads bytes from a byte array in memory.

	♦ BufferedInputStream: Buffers input to improve efficiency.

	♦ DataInputStream: Reads Java primitive data types from an input stream.

	♦ PipedInputStream: Implements an input stream connected to a piped
output stream.

These subclasses allow flexible and efficient handling of various data sources.

Examples for common InputStream classes in Java is given below:

1. Example on FileInputStream:

import java.io.FileInputStream;

import java.io.IOException;

public class FileInputStreamExample

{

	 public static void main(String[] args)

	 {

 		 try (FileInputStream fis = new FileInputStream("example.txt"))

		 {

 		 int data;

 		 while ((data = fis.read()) != -1)

			 {

 			 System.out.print((char) data);

 		 }

84 SGOU - SLM - BCA - Programming in Java

 		 }

		 catch (IOException e)

		 {

 		 e.printStackTrace();

 		 }

 	 }

}

2. Example on ByteArrayInputStream:

import java.io.ByteArrayInputStream;

import java.io.IOException;

public class ByteArrayInputStreamExample

{

	 public static void main(String[] args)

	 {

 		 byte[] data = "Hello, ByteArray!".getBytes();

 		 try (ByteArrayInputStream bais = new ByteArrayInputStream(data))

		 {

 		 int content;

 		 while ((content = bais.read()) != -1)

			 {

 			 System.out.print((char) content);

 		 }

 		 }

		 catch (IOException e)

		 {

 		 e.printStackTrace();

 		 }

 	 }

}

85 SGOU - SLM - BCA - Programming in Java

3. Example on BufferedInputStream:

import java.io.BufferedInputStream;

import java.io.FileInputStream;

import java.io.IOException;

public class BufferedInputStreamExample

{

	 public static void main(String[] args)

	 {

 		 try (BufferedInputStream bis = new BufferedInputStream(new 		
		 FileInputStream("example.txt")))

		 {

 		 int data;

 		 while ((data = bis.read()) != -1)

			 {

 			 System.out.print((char) data);

 		 }

 		 }

		 catch (IOException e)

		 {

 		 e.printStackTrace();

 		 }

 	 }

}

4. Example on DataInputStream:

import java.io.DataInputStream;

import java.io.FileInputStream;

import java.io.IOException;

public class DataInputStreamExample

{

86 SGOU - SLM - BCA - Programming in Java

	 public static void main(String[] args)

	 {

 		 try (DataInputStream dis = new DataInputStream(new 			
		 FileInputStream("data.bin")))

		 {

 		 int intValue = dis.readInt();

 		 double doubleValue = dis.readDouble();

 		 System.out.println("Integer: " + intValue + ", Double: " + 		
			 doubleValue);

 		 }

		 catch (IOException e)

		 {

 		 e.printStackTrace();

 		 }

 	 }

}

5. Example on PipedInputStream:

import java.io.PipedInputStream;

import java.io.PipedOutputStream;

import java.io.IOException;

public class PipedInputStreamExample

{

 public static void main(String[] args)

 {

 try (PipedOutputStream pos = new PipedOutputStream();

 PipedInputStream pis = new PipedInputStream(pos))

 {

 new Thread(() ->

 {

 try

87 SGOU - SLM - BCA - Programming in Java

 {

 pos.write("Hello from PipedOutputStream!".getBytes());

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }).start();

 	 int data;

 while ((data = pis.read()) != -1)

 {

 System.out.print((char) data);

 }

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }

}

1.3.6 Java Output Stream

The OutputStream class in Java is an abstract class used for writing data to an
output destination, such as a file or network socket. The OutputStream class in Java
inherits several methods from the Object class, including clone(), equals(Object obj),
hashCode(), toString(), and getClass(). This abstract class implements the interfaces
Closeable and Flushable, which provide methods for closing the stream and flushing it,
respectively. These features are essential for effective resource management and data
integrity in applications that perform input and output operations. This class provides
several important methods for writing data.

One of the key methods is close(), which releases system resources associated with
the stream. This is essential for preventing memory leaks and ensuring that data is
saved correctly. The flush() method plays a significant role in ensuring that any buffered
output bytes are written out, maintaining data integrity during write operations.

88 SGOU - SLM - BCA - Programming in Java

The class also includes methods for writing bytes from byte arrays. The write(byte[] b)
method writes an entire byte array to the stream, while the write(byte[] b, int off, int len)
method allows for writing a specific portion of the array, starting from a specified offset.
Additionally, the write(int b) method enables writing a single byte, giving programmers
flexibility in managing their output.

It acts as a superclass for various output streams that allow programs to send data
in a byte-oriented way. This standardization simplifies writing data to files, network
connections, or other output locations. Using OutputStream helps developers create
applications that require effective output handling.

The OutputStream class includes several important methods for data writing. One key
method is write(int b), which allows for writing a single byte to the output stream.
There is also the write(byte[] b) method, which writes an entire array of bytes at once.
Additionally, a method exists for writing a part of a byte array, providing more control
over the data sent. These methods do not return values but may throw exceptions if
writing fails, which gives developers feedback on the operation's success.

Different subclasses of OutputStream offer specific functions for various output
sources. For example, FileOutputStream writes data directly into files, while
ByteArrayOutputStream writes data in a byte array in memory. This variety allows
developers to switch between output destinations easily by using the right subclasses
without changing much code. This flexibility is essential for building applications that
work with different data sources.

Error handling is also important when using OutputStream. Input/output operations
can lead to exceptions, such as IOException, due to problems like lack of storage
space or network issues. Developers should implement error-handling techniques to
keep applications stable and user-friendly. Catching these exceptions enables graceful
handling of problems and provides helpful feedback to users, improving their overall
experience with the application.

In summary, Java's OutputStream class is a key component for writing data to
various output locations. Its byte-oriented design, along with different subclasses,
allows developers to create applications that manage output operations effectively.
Understanding how to use OutputStream can lead to more dependable Java applications,
as it provides a consistent framework for handling output across different contexts.

Here are some classes that extend Java's OutputStream:

	♦ FileOutputStream: Used to write bytes directly to a file.

	♦ ByteArrayOutputStream: Writes bytes to a byte array in memory.

	♦ BufferedOutputStream: Buffers output to improve performance.

	♦ DataOutputStream: Writes Java's basic data types to an output stream.

	♦ PipedOutputStream: Works with a piped input stream for inter-thread
communication.

89 SGOU - SLM - BCA - Programming in Java

These classes help manage different types of output easily.

1.3.6.1 Example code using Java InputStream and OutputStream

An example code leveraging InputStream and OutputStream in Java using File
InputStream and FileOutputStream is given below:

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class StreamExample

{

 public static void main(String[] args)

 {

 try (InputStream input = new FileInputStream("input.txt");

 OutputStream output = new FileOutputStream("output.txt"))

 {

 int byteData;

 while ((byteData = input.read()) != -1)

 {

 output.write(byteData);

 }

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }

}

1. Example on FileOutputStream

import java.io.FileOutputStream;

import java.io.IOException;

90 SGOU - SLM - BCA - Programming in Java

public class FileOutputStreamExample

{

 public static void main(String[] args)

 {

	 try (FileOutputStream fos = new FileOutputStream("example.txt"))

	 {

 	 String data = "Hello, FileOutputStream!";

 	 fos.write(data.getBytes());

 	 System.out.println("Data written to file.");

 	 }

	 catch (IOException e)

	 {

 	 e.printStackTrace();

 	 }

 }

}

2. Example on ByteArrayOutputStream

import java.io.ByteArrayOutputStream;

import java.io.IOException;

public class ByteArrayOutputStreamExample

{

 public static void main(String[] args)

 {

 	 try (ByteArrayOutputStream baos = new ByteArrayOutputStream())

	 {

 	 String data = "Hello, ByteArrayOutputStream!";

 	 baos.write(data.getBytes());

 	 System.out.println("Data in byte array: " + baos.toString());

 	 }

91 SGOU - SLM - BCA - Programming in Java

	 catch (IOException e)

	 {

 	 e.printStackTrace();

 }

 }

}

3. Example on BufferedOutputStream

import java.io.BufferedOutputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class BufferedOutputStreamExample

{

 public static void main(String[] args)

 {

 	 try (BufferedOutputStream bos = new BufferedOutputStream(new 	 	
 	 FileOutputStream("buffered_example.txt")))

 {

 	 String data = "Hello, BufferedOutputStream!";

 	 bos.write(data.getBytes());

 	 bos.flush();

 	 System.out.println("Data written to buffered file.");

 	 }

 catch (IOException e)

 {

 	 e.printStackTrace();

 }

 }

}

4. Example on DataOutputStream
import java.io.DataOutputStream;

92 SGOU - SLM - BCA - Programming in Java

import java.io.FileOutputStream;

import java.io.IOException;

public class DataOutputStreamExample

{

 public static void main(String[] args)

 {

 try (DataOutputStream dos = new DataOutputStream(new FileOutputStream

	 ("data_example.txt")))

 	 {

 	 dos.writeUTF("Hello, DataOutputStream!");

 	 System.out.println("Data written to data file.");

 	 }

	 catch (IOException e)

	 {

 	 e.printStackTrace();

 	 }

 }

}

5. Example on PipedOutputStream :

import java.io.PipedOutputStream;

import java.io.PipedInputStream;

import java.io.IOException;

public class PipedOutputStreamExample

{

 public static void main(String[] args) throws IOException

 {

	 PipedOutputStream pos = new PipedOutputStream();

 	 PipedInputStream pis = new PipedInputStream(pos);

 	 // Writing to PipedOutputStream in a separate thread

93 SGOU - SLM - BCA - Programming in Java

 	 new Thread(() ->

	 {

 	 try

		 {

 		 String data = "Hello, PipedOutputStream!";

 		 pos.write(data.getBytes());

 		 pos.close();

 	 }

		 catch (IOException e)

		 {

 		 e.printStackTrace();

 	 }

 }).start();

 		 // Reading from PipedInputStream

 		 byte[] buffer = new byte[50];

 		 int bytesRead = pis.read(buffer);

 		 System.out.println("Data read: " + new String(buffer, 0, bytesRead));

 }

}

These examples demonstrate how to use various OutputStream classes to write data in
different contexts. In short,

1.	 FileOutputStream: Writes bytes to a file, creating or overwriting it if it
already exists.

2.	 ByteArrayOutputStream: Collects bytes in memory, allowing easy access
and conversion to a string.

3.	 BufferedOutputStream: Buffers data for efficient writing to an output stream,
reducing the number of writes.

4.	 DataOutputStream: Writes Java primitive data types to an output stream,
preserving their binary format.

5.	 PipedOutputStream: Sends data to a connected PipedInputStream, enabling
inter-thread communication.

94 SGOU - SLM - BCA - Programming in Java

1.3.7 Arrays

Suppose you're organizing a bookshelf where each shelf can only hold one type of
book, say all novels, all biographies, or all science books. This is like an array—an
indexed collection of similar, or homogeneous, data elements. One of the best aspects
of having an organized bookshelf is the ability to store a large collection of books in one
location, making them easy to locate and access. Similarly, in programming, arrays help
you store multiple values under a single variable. It improves the clarity and readability
of your code.

However, there’s a downside. Once you've built your bookshelf, it’s fixed in size. If
you made space for 100 books, but later needed room for 110, you’re stuck. You can’t
expand or shrink the bookshelf to fit your changing needs. This limitation mirrors the
challenge with arrays: once an array is created, its size is locked in place. This is tricky.
Just like you don’t always know how many books you’ll need to store, you might not
know how much data your array will need to hold in advance.

Definition: An array is a collection of the same type of data which is stored in contiguous
memory location. In Java, an array is an object which contains elements of a similar
data type.

An array can contain primitive data types (int, char, etc.) and non-primitive data
types(object references of a class) depending on the definition of the array.

1.3.7.1 Array Declaration

As in other programming languages like C,C++,etc , we have to declare variables in
Java before it is used in the program.An array declaration has two components: the type
and the name.

There are three different syntaxes for declaring an array in Java.They are :

1.	 int[] x;
2.	 int []x;
3.	 int x[];

All the three syntaxes are valid for declaration of variables in Java. This statement
declares an array named x which holds integers. Like an array of integers, we can also
create an array of other primitive data types like char, float, double, etc., or user-defined
data types (objects of a class). For example:

		 double[] y; // array of double data type

MyClass myClassArray[]; // array of Object

One thing you have to understand is that the size of the array is specified only at creation
not during declaration.

1.3.7.2 Array Creation

Every array in java is an object.Hence we can create arrays using 'new' operator. The

95 SGOU - SLM - BCA - Programming in Java

syntax is as shown below.

int[] x = new int[3];

where 'x' is the reference variable.

1.3.7.3 Access an element in an array

We can access array elements using their index, which starts from 0. For an integer
array x with five elements, x[0] represents the first element, x[1] represents the second
element, x[2] represents the third element and so on. The last index will be 4 in this
case.

1.3.7.4 Array Initialization

int[] x = new int[3]; // Array creation

x[0]=1; // Assigning value 1 to x[0]

x[1]=2; // Assigning value 2 to x[1]

x[2]=3; // Assigning value 3 to x[2]

The array after these statements are executed is shown below

1.3.8 Array Declaration,Creation and Initialization in a single
statement

Now, think about a suitcase that can only hold whole numbers, like 10, 20, and 30. In
programming, you’d declare, create, and initialize this suitcase of numbers in a single
step. It’s as if you’re saying, “I need a suitcase for numbers, and here’s what I’ll pack
in it right now.”

int[] x = {10,20,30};

Here, int is the type of item the suitcase (array) will hold—whole numbers. The []
indicates that this is a suitcase (an array), not just a single item. And inside the curly
braces, {10, 20, 30}, you’ve packed the numbers right from the start.

Some other examples :

char[] ch = {'a','e','i','o','u'};

String[] s = {"A","AA","AAA"};

1.3.9 Length of Array

We can get the length of an array using the length property.Length of the array means

96 SGOU - SLM - BCA - Programming in Java

that the total number of elements the array can hold. length is a final variable applicable
for arrays.

eg: int[] x = new int[6];

System.out.println(x.length); // prints the value 6

1.3.10 Multidimensional Arrays

Multidimensional arrays can be described simply as arrays that contain other arrays.
The data in these arrays is organized in a tabular structure, where elements are stored
in row-major order.

Example : Two dimensional array:

int[][] x = new int[10][20];

Three dimensional array:

int[][][] y = new int[10][20][30];

How can you initialize a 2-D array?

As in the case of 1-D arrays, you can provide values for a 2-D at the time of declaration.
The values can be given in braces as in the example given below.

The above 2-D array will be stored in the memory as shown below:

The values in the array can be accessed using indices. x[0][0] is value 100, x[0][1] is
value 10, x[1][0] is value 200 and so on.

1.3.11 Accessing array elements using for - loop
Each element in the array can be accessed using its index, which starts at 0 and goes up

97 SGOU - SLM - BCA - Programming in Java

to array length - 1. To access and display all elements of the array ‘x’, a for loop can be
used:

for (int i = 0; i < x.length; i++)

 System.out.println("Element at index " + i + " : "+ x[i]); // prints all the elements
in the array

Enhanced for loop / Java for-each loop

The for-each loop, also called the enhanced for loop, was introduced in Java with
J2SE 5.0. It offers a simplified way to iterate through arrays or collections. Instead
of traditional loops, it allows for direct traversal of each element, improving code
readability and reducing the chances of errors. The name "for-each" reflects how the
loop processes elements one at a time in sequence.

Imagine you have a stack of books on your desk and you need to review each one. In
a traditional for loop, you would go through the stack by counting the books, starting
at the first book (index 0), and moving on until you reach the last one (index n-1).
However, with a for-each loop, it's like having an assistant taking and giving you each
book one by one, without you having to keep track of how many books are there or
which one you’re on. You simply review the book given to you and move on to the
next. This process is simpler and less prone to mistakes, just like how the for-each loop
eliminates the need for managing index values and ensures each element is accessed
directly.

The syntax of Java for-each loop consists of data_type with the variable followed by a
colon (:), then array or collection.

for (data_type variable : array / collection)

{

	 //body of for-each loop

}

For eg:

(1) int[] x = { 10, 20,30,40};

To print elements of the above array:

Normal loop

for(int i = 0 ; i < x.length ; i++)

System.out.println(x[i]);

Enhanced for loop

for(int x1 : x)

System.out.println(x1);

98 SGOU - SLM - BCA - Programming in Java

(2) For 2-D arrays

Normal loop

for(int i = 0; i<x.length ; i++)

{

	 for (int j=0 ; j<x[i].length ; j++)

	 {

		 System.out.println(x[i]);

	 }

}

Enhanced for loop

for(int x1 : x)

{

	 for(int x2: x1)

	 {

		 System.out.println(x2);

	 }

}

The enhanced for loop executes only in sequence.ie the counter is always increased by
one , whereas in normal for loop you can change the steps as per your wish. eg: doing
something like i= i+2;

1.3.12 Example programs

1.3.12.1 Program No:1

Write a Java program to read and print 10 integers.

import java.util.Scanner;

You can read values into the array by using scanner class. The Scanner class in
Java is used to easily read input from various sources such as user input from the
keyboard, files, or other data streams. It simplifies the process of breaking input
into tokens and supports reading different data types like integers, strings, and
floating-point numbers. This makes it highly useful for interactive console-based
programs.

99 SGOU - SLM - BCA - Programming in Java

public class ReadAndPrintIntegers

{

 public static void main(String[] args)

 {

	 // Create a scanner object to read input

 	Scanner scanner = new Scanner(System.in);

 	 // Create an array to store 10 integer values

 	int[] numbers = new int[10];

	 // Prompt user to enter 10 integers

 	 System.out.println("Enter 10 integer values:");

 	 // Loop to read integers into the array

 	 for (int i = 0; i < 10; i++)

 {

		 numbers[i] = scanner.nextInt();

 }

 // Print the integers entered by the user

 System.out.println("You entered the following values:");

 for (int i = 0; i < 10; i++)

 	 {

	 	 System.out.println(numbers[i]);

 	 }

 	 // Close the scanner

 	 scanner.close();

 }

}

OUTPUT

Enter 10 integer values:

12 45 78 22 36 49 57 81 92 11

You entered the following values:

100 SGOU - SLM - BCA - Programming in Java

12 45 78 22 36 49 57 81 92 11

1.3.12.2 Program No : 2

Write a Java program to find the smallest element in an array.

import java.util.Scanner;

public class SmallestElement {

 public static void main(String[] args) {

 // Create a scanner object to read input

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter the size of the array

 System.out.print("Enter the number of elements in the array: ");

 int n = scanner.nextInt();

 // Create an array to store the elements

 int[] numbers = new int[n];

 // Prompt the user to enter the array elements

 System.out.println("Enter " + n + " integer values:");

 for (int i = 0; i < n; i++) {

 numbers[i] = scanner.nextInt();

 }

 // Initialize the smallest element as the first element in the array

 int smallest = numbers[0];

 // Loop to find the smallest element

 for (int i = 1; i < n; i++) {

 if (numbers[i] < smallest) {

 smallest = numbers[i];

 }

 }

 // Print the smallest element

Calling scanner.close() is not strictly necessary in small programs, but it is con-
sidered a good practice to free up resources and avoid potential issues in larger
applications.

101 SGOU - SLM - BCA - Programming in Java

 System.out.println("The smallest element in the array is: " + smallest);

 // Close the scanner

 scanner.close();

 }

}

OUTPUT

Enter the number of elements in the array: 5

Enter 5 integer values:

10

3

15

7

1

The smallest element in the array is: 1

1.3.12.3 Program No : 3

Write a java program to read and print the values in a 2-D array.

import java.util.Scanner;

public class TwoDArrayInput {

 public static void main(String[] args) {

 // Create a Scanner object to read input

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter the size of the array

 System.out.print("Enter the number of rows: ");

 int rows = scanner.nextInt();

 System.out.print("Enter the number of columns: ");

 int cols = scanner.nextInt();

 // Create a 2-D array with the specified size

 int[][] array = new int[rows][cols];

 // Loop to read input into the 2-D array

 System.out.println("Enter the elements of the 2-D array:");

 for (int i = 0; i < rows; i++) {

102 SGOU - SLM - BCA - Programming in Java

 for (int j = 0; j < cols; j++) {

 System.out.print("Element at [" + i + "][" + j + "]: ");

 array[i][j] = scanner.nextInt();

 }

 }

 // Print the 2-D array

 System.out.println("\nThe elements of the 2-D array are:");

 for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 System.out.print(array[i][j] + " ");

 }

 System.out.println(); // New line after each row

 }

 // Close th e scanner

 scanner.close();

 }

}

OUTPUT

Enter the number of rows: 2

Enter the number of columns: 3

Enter the elements of the 2-D array:

Element at [0][0]: 1

Element at [0][1]: 2

Element at [0][2]: 3

Element at [1][0]: 4

Element at [1][1]: 5

Element at [1][2]: 6

The elements of the 2-D array are:

1 2 3

4 5 6

103 SGOU - SLM - BCA - Programming in Java

Recap

	♦ Java packages group related classes and interfaces, making code more
organized and avoiding name conflicts. There are built-in packages (like
java.lang and java.util) and user-defined ones created by developers.

	♦ Built-in packages handle common functions like input/output, networking,
and graphics. User-defined packages help structure projects and reuse code.

	♦ The import statement brings classes from packages into a program. You can
import specific classes, all classes in a package, or use the full class name
without importing.

	♦ Sub-packages organize code further by creating nested packages, like java.
util.zip within java.util, to keep code easy to find.

	♦ Java automatically includes java.lang, which has core classes like String and
Object, so you don’t need to import it yourself.

Java Input Stream

	♦ Package: IntputStream belongs to the java.io package.

	♦ Definition: InputStream is an abstract class in Java that allows reading bytes
from various sources, such as files and network connections.

	♦ Key Methods:

	♦ read(): Reads a single byte or an array of bytes.

	♦ close(): Closes the stream and releases associated resources.

	♦ Interfaces: Implements Closeable and AutoCloseable for efficient resource
management.

	♦ Subclasses: Various subclasses, like FileInputStream and BufferedInputStream,
provide specific implementations for different input sources.

	♦ Use Cases: Commonly used for file operations, data streaming, and
communication between applications.

Java Output Stream

	♦ Package: OutputStream belongs to the java.io package.

	♦ Definition: OutputStream is an abstract class in Java for writing bytes to
various output destinations, such as files or network connections.

	♦ Key Methods:

	♦ write(int b): Writes a single byte to the output stream.

	♦ write(byte[] b): Writes an array of bytes to the stream.

104 SGOU - SLM - BCA - Programming in Java

	♦ flush(): Forces any buffered output bytes to be written.

	♦ close(): Closes the stream and releases resources.

	♦ Interfaces: Implements Closeable and Flushable for effective resource
management.

	♦ Subclasses: Includes FileOutputStream, BufferedOutputStream, and
PrintStream for specific output needs.

	♦ Use Cases: Widely used for file writing, data transmission, and communication
between applications.

	♦ Arrays are indexed collections of similar data types.

	♦ Array size is fixed upon creation and cannot be changed.

	♦ An array in Java is an object that holds elements of a specific type.

	♦ Arrays can store both primitive and non-primitive data types.

	♦ Declaration syntax includes the data type followed by brackets (e.g., int[] x).

	♦ Arrays can be initialized in a single statement (e.g., int[] x = {10, 20, 30}).

	♦ The length of an array can be accessed using the length property.

	♦ Multidimensional arrays consist of arrays within arrays (e.g., 2D or 3D
arrays).

	♦ The enhanced for loop simplifies iteration through array elements.

	♦ The Scanner class can be used to read input values into arrays.

Objective Type Questions

1.	 What type of package is created by developers to improve code organization
and reuse?

2.	 Which package in Java is automatically imported by the compiler?

3.	 Which package in Java provides classes for network applications?

4.	 What keyword is used to declare a package in Java?

5.	 In which package is the Scanner class found?

6.	 Which package provides classes for database access?

105 SGOU - SLM - BCA - Programming in Java

Answers to Objective Type Questions

1.	 User-defined

2.	 java.lang

7.	 What is the purpose of a sub-package in Java?

8.	 What is the primary function of the InputStream class?

9.	 Which method reads a single byte from an InputStream?

10.	What does the close() method do in an OutputStream?

11.	Which interface allows the OutputStream to flush its data?

12.	What value does the read() method return when the end of a stream is
reached?

13.	What method is used to write a byte array to an OutputStream?

14.	Which method in OutputStream forces any buffered output bytes to be
written out?

15.	What is the purpose of the write(int b) method in OutputStream?

16.	What does the write(byte[] b, int off, int len) method do?

17.	Which class is the parent of both InputStream and OutputStream?

18.	What is an array in Java?

19.	How do you declare an array to hold integers in Java?

20.	What is the index of the last element in an array of size 5?

21.	How can you initialize an array in a single statement?

22.	What property is used to get the length of an array in Java?

23.	What does a multidimensional array in Java contain?

24.	What loop can be used to iterate through each element of an array in Java?

25.	Which class in Java is commonly used to read input from the user?

106 SGOU - SLM - BCA - Programming in Java

3.	 java.net

4.	 package

5.	 java.util

6.	 java.sql

7.	 Categorization

8.	 InputStream reads bytes from a source.

9.	 The method read() reads a single byte.

10.	close() releases resources in OutputStream.

11.	The Flushable interface enables flushing.

12.	read() returns -1 at the end of a stream.

13.	write(byte[] b) writes a byte array.

14.	flush() forces buffered bytes to write out.

15.	write(int b) writes a single byte.

16.	write(byte[] b, int off, int len) writes specific bytes from an array.

17.	Both InputStream and OutputStream extend java.io.InputStream.

18.	A collection of similar data.

19.	int[] x;

20.	4

21.	int[] x = {10, 20, 30};

22.	Using the length property.

23.	Other arrays.

24.	A for loop.

25.	Scanner class.

107 SGOU - SLM - BCA - Programming in Java

Assignments

1.	 Explain the concept of Java packages and their significance in code organization.
Describe the purpose of Java packages, the types of packages (built-in and
user-defined), and how they help avoid naming conflicts and regulate access
control. Give examples to illustrate how packages improve code organization
and maintainability in large projects.

2.	 Discuss the use and benefits of user-defined packages in Java.
Explain how to create a user-defined package, including the naming
conventions and file structure. Describe the benefits of user-defined packages
in terms of code reusability, encapsulation, and organization. Provide a
sample code to demonstrate the creation and usage of a user-defined package.

3.	 Analyze the role of the java.lang package in Java programming.
Describe the significance of the java.lang package and list some key classes
within it, such as Object, String, and System. Explain why this package is
automatically imported in every Java program and discuss how its classes are
essential for basic Java functionalities. Provide an example demonstrating
the use of a java.lang class without an explicit import statement.

4.	 Write a Java program that initializes an array of 10 integers with user-defined
values. Calculate and display the average of the numbers in the array.

5.	 Develop a Java program that prompts the user to enter 5 numbers, stores
them in an array, and then finds and displays the maximum and minimum
values from the array.

6.	 Write a Java program that initializes an array with 6 elements. Create a
method to reverse the elements of the array and print the reversed array to
the console.

References

1.	 "Effective Java" by Joshua Bloch Edition: 3rd Edition 2018 Addison-Wesl

2.	 "Effective Java" by Joshua Bloch, 3rd Edition, 2018, Addison-Wesley

3.	 "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition, 2005,
O'Reilly Media

4.	 "Java Concurrency in Practice" by Brian Goetz, 1st Edition, 2006

5.	 Addison-Wesley

108 SGOU - SLM - BCA - Programming in Java

Suggested Reading

1.	 Schildt, Herbert. "Java™ The Complete Reference Twelfth Edition." (2022).

2.	 Jana, Debasish. Java and object-oriented programming paradigm. PHI
Learning Pvt. Ltd., 2005.

3.	 Baesens, Bart, Aimée Backiel, and Seppe Vanden Broucke. Beginning Java
programming: the object-oriented approach. John Wiley & Sons, 2015.

4.	 Eckel, Bruce. Thinking in JAVA. Prentice Hall Professional, 2003.

6.	 "Core Java Volume I – Fundamentals" by Cay S. Horstmann, 12th Edition,
2022, Pearson

109 SGOU - SLM - BCA - Programming in Java

Abstraction Inheritance
Overriding and Overloading

Learning Outcomes

Prerequisites

	♦ understand the concept of abstraction and how it helps in hiding the internal
details of objects while exposing only the necessary functionalities.

	♦ differentiate between abstract classes and interfaces and know when to use
each in Java.

●	 familiarise the concept of inheritance and how it allows a subclass to acquire
the properties and behaviors of a superclass.

●	 the concept of method overriding and how it allows a subclass to provide a
specific implementation of a method defined in its parent class.

●	 understand the concept of method overloading, where multiple methods can
have the same name but differ in the number or type of parameters.

When you drive a car, the essential controls like the steering wheel, pedals, and gear
shift are exposed to you. You use these controls to drive the car without needing to
understand the internal working of the engine, transmission, or fuel injection system.
These complex details are hidden (abstracted) from you, allowing you to interact with
the car using a simple interface. In Java, complex internal operations and programming
logic are hidden from the user, while only the necessary and relevant functionality is
exposed. This concept is known as abstraction.

Consider a "Vehicle" class with properties like speed and capacity. If we need to create
a new class named "Car," it can inherit the common properties of the Vehicle class
while also having its own unique properties, such as numberOfDoors or fuelType.
This demonstrates the concept of inheritance in Java, where a subclass adopts the
common features of its parent class and can extend them with its own characteristics.
This promotes code reuse and establishes a hierarchical relationship between classes.

In Java, method overriding allows a subclass to provide its own implementation of a

UNIT 4

The learner will be able to:

110 SGOU - SLM - BCA - Programming in Java

Keywords

Class, interface, extends, polymorphism, abstract method

method that is already defined in its parent class. For example, the Vehicle class may
have a method called displayInfo() to show general details like speed and capacity. The
Car class, which inherits from Vehicle, can override this method to add more specific
details, such as the number of doors. This way, when the displayInfo() method is called
on a Car object, it displays both the inherited and car-specific details, demonstrating
how overriding customizes or enhances inherited behavior.

In Java, method overloading allows a class to have multiple methods with the same
name but different parameter lists. For example, in the Vehicle class, we could have
a method named displayInfo(). One version of this method could take no parameters
and display basic information like speed and capacity. Another version could take
additional parameters, such as the vehicle's model or color, and display more specific
details. Method overloading is determined at compile-time, allowing flexibility in how
methods are called based on the provided arguments. This helps improve code read-
ability and usability while maintaining the same method name for related functionality.

Discussion
In Java, object-oriented programming relies on key concepts like abstraction, inheritance,
overriding, and overloading to create flexible and reusable code. Abstraction hides
implementation details and focuses on essential features, allowing developers to work
with high-level interfaces. Inheritance enables a subclass to inherit properties and
methods from a superclass, promoting code reuse. Overriding lets a subclass redefine
an inherited method to provide specific functionality, while overloading allows multiple
methods with the same name but different parameters to coexist, enhancing flexibility
and readability. These concepts work together to simplify code design and maintenance.

1.4.1 Abstraction in Java Programming

In Java, complex internal operations and programming logic are hidden from the user,
while only the necessary and relevant functionality is exposed. This concept is known
as abstraction. Abstraction allows users to interact with an object without needing to
understand its intricate details or how it works internally. For example, when you use
a car, you don’t need to know how the engine processes fuel or how the transmission
operates. All you care about are the essential features like accelerating, braking, or
steering, and the car handles the complex operations behind the scenes. Similarly, in
Java programming, abstraction allows you to focus on what an object does, rather than
how it does it.

This facility makes programs easier to use, as it hides unnecessary complexities, and

111 SGOU - SLM - BCA - Programming in Java

provides a cleaner, more user-friendly interface. Abstraction is achieved through the
use of abstract classes and interfaces, which specify what operations an object can
perform without revealing how those operations are implemented. By employing
abstraction, developers can build more modular, maintainable, and flexible systems,
since internal implementations can change without affecting the user-facing interface.
This separation of concerns leads to simpler, cleaner code that is easier to manage and
extend.

In Java, abstraction can be achieved in two ways:

1.	 Abstract classes

2.	 Interfaces

1.4.1.1 Abstract Classes

An abstract class in Java acts as a partially implemented class that itself cannot be
instantiated. It exists only for subclassing purposes, and provides a template for its
subcategories to follow. Abstract classes can have implementations with abstract
methods, that is methods without implementation and non-abstract methods, methods
with bodies and can implement. Abstract methods are declared to have no body, leaving
their implementation to subclasses. An abstract is a Java modifier applicable for classes
and methods in Java but not for Variables. Use them when you have a base class with
common code (shared behavior) that should not be instantiated on its own.

1.4.1.1.1 Key characteristics:

	♦ An abstract class must be declared with an abstract keyword.

	♦ An abstract class can have both abstract and non-abstract methods.

	♦ It can have member variables, constructors, and concrete methods.

	♦ It can have static methods.

	♦ It can have final methods which will force the subclass not to change the
body of the method.

	♦ The subclass that extends an abstract class must provide implementations for
all the abstract methods of the abstract class.

1.4.1.1.2 Benefits of Abstraction:

	♦ Security: Hides implementation details and only exposes functionality.

	♦ Code Reusability: Abstract classes and interfaces can be reused by multiple
classes.

	♦ Loose Coupling: By hiding the details of how an object works, you allow
flexibility in changing the implementation without affecting the user of the
object.

1.4.1.1.3 Abstract method
A method that is declared as abstract and does not have implementation is known as

112 SGOU - SLM - BCA - Programming in Java

abstract method.

Syntax for abstract class

abstract class class name

 {

	 abstract void methodname(); // abstract method

	 public void methodname() // non-abstract method

 	 {

		 //Body of the function

 	 }

 }

Example for an abstract class

The program below demonstrates the concept of abstract classes and methods in Java.
It defines an abstract class Shape with an abstract method draw() and a concrete method
description(). A subclass Circle is created to provide the implementation of the draw()
method. The subclass is instantiated, and both the draw() and description() methods are
called to illustrate the functionality.

abstract class Shape

{

	 abstract void draw(); // Abstract method

 	 public void description() // Non-abstract method

 	 {

 		 System.out.println("This is a shape.");

 	 }

}

class Circle extends Shape

 {

 	 void draw() 		 // Provide implementation of the abstract method

 	 {

 	 	 System.out.println("Drawing a circle.");

 	 }

}

113 SGOU - SLM - BCA - Programming in Java

public class AbstractClassExample

{

 	 public static void main(String[] args)

 	 {

 	 Shape shape = new Circle(); // Create an object of the subclass

 	 shape.draw(); // Call the methods

 	 shape.description();

 	 }

}

Output

Drawing a circle.

This is a shape.

In this example, Shape is an abstract class with one abstract method draw() and one
concrete method description(). Subclasses of Shape must implement the draw() method,
but they can inherit the description() method.

1.4.1.1.4 Example Questions

Write a program in Java to demonstrate the concept of an abstract class and method. Define
an abstract class Animal with an abstract method makeSound() and a concrete method
eat(). Create two subclasses, Dog and Cat, that provide their own implementations of
the makeSound() method. Instantiate objects of both subclasses and call their methods
to show the behavior.

// Abstract class

abstract class Animal

{

	 abstract void makeSound(); 		 // Abstract method

 	 public void eat()			 // Concrete method

 	 {

 		 System.out.println("This animal eats food.");

 	 }

}

class Dog extends Animal 			 // Subclass 1: Dog

{

114 SGOU - SLM - BCA - Programming in Java

	 void makeSound()

 	 {

 	 	 System.out.println("The dog barks: Woof Woof!");

 	 }

}

class Cat extends Animal // Subclass 2: Cat

{

	 void makeSound()

	 {

 	 	 System.out.println("The cat meows: Meow Meow!");

 	 }

}

public class AbstractClassExample2

{

	 public static void main(String[] args)

 	 {

 		 Animal dog = new Dog(); 	 // Create objects of Dog and Cat

 	 	 Animal cat = new Cat();

 	 	 dog.makeSound(); 		 // Call methods on Dog

 		 dog.eat();

 		 cat.makeSound(); 		 // Call methods on Cat

 		 cat.eat();

 	 }

}

Output

The dog barks: Woof Woof!

This animal eats food.

The cat meows: Meow Meow!

This animal eats food.

115 SGOU - SLM - BCA - Programming in Java

1.4.1.2 Interfaces in java

An interface in Java is a blueprint for a class. It contains only abstract methods and default/
static methods. Interfaces are used to achieve abstraction and multiple inheritance in
Java, as a class can implement multiple interfaces. There can be only abstract methods
in the java interface, not method body. Java Interface also represents IS-A relationship.
It cannot be instantiated just like abstract class. Use them when you want to define a
contract or a set of methods that various unrelated classes can implement.

Key Features of Java Interfaces

	♦ An interface in Java is a completely abstract class.

	♦ It can contain only abstract methods , interfaces can also have default and
static methods with implementations.

	♦ An interface provides a blueprint for classes, and a class that implements an
interface must implement all of its methods.

	♦ A class can implement multiple interfaces, allowing Java to achieve multiple
inheritance in a way.

	♦ Methods in an interface are implicitly public and abstract

	♦ Variables in an interface are implicitly public, static, and final.

Syntax for interface

interface interfacName

{

	 void method name(); 		 // abstract method by default

}

An example for interface

Below program to demonstrate the use of an interface. Define an interface Drawable
with method draw(). Create two classes, Circle and Rectangle, that implement the
Drawable interface. Instantiate objects of these classes and call the methods.

interface Drawable

{

	 void draw(); 	 // abstract method by default

}

class Circle implements Drawable

{

 public void draw()

 {

116 SGOU - SLM - BCA - Programming in Java

	 System.out.println("Drawing a circle.");

 }

}

class Rectangle implements Drawable

{

 public void draw()

 {

 System.out.println("Drawing a rectangle.");

 }

}

public class TestInterface

{

 public static void main(String[] args)

 {

	 Drawable shape1 = new Circle();

 	 shape1.draw(); 	 // Drawing a circle

 	 Drawable shape2 = new Rectangle();

 	 shape2.draw(); 	 // Drawing a rectangle

 }

}

1.4.1.2.1 Example Question

Write a program to demonstrate the use of an interface. Define an interface Vehicle
with methods start() and stop(). Create two classes, Car and Bike, that implement the
Vehicle interface. Instantiate objects of these classes and call the methods.

interface Vehicle 	 // Define the interface

{

 void start(); 	 // Abstract method

 void stop(); 	 // Abstract method

}

class Car implements Vehicle		 // Implementing the interface in Car class

{

 @Override

 public void start()

117 SGOU - SLM - BCA - Programming in Java

 {

	 System.out.println("The car starts with a key.");

 }

 @Override

 public void stop()

 {

 System.out.println("The car stops by applying brakes.");

 }

}

class Bike implements Vehicle 	 // Implementing the interface in Bike class

{

 @Override

 public void start()

 {

 System.out.println("The bike starts with a kick.");

 }

 @Override

 public void stop()

 {

 System.out.println("The bike stops by applying brakes.");

 }

}

public class InterfaceExample

{

 public static void main(String[] args)

 {

	 Vehicle myCar = new Car();		 // Create objects of Car and Bike

 	 Vehicle myBike = new Bike();

 	 myCar.start();				 // Call methods on Car

 myCar.stop();

 myBike.start(); 			 // Call methods on Bike

 	 myBike.stop();

118 SGOU - SLM - BCA - Programming in Java

 }

}

Expected Output:

The car starts with a key.

The car stops by applying brakes.

The bike starts with a kick.

The bike stops by applying brakes.

1.4.1.2.2 Relationship Between Classes and Interfaces

As shown in the figure1.4.1 given below, a class extends another class, an interface
extends another interface, but a class implements an interface.

1.4.1.3 Key Differences Between Abstract Class and Interface:

Abstract Class Interface

Can have abstract and concrete
methods.

 Contains only abstract methods.

Can have member variables and
constructors.

Cannot have member variables or
constructors.

A class can extend only one
abstract class.

A class can implement multiple
interfaces.

Can have access modifiers for
methods.

Methods are public by default in
an interface.

Suitable when classes share
common behavior.

Suitable for declaring common
functionality across unrelated
classes.

Fig 1.4.1 Relation between class and interface

119 SGOU - SLM - BCA - Programming in Java

1.4.2 Inheritance

Inheritance is a fundamental concept in object-oriented programming (OOP), inclu-
ding Java. It allows one class (called a child or subclass) to inherit properties and
behaviors (fields and methods) from another class (called a parent or superclass).
Inheritance promotes code reuse and establishes a relationship between the child and
parent class, forming a hierarchy. Inheritance in Java allows for the creation of a natural
hierarchy, enabling code reuse, logical organization, and the development of flexible
and maintainable applications. By inheriting properties and methods from parent
classes, subclasses become specialized versions of those parents, and they can modify
or extend behaviors to suit their specific needs.

1.4.2.1 Key Features of Inheritance:

1.	 Code Reusability: The child class can reuse methods and properties defined
in the parent class, reducing code duplication.

2.	 Method Overriding: The child class can provide its own specific
implementation of a method that is already defined in the parent class.

3.	 Polymorphism: Inheritance enables the use of polymorphism, where a
parent class reference can point to a child class object.

4.	 Parent-Child Relationship: It creates a logical relationship between classes.
The child class is a specialized version of the parent class.

1.4.2.1.1 Terms used in Inheritance

Class: A class is a group of objects which have common properties. It is a template or
blueprint from which objects are created.

Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called
a derived class, extended class, or child class.

Super Class/Parent Class: Superclass is the class from where a subclass inherits the
features. It is also called a base class or a parent class.

Reusability: As the name specifies, reusability is a mechanism which facilitates you to
reuse the fields and methods of the existing class when you create a new class. You can
use the same fields and methods already defined in the previous class.

Syntax of inheritance:

class Parent

{

	 public void showMessage()	 // Parent class members (fields and methods)

 	 {

 		 System.out.println("This is a message from the parent class.");

120 SGOU - SLM - BCA - Programming in Java

 	 }

}

class Child extends Parent

{

 // Child class inherits properties and methods from Parent

 public void showMessage()

 {

	 System.out.println("This is a message from the child class.");

 }

}

public class TestInheritance

{

 public static void main(String[] args)

 {

 	 Child child = new Child();

 	 child.showMessage(); // Calls the overridden method in the child class

 }

}

1.4.2.1.2 Example for inheritance

Below code demonstrate inheritance in java

class Animal

{

 void eat()

 {

	 System.out.println("This animal eats food.");

 }

 }

class Dog extends Animal		 // Child class

{

121 SGOU - SLM - BCA - Programming in Java

 void bark()

 {

 System.out.println("The dog barks.");

 }

 }

public class InheritanceDemo		 // Main class

{

 public static void main(String[] args)

 {

 	 Dog dog = new Dog(); // Create an object of the child class

 	 // Call methods from the parent class and child class

 	 dog.eat(); 		 // Inherited from the Animal class

 	 dog.bark(); 		 // Defined in the Dog class

 }

}

Output

This animal eats food.

The dog barks.

The Parent Class (Animal) contains the eat method, which prints a message. The Child
Class (Dog) inherits the eat method from the Animal class and adds its own bark method.
In the Main Method, an instance of the Dog class is created, and both the inherited eat
method and the bark method are called. This demonstrates how a child class can utilize
both its own methods and the methods inherited from the parent class.

1.4.2.2 Types of Inheritance in Java:

On the basis of class, there can be three types of inheritance in java:

	♦ Single inheritance

	♦ Multilevel Inheritance

	♦ Hierarchical Inheritance

In java programming, multiple and hybrid inheritance is supported through interface
only. We will learn about interfaces later.

122 SGOU - SLM - BCA - Programming in Java

1.4.2.2.1 Single Inheritance:

A child class inherits from one parent class. Fig 1.4.2 shows single inheritance

Fig 1.4.2 Single inheritance

Example: Car inherits from Vehicle.

When the Car class inherits from the Vehicle class, it means that the Car class gains
access to the fields and methods defined in the Vehicle class. For example, if the Vehicle
class has a method like start() or a property like speed, the Car class can use them
without redefining them. Additionally, the Car class can have its own unique methods
and properties, such as drive() or fuelType. This inheritance relationship represents an
"is-a" relationship, meaning a Car is a type of Vehicle. This allows for code reuse and
a clear hierarchical structure, where common features are defined in the parent class
(Vehicle), and specific features are added in the child class (Car).

class Vehicle

{

 void start()

 {

 	 System.out.println("Vehicle is starting.");

 }

}

class Car extends Vehicle	 // Child class

{

 void drive() 		 // The Car class inherits the start() method from Vehicle

 {

 System.out.println("Car is driving.");

 }

}

123 SGOU - SLM - BCA - Programming in Java

public class InheritanceExample 		 // Main class

{

	 public static void main(String[] args)

	 {

 	 Car myCar = new Car();	 // Create an object of the Car class

 		 myCar.start();		 // Call the inherited start() method from Vehicle

 		 myCar.drive(); 	 // Call the drive() method specific to Car

 	 }

}

Output:

Vehicle is starting.

Car is driving.

1.4.2.2.2 Multilevel Inheritance:

A child class inherits from a parent class, and that parent class inherits from another
parent class, forming a chain. Figure 1.1.3 shows the structure of Multilevel inheritance.

Fig 1.4.3 Multilevel Inheritance

Example: ElectricCar inherits from Car, which in turn inherits from Vehicle.

124 SGOU - SLM - BCA - Programming in Java

The ElectricCar class inherits from the Car class, which itself inherits from the Vehicle
class. This creates a multilevel inheritance hierarchy where ElectricCar gains access to
methods and properties from both Car and Vehicle. For example, if Vehicle has a start()
method and Car adds a drive() method, ElectricCar can use both while also defining its
own features, such as chargeBattery(). This structure showcases how inheritance allows
for progressive addition of functionality across levels.

class Vehicle

{

 void start()

 {

 System.out.println("Vehicle is starting.");

 }

 }

// Child class that inherits from Vehicle

class Car extends Vehicle

{

 void accelerate()

 {

 	 System.out.println("Car is accelerating.");

 }

 }

// Grandchild class that inherits from Car

class ElectricCar extends Car

{

 void charge()

 {

 System.out.println("Electric car is charging.");

 }

}

// Main class to demonstrate multilevel inheritance

public class InheritanceDemo

125 SGOU - SLM - BCA - Programming in Java

{

 public static void main(String[] args)

 {

	 // Create an object of ElectricCar

 	 ElectricCar myElectricCar = new ElectricCar();

 	 // Call methods from all classes in the hierarchy

 	 myElectricCar.start(); 	 	 // Inherited from Vehicle

 	 myElectricCar.accelerate(); 	 // Inherited from Car

 	 myElectricCar.charge(); 	 // Defined in ElectricCar

 }

 }

Output

Vehicle is starting.

Car is accelerating.

Electric car is charging.

1.4.2.2.3 Hierarchical Inheritance:

Multiple child classes inherit from the same parent class. Figure 1.1.4 shows the
structure of hierarchical inheritance.

Fig 1.4.4 Heirarchical Inheritance

Example: Both Car and Bike inherit from Vehicle.

In the case of hierarchical inheritance, both the Car and Bike classes inherit from the
common Vehicle class. This means that Car and Bike gain access to the methods and

126 SGOU - SLM - BCA - Programming in Java

properties defined in the Vehicle class, such as a start() method. Each subclass can then
add its own specific features, like accelerate() in Car or ride() in Bike, while still sharing
the common functionality provided by the Vehicle class. This structure demonstrates
how multiple classes can inherit from a single parent class, promoting code reuse and
maintaining a logical hierarchy.

class Vehicle

{

 void start()

 {

 	 System.out.println("Vehicle is starting.");

 }

}

// Child class Car inherits from Vehicle

class Car extends Vehicle

{

 void drive()

 {

 	 System.out.println("Car is driving.");

 }

}

// Child class Bike inherits from Vehicle

class Bike extends Vehicle

{

 void ride()

 {

 System.out.println("Bike is riding.");

 }

 }

// Main class to demonstrate hierarchical inheritance

public class InheritanceDemo

{

127 SGOU - SLM - BCA - Programming in Java

 public static void main(String[] args)

	 {

 		 // Create objects of Car and Bike

 		 Car myCar = new Car();

 		 Bike myBike = new Bike();

 		 // Call methods from the Vehicle, Car, and Bike classes

 		 myCar.start(); // Inherited from Vehicle

 		 myCar.drive(); // Defined in Car

 		 myBike.start(); // Inherited from Vehicle

 		 myBike.ride(); // Defined in Bike

 	 }

 }

Output:

Vehicle is starting.

Car is driving.

Vehicle is starting.

Bike is riding.

1.4.2.2.4 Java Does Not Support Multiple Inheritance:

Java does not support multiple inheritance using classes, meaning a class cannot inherit
from more than one parent class. This avoids ambiguity issues that arise from having
multiple parents with the same method signatures. However, Java allows multiple
inheritance through interfaces.

interface Drivable

{

 void drive();

 }

interface Flyable

{

 void fly();

 }

128 SGOU - SLM - BCA - Programming in Java

class FlyingCar implements Drivable, Flyable

{

 public void drive()

 {

 	 System.out.println("Flying car is driving.");

 }

 public void fly()

 {

 	 System.out.println("Flying car is flying.");

 }

}

1.4.2.2.5 Benefits of Inheritance:

1.	 Reusability: Child classes reuse the fields and methods of the parent class,
reducing code duplication.

2.	 Maintainability: Changes made in the parent class automatically reflect in
child classes, making maintenance easier.

3.	 Extensibility: Child classes can extend or enhance the functionality of
parent classes.

4.	 Polymorphism: Inheritance enables polymorphic behavior, where objects
of different classes can be treated as objects of a common parent class.

1.4.3 Method overriding

Method overriding in Java occurs when a subclass provides a specific implementation
of a method that is already defined in its superclass. The method in the child class must
have the same name, return type, and parameters as the method in the parent class.
Method overriding in Java allows subclasses to provide a specific implementation of a
method that is already defined in a parent class. It is a core feature of OOP that supports
runtime polymorphism and allows flexible and extensible code design.

1.4.3.1 Key Points of Method Overriding:

1.	 Same Method Signature: The method in the child class must have the same
name, return type, and parameter list as the method in the parent class.

2.	 Inheritance: Method overriding occurs only in the context of inheritance.
The child class inherits the method from the parent class and overrides it
with its own implementation.

129 SGOU - SLM - BCA - Programming in Java

3.	 Access Modifier: The access level of the overriding method cannot be more
restrictive than the method it overrides. For example, if the parent method is
public, the overridden method must also be public.

Annotations: The @Override annotation can be used to indicate that a method is being
overridden. This is optional but helps in code clarity and error detection.

Runtime Polymorphism: Method overriding is used to achieve runtime polymorphism,
where the method that is executed is determined at runtime based on the object type.

Syntax of Method Overriding:

class Parent

{

 // Method to be overridden

 public void showMessage()

 {

 	 System.out.println("Message from Parent class.");

 }

 }

class Child extends Parent

{

 // Overriding the method of Parent class @Override

 public void showMessage()

 {

 	 System.out.println("Message from Child class.");

 }

 }

public class TestOverriding

{

 public static void main(String[] args)

 {

 	 Parent parent = new Parent();

 	 parent.showMessage(); // Output: Message from Parent class.

130 SGOU - SLM - BCA - Programming in Java

 	 Child child = new Child();

 	 child.showMessage(); // Output: Message from Child class.

 	 Parent parentChild = new Child();

 	 parentChild.showMessage(); // Output: Message from Child class

 	 }

 }

1.4.3.2 Example of Overriding in a Real-World Scenario:

Consider a Vehicle class with a method startEngine() and its subclasses like Car and
Bike. Each type of vehicle starts the engine differently, so the startEngine() method will
be overridden in each subclass.

class Vehicle // Parent class

{

 public void startEngine()	 // Method to be overridden

	 {

 	 	 System.out.println("Vehicle is starting.");

 	 }

}

class Car extends Vehicle 	 // Child class Car overriding startEngine method

{

 public void startEngine() @Override

 {

 	 System.out.println("Car engine starts with a key.");

 }

}

class Bike extends Vehicle // Child class Bike overriding startEngine method

{

 public void startEngine() 	 // @Override

 {

 	 System.out.println("Bike engine starts with a kick.");

 }

131 SGOU - SLM - BCA - Programming in Java

}

public class TestVehicles

{

 public static void main(String[] args)

 {

 	 Vehicle myCar = new Car();

 	 myCar.startEngine(); 	 // Output: Car engine starts with a key.

 	 Vehicle myBike = new Bike();

 	 myBike.startEngine(); 	 // Output: Bike engine starts with a kick.

 	 }
}

1.4.3.3 Rules for Method Overriding:

1.	 Return Type: The return type must be the same or a subclass (covariant
return type) of the method in the parent class.

2.	 Method Signature: The method signature (method name, parameter types,
and number of parameters) must be identical to the method in the parent
class.

3.	 Access Level: The overriding method cannot reduce the visibility of the
inherited method. For example:

	♦ If the parent method is public, the overriding method must also be public.

	♦ If the parent method is protected, the overriding method can be protected
or public, but not private.

4.	 Exceptions: The child class cannot throw a broader exception than the parent
class method. It can throw the same exceptions, or more specific exceptions
(narrowed exceptions).

5.	 Static Methods: Static methods cannot be overridden. If a subclass defines a
static method with the same signature as a static method in the parent class,
this is known as method hiding, not overriding.

6.	 Final Methods: Methods declared as final in the parent class cannot be
overridden in the subclass.

7.	 Private Methods: Private methods in the parent class cannot be overridden
because they are not visible to the child class.

132 SGOU - SLM - BCA - Programming in Java

1.4.3.4 @Override Annotation:

The @Override annotation is used to explicitly indicate that a method is overriding a
method in the superclass. It is not mandatory but is highly recommended as it helps in
two ways:

	♦ It makes the code clearer by explicitly indicating that a method is overridden.

	♦ It helps the compiler catch errors. If a method signature doesn’t exactly
match the method in the parent class, the compiler will generate an error.

class Parent

{

 public void show()

 {

 	 System.out.println("Parent show");

 }

}

class Child extends Parent

{

 @Override

 public void show()

 {

 	 System.out.println("Child show");

 	 }

}

1.4.3.5 Runtime Polymorphism and Method Overriding

One of the primary uses of method overriding is to achieve runtime polymorphism.
In Java, a parent class reference can refer to a child class object. When an overridden
method is called using this reference, the method that is executed is determined at
runtime based on the actual object, not the reference type.

Parent obj = new Child();

obj.show(); // Will call the Child's show() method due to runtime polymorphism.

1.4.3.6 Why Use Method Overriding?

1.	 Dynamic Method Dispatch: It helps Java support dynamic method dispatch,

133 SGOU - SLM - BCA - Programming in Java

where the method called is determined at runtime based on the object.

2.	 Code Flexibility: By overriding methods, a subclass can provide its specific
behavior, while still maintaining the same interface as the parent class.

3.	 Reuse Parent Class Code: The child class can inherit and extend the
functionality of the parent class without having to rewrite all the code from
scratch.

1.4.4 Method Overloading

Method overloading in Java is a feature that allows a class to have more than one
method with the same name, but with different parameter lists. The difference can be in
the number of parameters, types of parameters, or both. Method overloading is a form
of compile-time polymorphism because the decision about which method to call is
made at compile time. Method overloading is a useful feature in Java that allows the
same method name to handle different types or numbers of arguments, improving code
readability and flexibility. It's a form of compile-time polymorphism, as the method to
be invoked is determined during compilation based on the method signature.

1.4.4.1 Key Points of Method Overloading:

1.	 Same Method Name, Different Parameters: The overloaded methods
must have the same name but different parameter lists.

2.	 Return Type Doesn't Matter: Method overloading is determined by the
method's parameter list, not by its return type. You cannot overload methods
based on return type alone.

3.	 Compile-Time Polymorphism: The compiler determines which method to
invoke based on the method signature (name + parameters) at compile time.

1.4.4.2 Ways to Overload a Method:

1.	 Different Number of Parameters: Methods can have the same name but
differ in the number of parameters.

2.	 Different Types of Parameters: Methods can have the same name and
number of parameters but differ in parameter types.

3.	 Different Order of Parameters: Methods can have the same name and
parameters but differ in the order of parameters (if they have different data
types).

Example for Method Overloading:

class Calculator

{

	 public int add(int a, int b) 	 // Method to add two integers

134 SGOU - SLM - BCA - Programming in Java

	 {

 	 	 return a + b;

 	 }

 public int add(int a, int b, int c) 	 // Overloaded method to add three integers

	 {

 		 return a + b + c;

 	 }

 		 // Overloaded method to add two double values

 	 public double add(double a, double b)

	 {

 		 return a + b;

 	 }

}

public class TestOverloading

{

 	 public static void main(String[] args)

 	 {

	 Calculator calc = new Calculator();

 	 System.out.println(calc.add(5, 10)); // Calls with two int parameters

 	 System.out.println(calc.add(5, 10, 15)); // Calls with three int parameters

 	 System.out.println(calc.add(5.5, 10.2)); // Calls with two double parameters

 }

}

Output:

15

30

15.7

1.4.4.3 Examples of Method Overloading:

135 SGOU - SLM - BCA - Programming in Java

a. Overloading by Changing the Number of Parameters:

Below shows example of method overloading, the Display class defines two show()
methods with the same name but different parameters. The first method takes a single
integer a as an argument and prints it, while the second method takes two integers a
and b and prints both. In the TestDisplay class, the show() method is called twice: once
with a single integer (5) and once with two integers (10 and 20). This demonstrates how
method overloading allows multiple methods with the same name to be differentiated
by the number of parameters, enabling more flexible and reusable code.

class Display

{

 public void show(int a)

 {

 	 System.out.println("Integer: " + a);

 }

 public void show(int a, int b)

 {

 	 System.out.println("Two Integers: " + a + ", " + b);

 	 }

 }

public class TestDisplay

{

	 public static void main(String[] args)

	 {

 		 Display display = new Display();

 		 display.show(5); 	 	 // Calls show(int a)

 		 display.show(10, 20); 	 // Calls show(int a, int b)

 	 }

 }

b. Overloading by Changing the Parameter Type:

Below example of method overloading, the Display class defines two show() methods
with the same name but different parameter types. The first method accepts an integer
(int a) and prints it, while the second method accepts a string (String s) and prints it. In

136 SGOU - SLM - BCA - Programming in Java

the TestDisplay class, the show() method is called with both an integer (5) and a string
("Hello"), demonstrating how method overloading allows methods to have the same
name but be differentiated by their parameter types. This enhances the flexibility of the
code by enabling multiple methods to handle different data types.

class Display

{

	 public void show(int a)

	 {

 		 System.out.println("Integer: " + a);

 	 }

 	 public void show(String s)

 	 {

 		 System.out.println("String: " + s);

 	 }

 }

public class TestDisplay

{

	 public static void main(String[] args)

	 {

 		 Display display = new Display();

 		 display.show(5); // Calls show(int a)

 		 display.show("Hello"); // Calls show(String s)

 	 }

}

c. Overloading by Changing the Order of Parameters:

In this example of method overloading, the Display class defines two show() methods
with the same name but different parameter orders. The first method takes a String
followed by an int, while the second method takes an int followed by a String. In the
TestDisplay class, the show() method is called twice: first with a string ("Hello") and
an integer (10), which calls the method with the String, int parameter order, and second
with an integer (20) and a string ("World"), which calls the method with the int, String
parameter order. This demonstrates how method overloading allows the same method

137 SGOU - SLM - BCA - Programming in Java

name to be used with parameters in different orders, providing flexibility in how the
methods are called.

class Display

{
	 public void show(String s, int a)

	 {

 		 System.out.println("String: " + s + ", Integer: " + a);

 	 }

 	 public void show(int a, String s)

	 {

 		 System.out.println("Integer: " + a + ", String: " + s);

 	 }

}

public class TestDisplay

{

	 public static void main(String[] args)

 	 {

		 Display display = new Display();

 	 display.show("Hello", 10); 		 // Calls show(String, int)

		 display.show(20, "World"); 		 // Calls show(int, String)

 	 }

}

1.4.4.4 Rules of Method Overloading:

Different Parameter List: Methods must differ in the number or type of parameters.

Cannot Overload by Return Type Alone: You cannot overload methods based only
on return type. The compiler won't be able to differentiate between two methods with
the same name and parameters but different return types.

Example of invalid overloading:

public int add(int a, int b)

 { ... }

138 SGOU - SLM - BCA - Programming in Java

public double add(int a, int b) { ... } // Compilation error

Access Modifiers and Exception Handling: Changing the access modifier or throwing
different exceptions in overloaded methods does not constitute method overloading. It
must differ based on the parameter list.

1.4.4.5 Method Overloading with Type Promotion:

Java allows automatic type promotion when no exact match is found for a method
signature. For example, if an int method is called and only double methods are available,
the int value will be promoted to double.

class Display

{

	 public void show(double a)

	 {

 		 System.out.println("Double: " + a);

 	 }

}

public class TestDisplay

{

	 public static void main(String[] args)

	 {

		 Display display = new Display();

		 display.show(10); 	 // int value is promoted to double, and double a

 	 }

}

In this case, Java will promote the int to double because the method signature with
double matches.

1.4.4.6 Benefits of Method Overloading:

1.	 Code Readability: It makes code more readable and clean since similar
functionality can be handled using the same method name with different
parameters.

2.	 Reusability: It allows methods to be reused with different input types or
numbers of arguments, reducing the need to create separate methods for
similar tasks.

139 SGOU - SLM - BCA - Programming in Java

3.	 Compile-Time Polymorphism: Overloading allows the compiler to resolve
which method to call based on the parameters at compile time, leading to
more flexible code.

1.4.4.7 Example of method overloading :

Consider an application that needs to print different types of data, such as integers,
doubles, or strings. Instead of creating different method names (printInt, printDouble,
printString), you can use method overloading.

class Printer

{

	 public void print(int value)

	 {

 		 System.out.println("Printing Integer: " + value);

 	 }

	 public void print(double value)

	 {

 	 	 System.out.println("Printing Double: " + value);

 	 }

 	 public void print(String value)

	 {

 	 System.out.println("Printing String: " + value);

 	 }

 }

public class TestPrinter

{

	 public static void main(String[] args)

	 {

		 Printer printer = new Printer();

 	 printer.print(10); 		 // Prints an integer

 	 printer.print(12.34); 	 // Prints a double

 	 printer.print("Hello"); 	 // Prints a string

 	 }

 }

140 SGOU - SLM - BCA - Programming in Java

Recap

	♦ Abstraction in Java Programming

	♦ Abstract Classes

	♦ Key characteristics

	♦ Benefits of Abstraction

	♦ Abstract method

	♦ Interfaces in java

	♦ Key Differences Between Abstract Class and Interface:

	♦ Inheritance

	♦ Key Features of Inheritance

	♦ Types of Inheritance in Java

	♦ Single Inheritance

	♦ Multilevel Inheritance

	♦ Hierarchical Inheritance

	♦ Java Does Not Support Multiple Inheritance

	♦ Benefits of Inheritance

	♦ Example of Inheritance

	♦ Method overriding

	♦ Key Points of Method Overriding

	♦ Example of Overriding in a Real-World Scenario

	♦ Rules for Method Overriding

	♦ @Override Annotation

	♦ Runtime Polymorphism and Method Overriding

	♦ Why Use Method Overriding?

	♦ Method Overloading

	♦ Key Points of Method Overloading

	♦ Ways to Overload a Method

141 SGOU - SLM - BCA - Programming in Java

	♦ Examples of Method Overloading

	♦ Rules of Method Overloading

	♦ Method Overloading with Type Promotion

	♦ Benefits of Method Overloading

	♦ Example of method overriding

Objective Type Questions

1.	 What is abstraction in object-oriented programming?

2.	 Which of the following best describes inheritance?

3.	 What is the purpose of method overriding?

4.	 Which keyword is used in Java to create a class that cannot be instantiated
directly but can only be subclassed?

5.	 Which of the following statements about method overloading is correct?

6.	 In which of the following cases would method overriding be used?

7.	 Which of the following is NOT true about inheritance?

8.	 What happens if you attempt to overload methods by only changing the
return type in Java?

9.	 In which scenario would you use method overloading?

10.	What is the key difference between method overloading and method over-
riding?

Answers to Objective Type Questions

1.	 Abstraction allows exposing only essential features while hiding
implementation details

2.	 Inheritance allows a class to use methods from another class.

3.	 To extend or alter the behavior of a method in a child class.

142 SGOU - SLM - BCA - Programming in Java

4.	 Abstract

5.	 Method overloading occurs when multiple methods in the same class share
the same name but differ in the number or type of parameters.

6.	 When a subclass needs to implement a method with the same signature as
one in its parent class but with different functionality.

7.	 Inheritance is always transitive; a class can inherit from multiple parent
classes.

8.	 The program will not compile because method signatures must differ in
more than just the return type.

9.	 When you need to define the same method with the same name but different
numbers or types of parameters.

10.	Overloading refers to methods with the same name but different signatures,
while overriding refers to redefining a method in a subclass.

Assignments

1.	 Design an abstract class BankAccount that contains abstract methods like
deposit(), withdraw(), and checkBalance(). Implement concrete classes like
SavingsAccount and CurrentAccount that extend the BankAccount class
and provide implementations for the abstract methods.

2.	 Write a short essay explaining how abstraction helps manage complexity in
large-scale software development and how it promotes maintainability and
scalability.

3.	 Create a base class Vehicle that has properties like speed, fuelType, and
numWheels. Then, create subclasses like Car, Truck, and Motorcycle that
inherit from Vehicle and have additional properties or methods unique to
each subclass.

4.	 Model a real-world scenario using multilevel inheritance. For example, a
Person class can be the base class, followed by a Student class inheriting
from Person, and then a GraduateStudent class inheriting from Student.
Implement methods that are specific to each class in the hierarchy.

5.	 Write a program that has a base class Animal with a method makeSound(), and
two derived classes Dog and Cat that override makeSound(). Demonstrate
polymorphism by calling the makeSound() method on objects of Dog and
Cat through a reference to Animal.

143 SGOU - SLM - BCA - Programming in Java

6.	 Create a base class Employee with a constructor that initializes basic
information. Then, create a derived class Manager that overrides the
constructor and adds more information. Explain how constructor chaining
works when inheritance is involved.

7.	 Create a Calculator class with multiple add() methods. Overload the add()
method to handle different parameter types (integers, doubles, and multiple
arguments). Write a test case to demonstrate the use of each overloaded
method.

8.	 Design a class FileHandler that contains overloaded methods readFile().
Overload this method to handle text files, CSV files, and JSON files. Show
how the method signatures differ while keeping the method name the same.

9.	 Create an abstract class Payment with methods like processPayment().
Then, implement classes like CreditCardPayment, PaypalPayment,
and BankTransferPayment that inherit from Payment and override
processPayment(). Use method overloading in one of the payment methods
to handle different types of payment amounts (e.g., single payment vs.
installment payments).

10.	Create a base class Shape with an overloaded method calculateArea() for
different shapes (circle, square, and rectangle).

11.	Then, override the calculateArea() method in derived classes like Circle,
Square, and Rectangle, and show how method overloading and overriding
work together in the program.

References

1.	 "Effective Java" by Joshua Bloch Edition: 3rd Edition 2018 Addison-Wesl

2.	 "Effective Java" by Joshua Bloch, 3rd Edition, 2018, Addison-Wesley

3.	 "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition, 2005,
O'Reilly Media

4.	 "Java Concurrency in Practice" by Brian Goetz, 1st Edition, 2006 Addison-
Wesley

5.	 "Core Java Volume I – Fundamentals" by Cay S. Horstmann, 12th Edition,
2022, Pearson

144 SGOU - SLM - BCA - Programming in Java

Suggested Reading

1.	 Herbert, Schildt. "Java: The complete Reference 9th edition." (2014).

2.	 Balagurusamy, Emir. Programming in Java: A Primer. McGraw-Hill
Education, 2010.

3.	 Sierra, Kathy, and Bert Bates. Head First Java: A Brain-Friendly Guide. "
O'Reilly Media, Inc.", 2005.

145 SGOU - SLM - BCA - Programming in Java

Specific
Features of Java
Programming

BLOCK 2

Specific
Features of Java
Programming

String and String Buffer
Class, Exception Handling

Learning Outcomes

Prerequisites

	♦ identify the differences between a String and a StringBuffer in Java.

	♦ familiarise the syntax for creating a String and a StringBuffer.

	♦ list common methods available for manipulating Strings in Java.

	♦ explain the purpose of exception handling in Java.

	♦ explain the keywords used in exception handling, such as try, catch, and
finally.

You’re probably familiar with storing numbers like integers or floating-point values
in variables. Similarly, in programming, we use strings to store text, such as words or
sentences. In Java, strings are more than just a sequence of characters - they are objects
with special properties and methods for manipulating text.

Now, think about times when you've had to change a number, such as adding to a total or
adjusting a value. In programming, we often need to modify text, or strings, in a similar
way. For example, imagine you are creating a message that starts with “Hello” and
later you want to add “World!” to form “Hello, World!” One way to do this would be
to create a new string every time you make a change. However, this can be inefficient,
especially if you’re working with large amounts of text or frequently changing strings.
This is where the StringBuffer class becomes useful. Instead of creating a new string
every time you modify the text, StringBuffer allows you to make changes to the existing
string more efficiently, like appending or inserting new characters without needing to
create new objects each time. This not only saves memory but also makes the program
run faster when performing multiple string modifications.

Think about a case that, when you made an error in basic math, like trying to divide
a number by zero. You likely encountered an issue because dividing by zero is unde-
fined, leading to a problem. Similarly, in Java, certain operations can lead to unexpected
errors in your code. For instance, imagine a program where the user enters two numbers

UNIT 1

At the end of this unit, the learner will be able to:

147 SGOU - SLM - BCA - Programming in Java

for division. If the second number happens to be zero, attempting to divide by zero will
cause the program to fail. This is where Exception Handling comes into play. In Java,
exception handling is a method used to manage such errors, known as "exceptions,"
without causing the program to crash. For example, you can use a try-catch block to
"catch" the error when it occurs and handle it gracefully, like displaying a message to
the user instead of letting the program stop abruptly. By using exception handling, you
ensure that your program can respond to unexpected situations, making it more robust
and reliable.

Discussion

In java programming language a string is an object that represents a sequence of
characters.

2.1.2 Creation of string

2.1.2.1 By string literal

In Java, a String literal is defined by placing a sequence of characters within double
quotes (“ “). When a string is written this way, Java treats it as an instance of the String
class. For example:

	 String a= “java”;

2.1.3 String Constructor

2.1.3.1 By new keyword

In java, the new keyword can be used to create a new instance of a String object
explicitly.

	 String a= new String(“java”);

The above code will creates a string java.

Similarly a char array is used to create a string object. To create a String initialized by
an array of characters, use the constructor shown here:

 String(char chars[])

Key Concepts

String Buffer, divide by zero, Java, exception handling, try, catch, finally

2.1.1 String

148 SGOU - SLM - BCA - Programming in Java

For example:

This constructor initializes s with the string "java".

A sample java program using above different methods of string creation is shown below:

The output from this program is as follows:

java

hello

example

2.1.4 String Length

The length of a string is the number of characters that it contains. To obtain this value,
call the length() method, shown here:

 int length()

Example

Char ch[]={‘j’, ‘a’, ‘v’, ‘a’};

String s = new String(ch);

public class StringExample{

	 public static void main(String args[])

	 {

 		 String s1="java";

 		 char ch[]={‘h’, ‘e’, ‘l’, ‘l’, ‘o’};

 		 String s2=new String(ch);

 		 String s3=new String("example");

 		 System.out.println(s1);

 		 System.out.println(s2);

 		 System.out.println(s3);

	 }

}

149 SGOU - SLM - BCA - Programming in Java

Output:

4

2.1.5 String Concatenation

Typically, Java does not permit the use of operators on String objects, with the exception
of the + operator. This operator is used to concatenate two strings, resulting in a new
String object. It also allows multiple + operations to be chained together. For instance,
the following example combines three strings into one.

Output:

She is 10 years old.

2.1.6 Character Extraction
The String class offers several methods to extract characters from a String object. Some
of these methods are discussed here. While the characters in a string cannot be accessed
directly like elements in a character array, many String methods use an index or position
to operate on the string. Similar to arrays, string indexing starts at zero.

2.1.6.1 charAt()
In Java, the charAt() method is utilized to obtain a character at a particular position
within a String. The index denotes the character's position, with the first character being
at index 0.
Syntax:
 char character = stringvariable.charAt(index);
Example 1:

char ch[] = { ‘j’, ‘a’, ‘v’, ‘a’ };

String s = new String(ch);

System.out.println(s.length());

String age = "10";

String s = "She is " + age + " years old.";

System.out.println(s);

String str = “java”;

char ch =str.charAt(2);

System.out.println(ch);

150 SGOU - SLM - BCA - Programming in Java

 Output:

 v

Example 2:

Output:

P

2.1.6.2 getChars()

This method is used to extract multiple characters simultaneously from a string, Its
general format is as follows:

 void getChars(int sourceStart, int sourceEnd, char target[], int targetStart

The sourceStart indicates the starting index of the substring, while sourceEnd refers
to the index just beyond the end of the desired substring. As a result, the substring
includes characters from sourceStart up to sourceEnd - 1. The destination array, where
the characters will be stored, is specified by target. The starting position within the target
array, where the substring will be copied, is defined by targetStart. It is important to
ensure that the target array has enough space to accommodate the number of characters
in the selected substring.

The program below illustrates the use of the getChars() method:

Output:

demo

String s = “Java Programming”;

char ch = str.charAt(5);

System.out.println(ch);

class getCharsDemo {

public static void main(String args[]) {

String s = "This is a demo of the getChars method.";

int start = 10;

int end = 14;

char buf[] = new char[end - start];

s.getChars(start, end, buf, 0);

System.out.println(buf); } }

151 SGOU - SLM - BCA - Programming in Java

2.1.6.3 getBytes()

An alternative to getChars() is the getBytes() method, which stores characters in a byte
array. This method utilizes the platform's default character-to-byte conversion. The
simplest form of this method is as follows:

 byte[] getBytes();

2.1.6.4 toCharArray()

To convert all the characters of a String object into a character array, the simplest
approach is to use the toCharArray() method. This method returns a character array
containing all the characters from the string. Its general syntax is as follows:

 char[] toCharArray()

Example:

Output:

Hello

2.1.7 String Comparison

The String class offers several methods for comparing strings or substrings within
strings. Some of the important string comparison methods are listed below:

2.1.7.1 equals()

The equals() method compares the content of two strings to determine if they are
identical.

Syntax:

 boolean equals(Object anotherObject);

Example:

String str = "Hello";

char[] charArray = str.toCharArray();

System.out.println(charArray);

String str1 = "Hello";

String str2 = "Hello";

String str3 = "World";

boolean result1 = str1.equals(str2);

boolean result2 = str1.equals(str3);

152 SGOU - SLM - BCA - Programming in Java

Output:

True

False

2.1.7.2 equalsIgnoreCase()

The equalsIgnoreCase() method compares two strings while disregarding any differences
in case. This means it treats uppercase and lowercase letters as equivalent during the
comparison.

Syntax:

 int compareToIgnoreCase(String anotherString)

Example:

Output:

True

2.1.7.3 compareTo()
The compareTo() method in Java compares two strings based on their Unicode values,
determining their order in a lexicographical manner. This method, which belongs to the
String class, returns an integer that shows how the strings relate to each other in terms
of ordering.

Syntax:
 int compareTo(String anotherString)

Example:

String str1 = "apple";

String str2 = "APPLE";

int result = str1.compareToIgnoreCase(str2);

String str1 = "apple";
String str2 = "banana";
String str3 = "apple";
int result1 = str1.compareTo(str2);
int result2 = str1.compareTo(str3);
int result3 = str2.compareTo(str1);
System.out.println(result1);
System.out.println(result2);
System.out.println(result3);

153 SGOU - SLM - BCA - Programming in Java

Output:

-1

0

1

Lexicographic Order: This method compares strings by examining the Unicode value
of each character. For instance, since the Unicode value of 'a' is 97 and 'b' is 98, the
string "apple" is deemed less than "banana" because 'a' (97) precedes 'b' (98) in the
Unicode sequence.

2.1.7.4 startsWith()

The startsWith() method is used to determine if a string starts with a specified string as
prefix.

Syntax:

 boolean startsWith(String prefix);

Output:

Does the string start with 'Hello'? true

Does the string start with 'World'? false

2.1.7.5 endsWith()

The endsWith() method is used to determine if a string ends with a specified string as
suffix.

Syntax:

 boolean endsWith(String suffix)

Example:

String str = "Hello World";

boolean startsWithHello = str.startsWith("Hello");

System.out.println("Does the string start with 'Hello'? " + startsWithHello);

boolean startsWithWorld = str.startsWith("World");

System.out.println("Does the string start with 'World'? " + startsWithWorld);

154 SGOU - SLM - BCA - Programming in Java

Output:

Does the string start with 'Hello'? False

Does the string start with 'World'? True

2.1.8 Searching Strings

The String class provides two methods that allow you to search a string for a specified
character or substring:

	♦ indexOf()

	♦ lastIndexOf()

2.1.8.1 indexOf()

The indexOf() method in Java helps locate the position of a specific character or
substring within a string. It returns the index of the first occurrence of the specified
character or substring, or -1 if it isn't found.

Method 1: Syntax:

 int indexOf(int ch)

Example

Output:

6

Method2: indexOf(int ch, int fromIndex)

Finds the first occurrence of a specified character, starting the search from a specified
index.

String str = "Hello World";

boolean endsWithHello = str.endsWith("Hello");

System.out.println("Does the string ends with 'Hello'? " + endsWithHello);

boolean endsWithWorld = str.endsWith("World");

System.out.println("Does the string ends with 'World'? " + endsWithWorld);

String str = "Hello World";

int index = str.indexOf("World");

System.out.println("Index of 'World': " + index);

155 SGOU - SLM - BCA - Programming in Java

Syntax:
 int indexOf(int ch, int fromIndex)
Example:

Output:

7

2.1.8.2 lastIndexOf()

The lastIndexOf() method in Java identifies the position of the final occurrence of a
specific character or substring within a string. It functions like the indexOf() method
but searches from the end of the string, returning the index of the last match. If the
character or substring isn't found, it returns -1.

	♦ lastIndexOf(int ch): Finds the last occurrence of a specified character.

Syntax:

 int lastIndexOf(int ch);

Example:

Output:

7

	♦ lastIndexOf(String str): Finds the last occurrence of a specified substring.

Syntax:

 int lastIndexOf(String str)

Example:

String str = "Hello World";

int index = str.indexOf('o', 5);

System.out.println("Index of 'o' starting from index 5: " + index);

String str = "Hello World";

int index = str.lastIndexOf('o');

System.out.println("Last index of 'o': " + index);

String str = "Hello World, Hello";

int index = str.lastIndexOf("Hello");

System.out.println("Last index of 'Hello': " + index);

156 SGOU - SLM - BCA - Programming in Java

 Output:

13

	♦ lastIndexOf(int ch, int fromIndex): Finds the last occurrence of a specified
character, starting the search from a given index and searching backwards.

Syntax

 int lastIndexOf(int ch, int fromIndex);

Example:

Output

4

2.1.9 Changing the Case of Characters Within a String

There are two methods used to change case of characters within a string as follows:

	♦ toUpperCase()

	♦ toLowerCase()

2.1.9.1 toUpperCase()

This method is used to converts all characters in a string to uppercase.

Example:

Output

HELLO

2.1.9.2 toLowerCase()

This method is used to converts all characters in a string to lowercase.

Example:

String str = "Hello World";

int index = str.lastIndexOf('o', 6);

System.out.println("Last index of 'o' before index 6: " + index);

String str = "hello";

String upperStr = str.toUpperCase();

 System.out.println(upperStr);

157 SGOU - SLM - BCA - Programming in Java

Output:
hello

2.1.10 StringBuffer
In Java, StringBuffer represents a modifiable sequence of characters, that is similar
to a String, but can be modified. As you know, String represents immutable character
sequences with a fixed length. In contrast, StringBuffer represents a modifiable and
expandable sequence of characters. It allows characters and substrings to be added
either in the middle or at the end.

2.1.10.1 StringBuffer Constructors

StringBuffer offers these four constructors:

	♦ StringBuffer() :The default constructor, which takes no parameters, allocates
space for 16 characters without needing to resize.

	♦ StringBuffer(int size) : It accepts an integer argument that explicitly sets the
size of the buffer.

	♦ StringBuffer(String str) :accepts a String argument that sets the initial
contents of the StringBuffer object and reserves room for 16 more characters
without reallocation.

	♦ StringBuffer(CharSequence chars): Creates an object that contains the
character sequence contained in chars and reserves room for 16 more
characters.

2.1.11 Methods of StringBuffer
2.1.11.1 length()
The length() method in StringBuffer provides the number of characters currently held
in the buffer.

Example:

String str = "HELLO";

String lowerStr = str.toLowerCase();

System.out.println(lowerStr);

public class StringBufferLengthExample {
public static void main(String[] args) {
StringBuffer sb = new StringBuffer("Hello");
int length = sb.length(); // Print the length
System.out.println("Length: " + length);
}
}

158 SGOU - SLM - BCA - Programming in Java

Output:

5
2.1.11.2 capacity()
This method is used to calculate the total allocated capacity.

Output:

21

Since sb is initialized with the string "Hello" when it is created, its length is 5. Its
capacity is 21 because room for 16 additional characters is automatically added.

2.1.11.3 ensureCapacity()

To allocate space for a specific number of characters in a StringBuffer after it has been
initialized, you can use the ensureCapacity(int minimumCapacity) method. Here,
minimumCapacity specifies the minimum size of the buffer.

Example

Output:

50

public class StringBufferCapacityExample {

 public static void main(String[] args) {

 StringBuffer sb = new StringBuffer("Hello");

 int capacity = sb.capacity();

 System.out.println("Capacity: " + capacity);

 }

}

public class StringBufferEnsureCapacityExample {

 public static void main(String[] args) {

 StringBuffer sb = new StringBuffer();

 sb.ensureCapacity(50);

 int capacity = sb.capacity();

 System.out.println("Capacity after ensuring: " + capacity);

}

}

159 SGOU - SLM - BCA - Programming in Java

2.1.11.4 setLength()
To adjust the length of the string in a StringBuffer object, you can use the setLength()
method. The general syntax is as follows:

 void setLength(int len);

Here, len defines the length of the string, and it must be a non-negative value.

2.1.11.5 charAt()
The charAt(int index) method in StringBuffer retrieves the character at the given index.
The indexing starts at 0, meaning the first character is at index 0, the second at index 1,
and so on.
Syntax:
 char charAt(int where);
Example:

Output:
W
2.1.11.6 setCharAt()
The setCharAt(int index, char ch) method in StringBuffer is used to change the character
at a particular index. It replaces the character at the specified position with the new
character you supply.
Syntax:
 void setCharAt(int where, char ch);
Example:

public class StringBufferCharAtExample {
 public static void main(String[] args) {
 StringBuffer sb = new StringBuffer("Hello World");
 char ch = sb.charAt(6);
 System.out.println("Character at index 6: " + ch);
 }
}

public class StringBufferSetCharAtExample {
 public static void main(String[] args) {
 StringBuffer sb = new StringBuffer("Hello World");
 sb.setCharAt(6, 'J');
 System.out.println(sb);
 }
}

160 SGOU - SLM - BCA - Programming in Java

Output:
Hello World
2.1.11.7 getChars()
The getChars() method is used to copy a substring of a StringBuffer into an array.
Syntax:
 void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);

	♦ srcBegin: The starting index in the StringBuffer (inclusive).

	♦ srcEnd: The ending index in the StringBuffer (exclusive).

	♦ dst: The destination array to copy the characters into.

	♦ dstBegin: The starting index in the destination array where copying will
begin.

Output:
World
2.1.11.8 append()
The append() method in StringBuffer is used to add data to the end of the current buffer.
It can append different types of data, including strings, characters, integers, and other
objects, to the StringBuffer.
Syntax:
 StringBuffer append(String str);
Example:

public class StringBufferGetCharsExample {
 public static void main(String[] args) {
 StringBuffer sb = new StringBuffer("Hello World");
 char[] destArray = new char[5];
 sb.getChars(6, 11, destArray, 0);
 System.out.println(destArray);
 }
 }

public class StringBufferAppendExample {
 public static void main(String[] args) {
 StringBuffer sb = new StringBuffer("Hello");
 sb.append(" World");
 sb.append(2024);
 System.out.println(sb);
 }
 }

161 SGOU - SLM - BCA - Programming in Java

Output:
Hello World2024

2.1.12 Exception Handling
An exception is an unexpected condition that occurs during the execution of a program.
It happens while the program is running, disrupting its normal flow. In simple terms, an
exception represents a runtime error in the code.

2.1.12.1 Exception-Handling Fundamentals
Java handles exceptions using five key terms: try, catch, throw, throws, and finally.
These keywords work together to manage and handle errors during program execution.

	♦ try: The program statements you want to check for exceptions are placed
inside a try block.

	♦ catch: In Java, the catch block is responsible for handling exceptions that
might arise in the corresponding try block. When an exception is thrown
within the try block, the catch block intercepts it, allowing the program to
manage the error without terminating

	♦ throw: In Java, the throw keyword is used to manually trigger an exception,
signaling an error or special condition in a method. This exception can be
handled in the current method or passed to another part of the program for
handling.

	♦ throws: Any exception that is thrown out of a method must be specified as
such by a throws clause.

	♦ finally: Any code that absolutely must be executed after a try block completes
is put in a finally block.

General form of an exception-handling block:

try {
 // block of code to monitor for errors }
}
catch (ExceptionType1 exOb) {
 // exception handler for ExceptionType1
}
catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2
 }
finally {
// block of code to be executed after try block ends
 }

162 SGOU - SLM - BCA - Programming in Java

Here, ExceptionType is the type of exception that has occurred.

2.1.13 Exception Types

 In Java, all exception types derive from the built-in class Throwable, which sits at the
top of the exception hierarchy. Throwable is divided into two main subclasses: Exception
and Error, each handling different categories of exceptions. Exception is intended for
conditions that programs should handle, including its subclass RuntimeException,
which covers errors like division by zero or out-of-bounds array access. Conversely,
Error deals with exceptions that are generally not intended to be caught by programs
are shown in the figure 2.1.1

 Figure 2.1.1 Types of Exception

2.1.14 Understanding Unhandled Exceptions in Java

Before learning how to handle exceptions, it’s important to understand what happens
when they are not managed. The following program intentionally triggers a divide-by-
zero error:

When the Java runtime detects this error, it creates and throws a new exception object,
stopping the program’s execution. Since there is no custom exception handler, the
default handler catches the exception, shows an error message, prints a stack trace,
and ends the program. In this case, the exception thrown is an ArithmeticException, a
specific subclass of Exception, indicating the division by zero error.

 class Exc0 {

 public static void main(String args[]) {

 int d = 0;

 int a = 42 / d;

 }

}

163 SGOU - SLM - BCA - Programming in Java

2.1.14.1 Exception handling using try and catch

Consider the following program example:

try block: The try block is used to observe code that might throw an exception. In the
given program, the code inside the try block tries to execute the operation a = 42 / d,
where d has been assigned a value of zero. This operation results in a division-by-zero
error, which is considered an exceptional condition in Java. By enclosing this code in
the try block, the program can intercept the error before it leads to a crash.

Exception Triggered: When the division-by-zero operation takes place, the Java run-
time system recognizes it as an ArithmeticException. Rather than abruptly terminating
the program, Java generates this exception. The raised exception serves as an indication
that an error has occurred, and it must be addressed to enable the program to recover
from this error in a smooth manner.

catch block: The catch block directly follows the try block and is intended to manage
specific types of exceptions. In this scenario, it addresses the ArithmeticException that
arises from attempting division by zero. When the exception is triggered, the control
flow shifts from the try block to the catch block, where the error is handled. Within the
catch block, a straightforward message, "Division by zero," is displayed to notify the
user of the error. This mechanism prevents the program from crashing and enables it to
continue running after the error has been addressed.

Program Continuation:
Once the exception is addressed within the catch block, the program continues its normal
execution with the statement that follows the entire try-catch construct. In this instance,
the program outputs "After catch statement." This illustrates that by managing the

class Exc2 {

public static void main(String[] args) {

 int d, a;

 try { // This block is being monitored for exceptions

 d = 0;

 a = 42 / d; // This will cause a divide-by-zero error

 System.out.println("This will not be printed.");

}

catch (ArithmeticException e) { // This block catches the ArithmeticException
caused by division by zero

System.out.println("Division by zero."); } // The program continues after the catch
block System.out.println("After catch statement.");

}

}

164 SGOU - SLM - BCA - Programming in Java

exception, the program avoids an early termination and can proceed to run seamlessly.

2.1.14.2 throw

The throw keyword is used to manually generate an exception in Java. It signals an
exceptional condition during program execution. A throw statement is typically followed
by an exception object that specifies the type and details of the exception being raised.

How it applies to the example:
In the given example, the division-by-zero operation (a = 42 / d) automatically triggers
an ArithmeticException, but the throw keyword could be explicitly used to raise the
same exception.

Modified Code with throw:

The divide method declares that it may throw an ArithmeticException using the throws
keyword. When the exception occurs, it is passed to the caller (the main method), which
then handles it in the try-catch block.

class Exc2 {

 public static void main(String[] args) {

 try {

 int result = divide(42, 0);

 System.out.println("Result: " + result);

 } catch (ArithmeticException e) {

 System.out.println("Exception caught: " + e.getMessage());

 }

 System.out.println("After catch statement.");

 }

 static int divide(int numerator, int denominator) throws ArithmeticException {

 if (denominator == 0) {

 throw new ArithmeticException("Cannot divide by zero.");

 }

 return numerator / denominator;

 }

}

165 SGOU - SLM - BCA - Programming in Java

2.1.14.3 throws:

The throws keyword is used in a method declaration to indicate that the method might
throw one or more exceptions. It informs the caller of the method that they need to
handle these exceptions.

If the division operation was part of a separate method, the throws keyword would be
used to declare the potential exception.

Modified Code with throws:

The divide method declares that it may throw an ArithmeticException using the throws
keyword. When the exception occurs, it is passed to the caller (the main method), which
then handles it in the try-catch block.

2.1.14.4 finally

The finally block is always executed after the try block, regardless of whether an
exception was thrown or caught. It is typically used for cleanup actions such as closing
files, releasing resources, or resetting variables.

class Exc2 {

 public static void main(String[] args) {

 try {

 int result = divide(42, 0);

 System.out.println("Result: " + result);

 } catch (ArithmeticException e) {

 System.out.println("Exception caught: " + e.getMessage());

 }

 System.out.println("After catch statement.");

 }

 // Method that throws ArithmeticException

 static int divide(int numerator, int denominator) throws ArithmeticException {

 if (denominator == 0) {

 throw new ArithmeticException("Cannot divide by zero.");

 }

 return numerator / denominator;

 }

}

166 SGOU - SLM - BCA - Programming in Java

A finally block can be added to the example to ensure that a specific piece of code runs
no matter what happens during exception handling.

Modified Code with finally:

The finally block ensures that the message "Finally block executed." is always printed,
even if an exception occurs or does not occur.

It demonstrates that resource cleanup or mandatory actions can take place, regardless
of exception handling.

class Exc2 {

 public static void main(String[] args) {

 int d, a;

 try {

 d = 0;

 a = 42 / d; // This will cause a divide-by-zero error

 System.out.println("This will not be printed.");

 } catch (ArithmeticException e) {

 System.out.println("Exception caught: Division by zero.");

 } finally {

 System.out.println("Finally block executed.");

 }

 System.out.println("After try-catch-finally.");

 }

}

167 SGOU - SLM - BCA - Programming in Java

Recap

Strings:

	♦ Strings represent text in Java and are immutable (cannot be changed once
created).

	♦ Common methods for string manipulation include:

	♦ length(): Returns the length of the string.

	♦ charAt(index): Returns the character at a specific index.

	♦ substring(start, end): Extracts a portion of the string.

	♦ indexOf(char): Finds the position of a character or substring.

	♦ toUpperCase()/toLowerCase(): Converts all characters to upper or
lower case.

	♦ concat(String str): Concatenates two strings.

StringBuffer:

1.	 StringBuffer allows efficient string modification without creating new
objects.

2.	 Common methods of StringBuffer include:

	♦ append(String str): Adds a string to the end of the buffer.

	♦ insert(offset, String str): Inserts a string at a specified position.

	♦ delete(start, end): Removes characters within a specified range.

	♦ reverse(): Reverses the entire string.

	♦ replace(start, end, String str): Replaces characters between specified
positions.

	♦ setLength(int newLength): Sets the length of the buffer.

Exception Handling:

1.	 Exceptions are runtime errors, like dividing by zero or accessing an
invalid index.

2.	 Java’s Exception Handling uses try-catch blocks to handle errors.

3.	 Methods like getMessage() help retrieve error details.

4.	 Ensures the program continues to run smoothly by catching and resolving
errors during execution.

168 SGOU - SLM - BCA - Programming in Java

Objective Type Questions

1.	 What is the method used to find the length of a string?

2.	 Which method retrieves a character at a specific index in a string?

3.	 What method extracts a portion of a string?

4.	 Which method finds the position of a character in a string?

5.	 What is the method to convert all characters in a string to uppercase?

6.	 Which class allows efficient modification of strings?

7.	 What method adds a string to the end of a StringBuffer?

8.	 Which method inserts a string at a specified position in a StringBuffer?

9.	 What is the technique used to handle runtime errors in Java?

10.	Which keyword is used to start a block for handling exceptions?

11.	What keyword is used to define a block for handling caught exceptions?

12.	What type of error is caused by dividing by zero?

Answers to Objective Type Questions

1.	 length()

2.	 charAt

3.	 substring

4.	 indexOf

5.	 toUpperCase

6.	 StringBuffer

7.	 append

8.	 Insert

9.	 Exception

169 SGOU - SLM - BCA - Programming in Java

Assignments

1.	 What is a string in Java, and why are strings considered immutable?
Illustrate your answer with a code example that shows string creation and
its immutability.

2.	 Identify and explain three methods from the String class in Java. Include
code snippets that demonstrate how each method functions.

3.	 Describe the purpose of StringBuffer in Java. How does it allow for more
efficient string manipulation compared to the String class? Provide an
example that shows the use of the insert method.

4.	 What does exception handling achieve in Java? Discuss the structure and
purpose of try-catch blocks, and provide an example that highlights their
effectiveness in managing errors.

5.	 Give an example of a potential runtime error in Java code. How would
you implement exception handling to manage this error, and what methods
would you use to retrieve error information?

10.	Try

11.	Catch

12.	ArithmeticException

References

1.	 Bates, Bert, and Kathy Sierra. Head First Java. 2nd ed., O'Reilly Media,
2005.

2.	 Rajshekhar, Sharanam Shah, and Vaishali Shah. JDBC, Servlets, and JSP
Black Book. Dreamtech Press, 2011.

3.	 Evans, David R., and John C. Debs. Database Programming with JDBC and
Java. 2nd ed., O'Reilly Media, 2000.

4.	 Eckel, Bruce. Thinking in Java. 4th ed., Prentice Hall, 2006.

5.	 Zakhour, Sowmya, et al. The Java Tutorial: A Short Course on the Basics.
6th ed., Addison-Wesley, 2015.

170 SGOU - SLM - BCA - Programming in Java

Suggested Reading

1.	 Herbert Scheldt, Java The Complete Reference, 8th Edition, Tata McGraw-
Hill Edition, ISBN: 9781259002465

2.	 E Balaguruswamy, Programming in Java: A Primer, 4th Edition, Tata
Mcgraw Hill Education Private Limited, ISBN: 007014169X.

3.	 Kathy Sierra, Head First Java, 2nd Edition, Shroff Publishers and Distributors
Pvt Ltd, ISBN: 8173666024.

171 SGOU - SLM - BCA - Programming in Java

Multithreading

Learning Outcomes

Prerequisites

	♦ familiarise multithreading concept in Java

	♦ understand creation of a thread using Thread class

	♦ learn to create a thread using Runnable interface

Imagine you’re in a busy restaurant where multiple chefs are preparing different dishes
simultaneously. One chef is frying vegetables, another is boiling pasta, and yet another
is grilling meat. Each chef works independently, focusing on their specific task, but
together they create a delicious meal for the customers. This seamless coordination
allows the restaurant to serve food quickly, enhancing the dining experience.

Now, think about how this scenario relates to computers. Just like the chefs, a computer
can handle multiple tasks at once. When you listen to music while browsing the internet
or download files while typing a document, your computer is multitasking. In computer
science, this concept is known as multithreading, where several tasks (or threads) run
concurrently, improving efficiency and speed.

Before diving into multithreading, you should be familiar with basic programming
concepts, such as control structures (like loops and conditionals) and object-oriented
programming principles, including classes and methods. Understanding these funda-
mentals will help you grasp how threads function and interact within a program. Just
like a well-coordinated kitchen, where each chef knows their role, mastering these
basic concepts will prepare you for the complexities of multithreading in programming.

UNIT 2

The students will be able:

Keywords

Multitasking, Multithreading, Thread, Thread class, Runnable interface

172 SGOU - SLM - BCA - Programming in Java

Discussion
2.2.1 MultiTasking
Suppose your teacher is teaching multithreading in the class. Some students are very
studious and they are listening the class so seriously. Some students are writing lecture
notes. Some are just looking at the teacher’s face and thinking about something else.
While some others are watching the environment. Here, several activities are going on at
the same time, which is called multitasking. Similarly in Computer Science, executing
several tasks simultaneously is called multitasking. For example, when you are typing
a Java program in the editor you can play an audio in the background. And also you can
download a file from the internet at the same time. This is called multitasking.

Multitasking is broadly classified into two - Process based multitasking and Thread
based multitasking.

Fig 2.2.1 Classification of multitasking

1.	 Process based multitasking: In the above example of writing Java program,
playing music and downloading file from the internet, each task is a separate
independent process. There is no dependency between each other. This is
called process based mutitasking. i e, Executing several tasks simultaneously
where each task is a separate independent process is called process based
multitasking.

2.	 Thread based multitasking: Suppose a programmer has written a Java
program which contains 10K lines of code. In the normal program execution
the codes are executed sequentially.i e , line by line. But the programmer
finds a fact that the first 5K lines of code is independent of the second 5K
lines of code. Then why does he have to wait for the completion of the first
5K lines of code to execute the remaining 5K lines of code. Isn’t possible to
execute both parts simultaneously? The answer is Yes. It is possible with the
assistance of Multithreading.

Executing several tasks simultaneously where each task is the separate independent
parts of the same program is called Multithreading.

173 SGOU - SLM - BCA - Programming in Java

Simultaneous execution of different parts of the same program will reduce the execution
time significantly.

Multithreading has various applications across different domains. It is used in web
servers to handle multiple client requests simultaneously, improving response times
and resource utilization. In user interfaces, it helps keep the interface responsive while
performing background tasks, such as loading data or processing.

		 	 (a)					 (b)
Fig. 2.2.2 (a) Program execution without multitasking (b) Program execution with
multitasking

In game development, multithreading manages graphics rendering, input handling, and
physics calculations in parallel to enhance performance and user experience. It speeds
up data analysis and processing tasks by dividing workloads across multiple threads,
especially in big data applications. Scientific simulations run complex calculations in
parallel to reduce computation time. It ensures timely responses to events in real-time
systems like robotics and embedded systems. In multimedia applications, it processes
audio, video, and graphics in parallel to improve playback quality and reduce latency. In
cloud computing, it enhances resource management and task execution by distributing
workloads across multiple threads. Additionally, in machine learning, multithreading
trains models more efficiently by parallelizing computations across multiple threads,
especially for large datasets.

2.2.2 Defining a thread

We can define a thread in the following two ways

	♦ By extending Thread class

174 SGOU - SLM - BCA - Programming in Java

	♦ By implementing Runnable interface

2.2.2.1 By Extending Thread class

There is a class in Java named the Thread class that provides constructors and methods
to create and perform operations on a thread. We can extend this class for defining a
thread. By definition a thread is a flow of execution. Each thread has a job to perform.
To create a thread by extending Thread class, follow the given steps:

1. Define a thread

Suppose you want to write a Java program to print a statement 10 times using thread. In
the first step create a user defined class by extending the Thread class. See the following
code.

class MyThread extends Thread

{

	 public void run()

 	 {

 		 for (int i = 0; i < 10; i++)

		 {

 			 System.out.println("Child thread");

 		 }

	 }

 }

This is called defining a thread. The job of the thread is written inside the run() method.
There is a run() method in the Thread class. Here we are overriding that run() method.

2. Instantiation of thread and start the thread

Every Java program starts from the main class. So the next step is to write the main
method. Inside the main method an object of the user defined thread class (here it is
MyThread) is created and the thread is started with the start() method. The code is
given below.

class DemoThread

{

	 public static void main(String[] args)

	 {

 		 MyThread t = new MyThread(); 	 // Thread instantiation

175 SGOU - SLM - BCA - Programming in Java

 		 t.start(); 				 // Starting of thread

 		 for (int i = 0; i < 10; i++)

		 {

 			 System.out.println("Main thread");

 		 }

 	 }

}

The program can be written as:

There is only one thread up to the statement MyThread t = new MyThread() which
is the main thread. From the statement t.start() onwards there are two threads – one
executed by the main thread and the other by the child thread. The start() method is

class MyThread extends Thread

{

 public void run()

 {

 for (int i = 0; i < 10; i++) {

 System.out.println("Child thread");

 }

 }

class DemoThread

{

 public static void main(String[] args) {

 MyThread t = new MyThread(); 	 // Thread instantiation

 t.start(); // Starting of thread

 for (int i = 0; i < 10; i++) {

 System.out.println("Main thread");

 }

 }

}

176 SGOU - SLM - BCA - Programming in Java

responsible for creating a new flow of execution. Instead of t.start() if you are writing
t.run() (i e , calling the run() method directly), no separate thread will be created.
Since more than one thread runs simultaneously there is no guaranteed output for these
types of programs. Which thread is to be executed at a particular time is decided by a
program called Thread scheduler which is a part of the JVM. The output may vary from
run to run or system to system. Some possible outputs are shown below.

Output 1:

	 Main thread

	 Main thread

	 Main thread

	 Main thread

	 Main thread

	 Main thread

	 Main thread

	 Main thread

	 Main thread

	 Main thread

	 Child thread

	 Child thread

	 Child thread

	 Child thread

	 Child thread

	 Child thread

	 Child thread

	 Child thread

	 Child thread

	 Child thread

Output 2:

	 Child thread

	 Child thread

	 Main thread

177 SGOU - SLM - BCA - Programming in Java

	 Main thread

	 Child thread

	 Main thread

	 Child thread

	 Child thread

	 Main thread

	 Child thread

	 Main thread

	 Child thread

	 Main thread

	 Main thread

	 Child thread

	 Main thread

	 Main thread

	 Child thread

	 Child thread

	 Main thread

One important point you have to keep in mind is that we are using multithreading for
independent jobs. If there is a dependency between the jobs, don’t go for multithreading.

2.2.2.2 By implementing Runnable interface

In the first approach, we extended the Thread class. And the Thread class already
implemented Runnable interface. Here, in the second approach we are going to
implement the Runnable interface directly. The Runnable interface is present in the java.

class MyRunnable implements Runnable {

 public void run() {

 for (int i = 0; i < 10; i++) {

 System.out.println("Child thread");

 }

 }

178 SGOU - SLM - BCA - Programming in Java

lang package and it contains only one method – run() method. The steps for writing the
above example program is given below.

1.	 Create a class that implements the Runnable interface and write the code for
the run() method inside it.

2.	 Then, create a Thread object and pass your Runnable class to the Thread
constructor, since Thread can accept any Runnable object.

3.	 To start the thread, call the start() method on the Thread object. This will
create a new thread and run the code inside the run() method.

If you just call run() directly, the code will execute in the current thread, not a new one.
To run it in a separate thread, you must call start().

Here also output can vary from run to run as in the first approach.

}

class DemoThread {

 public static void main(String[] args) {

 MyRunnable runnable = new MyRunnable(); // Runnable instantiation

 Thread t = new Thread(runnable); // Passing Runnable to Thread

 t.start(); // Starting the thread

 for (int i = 0; i < 10; i++) {

 System.out.println("Main thread");

 }

 }

}

179 SGOU - SLM - BCA - Programming in Java

Recap

	♦ Multitasking: Simultaneous execution of multiple tasks.

	♦ Types of Multitasking:

	♦ Process-based Multitasking: Independent processes executing
simultaneously.

	♦ Thread-based Multitasking: Multiple threads running independent
parts of the same program.

	♦ Benefits of Multithreading:

	♦ Reduces execution time.

	♦ Enhances responsiveness in user interfaces.

	♦ Improves performance in applications like web servers and game
development.

	♦ Defining a Thread:

	♦ By extending Thread class: Override the run() method to define thread
behavior.

	♦ By implementing Runnable interface: Create a class that implements
Runnable, and define the run() method.

	♦ Creating and Starting a Thread:

	♦ Instantiate a thread object (e.g., MyThread t = new MyThread()).

	♦ Start the thread using t.start() to create a new flow of execution.

	♦ Thread Scheduler: Decides which thread runs at a given time; output may
vary with each execution.

Objective Type Questions

1.	 What is the term for executing multiple tasks simultaneously in a computer
system?

2.	 Which type of multitasking involves independent processes?

3.	 What is the method called that must be overridden to define a thread when
extending the Thread class?

4.	 What is the interface implemented to create a thread without extending the
Thread class?

180 SGOU - SLM - BCA - Programming in Java

Answers to Objective Type Questions

1.	 Multitasking

2.	 Process

3.	 run

4.	 Runnable

5.	 Performance

6.	 Runnable

7.	 start()

8.	 5 (Thread.NORM_PRIORITY)

9.	 sleep(milliseconds)

10.	Executes like a normal method in the calling thread

11.	synchronized

12.	Runnable

5.	 What is the primary benefit of using multithreading in applications?

6.	 Which Java interface must a class implement to create a thread?

7.	 Which method is used to start a thread in Java?

8.	 What is the default priority of a thread in Java?

9.	 Which method is used to put a thread to sleep for a specified amount of time?

10.	What happens if the run() method of a thread is called directly instead of
calling start()?

11.	Which keyword in Java is used to prevent thread interference in a critical
section?

12.	What is the state of a thread after the yield() method is called?

13.	Which exception is thrown if the sleep() method is interrupted?

14.	What happens when the join() method is called on a thread?

181 SGOU - SLM - BCA - Programming in Java

Suggested Reading

1.	 Java: The Complete Reference by Herbert Schildt

2.	 Java Concurrency in Practice by Brian Goetz

3.	 Effective Java by Joshua Bloch

4.	 Java Threads" by Scott Oaks

Assignments

1.	 Write a Java program that demonstrates multithreading by creating a scenario
where multiple threads print messages concurrently. Each thread should
print its message ten times, and the main thread should also print a different
message ten times. Use both the Thread class and the Runnable interface in
your implementation.

2.	 Write a Java program that demonstrates multithreading by creating two
threads: one thread that prints the numbers from 1 to 10 and another thread
that prints the alphabet letters from A to J. Use both approaches—extending
the Thread class and implementing the Runnable interface—to accomplish
this task.

13.	InterruptedException.

14.	The calling thread waits until the specified thread completes.

References

1.	 Bates, Bert, and Kathy Sierra. Head First Java. 2nd ed., O'Reilly Media,
2005.

2.	 Rajshekhar, Sharanam Shah, and Vaishali Shah. JDBC, Servlets, and JSP
Black Book. Dreamtech Press, 2011.

3.	 Evans, David R., and John C. Debs. Database Programming with JDBC and
Java. 2nd ed., O'Reilly Media, 2000.

4.	 Eckel, Bruce. Thinking in Java. 4th ed., Prentice Hall, 2006.

5.	 Zakhour, Sowmya, et al. The Java Tutorial: A Short Course on the Basics.
6th ed., Addison-Wesley, 2015.

182 SGOU - SLM - BCA - Programming in Java

Applets and Event Handling

Learning Outcomes

Prerequisites

	♦ to describe what a Java applet is and how it differs from a standalone
application.

	♦ list the primary lifecycle methods of applets and describe their functions.

	♦ define event handling and identify common user actions that trigger events
in applets.

	♦ to enumerate common event listener interfaces in Java.

Imagine you're browsing the web in the early 2000s and come across a page that’s more
than just text and images. You notice a small interactive element, perhaps a game or
a calculator, running directly inside the browser. No downloads, no installations - just
seamless interactivity embedded in the web page itself. What you’re seeing is called an
applet, a simple Java program created to work inside a web browser. Applets were an
early way to bring dynamic content to websites, offering interactivity and functionality
long before modern web technologies like HTML5 or JavaScript became common. But
what makes these applets react to your actions, like clicking buttons or moving your
mouse? That’s where event handling comes into play.

Before we dive into applets and event handling, it helps to understand some basic con-
cepts of Java programming. Java is a versatile language capable of creating programs
that interact with users in many ways. In the case of applets, which run directly within
a web page, event handling is what makes them interactive. To understand applets and
event handling better, you should first have a basic grasp of how Java programs work,
particularly object-oriented principles and how graphical user interfaces (GUIs) pro-
cess events.

UNIT 3

The learner will be able to:

Key Concepts
Applets, Event handling, Event source, Event object, Event listener, Delegation event
model, Event listener interfaces and Classes

183 SGOU - SLM - BCA - Programming in Java

Discussion
2.3.1 Introduction to Applets and Event Handling

Applets in Java are small programs that can be embedded in web pages to make them
interactive. Unlike regular applications, applets run inside a web browser or applet
viewer, making them platform-independent. They extend the java.applet.Applet class
and follow a lifecycle with methods like init(), start(), stop(), and destroy(), which
manage their initialization and shutdown processes.

A key feature of applets is event handling, which makes them interactive by responding
to user actions like clicks or key presses. Java's Abstract Window Toolkit (AWT) uses
a system where events (like mouse clicks) are generated by sources (like buttons)
and handled by listener objects that implement interfaces such as ActionListener or
MouseListener. This enables applets to react to user inputs in real time.

By combining applets and event handling, developers can create dynamic web
components that interact with users, making websites more engaging. The java.applet
package supports this functionality, providing tools for applets to communicate with the
web environment. Though applets are less common today, they were once essential for
adding interactive elements to web pages.

2.3.1.1 Overview of Java Applets

Java applets are small, platform-independent applications that run within a web browser
or applet viewer, allowing developers to add dynamic, interactive elements to web
pages. They extend the java.applet.Applet class and follow a structured lifecycle with
methods like init(), start(), stop(), and destroy(), managing the applet's initialization,
execution, and termination phases. Applets were popular in the early web era for
tasks like animations and small games, offering cross-platform functionality without
compatibility issues.

A key feature of Java applets is their ability to handle user interactions through event
handling. Using Java’s event-delegation model, applets can respond to actions such
as mouse clicks or key presses with the help of event listeners. Though applets have
largely been replaced by modern web technologies like HTML5 and JavaScript, they
were an important early example of embedding interactive, web-based applications in
a cross-platform environment.

	♦ Applet Lifecycle Methods

Java applets go through a series of steps, called lifecycle methods, which manage how
they run from start to finish. These methods - init(), start(), stop(), and destroy() - are
automatically triggered by the browser or applet viewer at different points in the applet’s
life. Each method plays an important role in ensuring that the applet functions properly
while it’s being used.

The first method, init(), is called when the applet is loaded. It sets up all the necessary
components, like initializing variables or loading images, so the applet is ready to run.

184 SGOU - SLM - BCA - Programming in Java

After this, the start() method begins the applet's execution, such as starting an animation
or reacting to user interactions. The applet continues running as long as the user stays
on the web page.

When the user leaves the page, the stop() method is called to pause the applet. This
means that ongoing activities like animations or timers are temporarily halted. If the
user comes back, the start() method can resume the applet’s actions. Finally, when
the applet is no longer needed, the destroy() method is called to free up resources and
ensure everything is cleaned up properly, like memory and other system resources.

These methods help manage an applet's performance and resource usage, making
sure it runs efficiently and can adapt to changes in the user’s actions or the webpage
environment.

	♦ Creating and Running Applets

Creating a Java applet begins by writing a Java class that extends the java.applet.Applet
class. This class must include the necessary lifecycle methods like init(), start(), stop(),
and destroy(), which control how the applet behaves at different stages. Developers can
also add code to handle user interactions, such as responding to mouse clicks or key
presses, making the applet interactive.

After the applet's code is written, it is compiled just like any other Java program using
the Java Development Kit (JDK). However, running an applet is different from running
a typical Java application. Instead of running it directly, applets are designed to run
inside a web browser or an applet viewer. To make this happen, an HTML file is created,
which contains special tags (like the <applet> tag) that specify the applet’s class and
any parameters it needs. Alternatively, developers can use the Java applet viewer tool
to run the applet without needing a browser.

Although applets used to be popular for adding interactive features to web pages, most
modern web browsers no longer support them due to security concerns and the rise of
newer technologies like HTML5 and JavaScript. However, applets can still be run in
specific environments like the applet viewer for testing or learning purposes, making
them an interesting part of Java’s early role in web development.

2.3.1.2 Introduction to Event Handling in Java

Event handling in Java is a crucial mechanism that allows applications to respond to
user actions, such as mouse clicks, keyboard inputs, or other interactions. Java's event
handling framework is designed to provide a seamless way for developers to create
interactive applications by detecting and responding to events generated by user actions
or system occurrences. This process enhances the user experience by allowing the
application to react dynamically to inputs.

In Java, events are typically generated by components of the user interface (UI), such
as buttons, text fields, and menus. To handle these events, Java employs an event-
delegation model, where event sources, like a button, create an event when a user
interacts with them. These events are then sent to listener objects that implement specific
interfaces to handle them appropriately. Common interfaces include ActionListener,

185 SGOU - SLM - BCA - Programming in Java

MouseListener, and KeyListener, each designed to handle particular types of events.
For example, ActionListener is used for button clicks, while MouseListener captures
mouse movements and clicks.

Developers can register listeners to specific components to define how the application
should respond to various events. This registration is done through methods like
addActionListener() for buttons, which links a listener to the button so that it can respond
when the button is clicked. This separation of event handling from the main application
logic allows for cleaner and more organized code, making it easier to maintain and
extend.

Understanding Events and Listeners

In Java, an event is an object that describes a change in the state of a source, like a
button press or a window being closed. A listener is an object that "listens" for events
and defines how to respond to those events when they occur. The key components of
event handling include:

	♦ Event Source: The component that generates the event, such as a button or
text field.

	♦ Event Object: An object that encapsulates information about the event, such
as ActionEvent or MouseEvent.

	♦ Event Listener: An interface that must be implemented by any class
interested in handling a specific type of event. Some common listeners
include ActionListener, MouseListener, and KeyListener.

Steps in Event Handling

To handle events in Java, developers follow a few steps:

1.	 Registering a Listener: An event source must register an event listener using
methods like addActionListener() or addMouseListener().

2.	 Implementing Event Handling Methods: The listener must implement
methods defined by the event listener interface, such as actionPerformed()
for handling action events.

3.	 Generating Events: Once an event is generated (e.g., when a user clicks a
button), the corresponding method in the registered listener is invoked, and
the desired action is executed.

Event Sources and Event Objects

In Java's event-handling mechanism, event sources and event objects are key components
of the delegation event model, allowing programs to respond to user actions and other
events effectively.

Event Sources

An event source is the object that generates an event when its state changes. Any

186 SGOU - SLM - BCA - Programming in Java

interactive component in a Java GUI, such as a button, checkbox, or text field, can
act as an event source. When a user interacts with these components, the event source
triggers an event to signal that something has occurred. The event is then sent to any
registered listeners that have expressed interest in handling that type of event.

Examples of event sources include:

	♦ JButton (generates an ActionEvent when clicked)

	♦ JTextField (generates a TextEvent when the text changes)

	♦ JMenuItem (generates an ActionEvent when selected)

To make an event source meaningful, the source must register one or more listeners
to respond when the event occurs. This is usually done through methods like
addActionListener(), addMouseListener(), or addKeyListener(), depending on the type
of event.

Event Object

An event object is an instance of a class that represents the details of the event that has
occurred. It carries information about the event source, the type of event, and any addi-
tional data related to the event. All event objects in Java are derived from the java.util.
EventObject class, which contains a reference to the event source.

There are different types of event objects, depending on the type of event being
generated. Some common event objects include:

	♦ ActionEvent: Represents events triggered by button clicks, menu selections,
etc.

	♦ MouseEvent: Represents mouse actions such as clicks, movements, and
drags.

	♦ KeyEvent: Represents keyboard actions, such as key presses and key
releases.

	♦ WindowEvent: Represents window-related actions, such as opening, closing,
or minimizing a window.

Each event object contains methods to access information specific to the event. For
instance, an ActionEvent includes methods like getActionCommand() to retrieve the
command associated with the action, while a MouseEvent provides methods to retrieve
the coordinates of a mouse click (getX(), getY()).

Example

Below is an example demonstrating the relationship between an event source and an
event object:

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

187 SGOU - SLM - BCA - Programming in Java

import javax.swing.JButton;

import javax.swing.JFrame;

public class EventExample

{

	 public static void main(String[] args)

	 {

		 JFrame frame = new JFrame("Event Example");

		 JButton button = new JButton("Click Me");

				 // Register an ActionListener to the button

		 button.addActionListener(new ActionListener()

		 {

			 public void actionPerformed(ActionEvent e)

			 {

 				 // The ActionEvent object provides details of the event

 				 System.out.println("Event Source: " + e.getSource());

 		 	 System.out.println("Action Command: " +

				 e.getActionCommand());

			 }

		 });

	 frame.add(button);

	 frame.setSize(300, 200);

	 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

	 frame.setVisible(true);

	 }

}

In this example:

	♦ The event source is the button (JButton), which generates an ActionEvent.

	♦ The event object (ActionEvent) contains details such as the source of the
event (e.getSource()) and the action command (e.getActionCommand()).

188 SGOU - SLM - BCA - Programming in Java

2.3.2 Delegation Event Model

The Delegation Event Model is the foundation of how Java handles events in graphical
user interfaces (GUIs). It’s designed to make responding to user actions - like clicking
a button, moving the mouse, or pressing a key - both efficient and easy to manage. The
idea is simple: when something happens, instead of the object responsible for generating
the event handling it directly, the task is "delegated" to another object that is specifically
designed to deal with it.

2.3.2.1 Key Features

There are three key pieces to understand how the model works:

1.	 Event Source: This is the object where the event originates—think of a
button, a text field, or a menu item. When a user interacts with one of these,
it triggers an event. For example, clicking a button creates an action event.

2.	 Event Listener: A listener is an object that’s interested in what happens to
the event source. The listener "listens" for a specific event, such as a button
being clicked, and responds when that event occurs. You register a listener
with the event source, usually using methods like addActionListener() or
addMouseListener().

3.	 Event Object: This object holds all the details about the event—what caused
it, where it came from, and sometimes even information about the interaction,
like where the mouse was clicked. The event object is passed to the listener
when the event is triggered, giving the listener all the info it needs to handle
the event.

2.3.2.2 How the Delegation Event Model Works

Here’s a simple breakdown of how the delegation event model works in practice:

1.	 Generating the Event: When a user interacts with the event source (like
clicking a button), the event source generates an event object to represent
what just happened.

2.	 Delegating the Event: The event source doesn’t handle the event itself.
Instead, it passes this responsibility to the event listener, which has been
registered with the event source.

3.	 Handling the Event: The event listener’s method (like actionPerformed())
is called, and the listener takes action based on the details provided by the
event object.

This process separates the "what happened" from the "what to do when it happens,"
making code cleaner and easier to maintain.

2.3.2.3 Importance of Delegation Event Model

1.	 Clear Organization: It separates the event-generating component (like a

189 SGOU - SLM - BCA - Programming in Java

button) from the event-handling code. This means the event source doesn't
need to worry about what happens when the event occurs, keeping things
more organized.

2.	 Flexibility: Multiple listeners can be attached to the same event source,
allowing you to respond to the same event in different ways across different
parts of your program.

3.	 Scalability: As your application grows, you can add more events and listeners
without needing to modify your existing event sources. This makes it easy to
extend functionality without breaking what’s already there.

Example of the Delegation Event Model in Action

Here’s a simple example showing how it works:

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

public class DelegationModelExample

{

	 public static void main(String[] args)

	 {

		 JFrame frame = new JFrame("Delegation Event Model");

		 JButton button = new JButton("Click Me");

		 // Register an ActionListener to the button (the event source)

		 button.addActionListener(new ActionListener()

		 {

			 public void actionPerformed(ActionEvent e)

			 {

				 System.out.println("Button clicked! Event handled by 	
				 ActionListener.");

			 }

		 });

	 frame.add(button);

	 frame.setSize(300, 200);

190 SGOU - SLM - BCA - Programming in Java

	 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

	 frame.setVisible(true);

	 }

}

In this example:

	♦ The event source is the JButton. When you click it, an event is generated.

	♦ The event listener is an anonymous class implementing ActionListener. It
listens for the button click and defines what should happen (in this case,
printing a message to the console).

	♦ The event object (ActionEvent) holds details about the click.

2.3.3 Event Listener Interfaces

In Java, Event Listener Interfaces play a key role in how events are managed, especially
in graphical applications. These interfaces allow different objects (called listeners)
to respond to various user interactions, like clicking a button, moving the mouse, or
pressing a key. Essentially, event listener interfaces define the actions that should
happen when specific events occur.

An event listener interface is like a contract that a class signs up for. When a class
implements a listener interface, it promises to handle a specific type of event. For
example, if a class implements ActionListener, it agrees to handle "action" events, such
as when a button is clicked. When that event occurs, the event source (the component
generating the event) will notify the listener, which will then take appropriate action.

2.3.3.1 Common Event Listener Interfaces

Java provides several listener interfaces, each designed to handle specific types of
events:

1.	 ActionListener: This is used to handle actions like button clicks. It contains
a method called actionPerformed(ActionEvent e) that runs when the action
occurs.

2.	 MouseListener: This interface handles mouse events such as clicks and
releases. It contains methods like mouseClicked(MouseEvent e) and
mousePressed(MouseEvent e) to react to different types of mouse interactions.

3.	 KeyListener: This interface is responsible for keyboard events. It includes
methods like keyPressed(KeyEvent e) and keyReleased(KeyEvent e) to
handle key presses and releases.

4.	 WindowListener: This one deals with events related to windows, such as opening,
closing, or minimizing them. Methods like windowClosing(WindowEvent
e) let you define what should happen when a window is about to close.

191 SGOU - SLM - BCA - Programming in Java

2.3.3.2 How Event Listener Interfaces Work

1.	 Implementation: A class implements the listener interface to handle a
specific event. This means it must define the methods that correspond to that
interface.

2.	 Registration: The listener is then registered with an event source, such as a
button or a window. This step connects the listener to the event it will handle.

3.	 Event Handling: When the event occurs, the listener’s method (like
actionPerformed() for button clicks) is called automatically, allowing the
listener to respond accordingly.

2.3.4 Event Classes

In Java, event classes are like messengers that carry information about different
interactions between users and a graphical user interface (GUI). These interactions
could be anything from clicking a button to pressing a key or moving the mouse. Event
classes capture all the details about these actions and pass them on to the appropriate
listener, which then decides how to respond.

Event classes define the types of events that can happen in an application. When an
event occurs, like a button click, an object of the corresponding event class is created.
This object contains information such as what triggered the event (the source), the type
of event, and any other relevant data (like mouse position or key pressed). This event
object is then passed to the listener responsible for handling it.

2.3.4.1 Common Types of Event Classes

There are various event classes in Java, each designed to handle specific types of user
actions:

1.	 ActionEvent: This event class captures actions like button clicks or menu
selections. When a button is clicked, for instance, an ActionEvent object is
created and passed to the listener to handle what should happen next.

2.	 MouseEvent: When a user interacts with the mouse (such as clicking or
moving it), a MouseEvent is generated. This class holds details like the
mouse's x and y coordinates and which button was clicked.

3.	 KeyEvent: If a user presses or releases a key, a KeyEvent is created. It stores
details like which key was pressed and whether any modifier keys (like Shift
or Ctrl) were held down.

4.	 WindowEvent: When a window is opened, closed, or minimized, a Window-
Event is triggered, and it carries the necessary information to manage those
window-related actions.

2.3.4.2 How Event Classes Work

192 SGOU - SLM - BCA - Programming in Java

1.	 Event Creation: When a user interacts with a component, an event object is
created from the relevant event class. For example, clicking a button creates
an ActionEvent.

2.	 Event Passing: This event object is passed to the listener that’s been set up
to handle that type of event. The listener then takes control, deciding what
should happen next.

3.	 Processing the Event: The listener reads the event details and carries out
the desired action. For example, if you click a button to submit a form, the
listener might process the form data.

2.3.4.3 Importance of Event Classes

Simplify Event Handling: Event classes organize all the details about user actions in
one place, making it easier to handle them.

Flexibility: These classes allow developers to respond differently to various types of
events in a unified way.

Modular Design: With event classes, it’s easy to break down and manage complex user
interactions, keeping the application organized and scalable.

2.3.4.4 AWT Event Class and Hierarchy

When developing graphical user interfaces (GUIs) in Java, the Abstract Window Tool-
kit (AWT) plays a key role, especially in handling user interactions through events. At
the heart of this framework lies the AWT Event Class, which serves as a foundation
for all event-related activities in AWT. Let’s break down what this class is and how its
hierarchy is structured in an easy-to-understand way.

The AWT Event Class is part of the java.awt.event package and acts as the base class
for all events in AWT. Think of it as a blueprint that captures essential information
about what happens in your GUI, such as which component was interacted with and
the type of interaction that occurred. By building on this class, Java can create more
specific event classes for different user actions.

The AWT Event Hierarchy

The hierarchy of AWT events is organized into a clear structure that helps categorize
different types of user interactions. Here’s a simplified view of this hierarchy:

1.	 EventObject Class: This is the top-level class in the hierarchy. It serves as
the parent for all events in AWT and contains basic details like the source,
which indicates the component that triggered the event.

2.	 AWTEvent Class: This class extends the EventObject and adds more features.
It includes information like the event type, which helps differentiate between
various events through numeric identifiers.

3.	 Specific Event Classes: Under the AWTEvent class, there are several special-

193 SGOU - SLM - BCA - Programming in Java

ized classes, each representing a different kind of event:

	♦ ActionEvent: This captures actions like button clicks or menu selections,
allowing the application to respond when users interact with these compo-
nents.

	♦ MouseEvent: This handles all mouse-related actions, such as clicks and
movements. It keeps track of where the mouse is and what buttons were
pressed.

	♦ KeyEvent: This class deals with keyboard interactions, recording which
keys were pressed or released.

	♦ WindowEvent: This class manages events related to window actions, such as
opening or closing a window.

Each specific event class comes with constants that represent various actions. For
example, the MouseEvent class has constants to identify different mouse activities,
making it straightforward for developers to recognize what action took place.

Importance of AWT Event Class and Hierarchy

1.	 Organized Event Handling: The structured hierarchy makes it easy for
developers to manage different types of events, streamlining the process of
creating responsive applications.

2.	 Reusability: Developers can extend these event classes to create custom
events tailored to their specific needs, which promotes modular and reusable
code.

3.	 Improved User Interaction: By understanding this hierarchy, developers can
craft applications that react seamlessly to user inputs, making for a richer
user experience.

2.3.4.5 Custom Event Handling

Custom event handling in Java allows developers to create specialized responses to
user interactions beyond the standard events provided by the AWT or Swing libraries.
By defining custom events, programmers can tailor their applications to meet specific
requirements and enhance user experience.

In Java, custom event handling involves creating new event classes and listeners to
manage events that are unique to an application’s context. This capability enables
developers to respond to specific actions or changes within their applications, allowing
for a more interactive and personalized user experience.

Steps to Implement Custom Event Handling

1.	 Define a Custom Event Class: To create a custom event, the first step is
to define a new class that extends java.util.EventObject. This class should
include any additional information relevant to the event. For example, if
you're creating an event for a temperature sensor, you might include attributes

194 SGOU - SLM - BCA - Programming in Java

like the temperature value and a timestamp.

2.	 Create a Listener Interface: Next, define an interface that declares methods to
handle the custom event. This interface should specify what actions should
be taken when the event occurs.

3.	 Implement the Listener: Any class that wants to respond to the custom event
must implement the listener interface. This involves providing concrete
definitions for the methods declared in the interface.

4.	 Register the Listener: In the class that generates the events, maintain a list of
registered listeners. When an event occurs, notify all registered listeners by
calling their corresponding methods.

Benefits of Custom Event Handling

1.	 Flexibility: Custom event handling allows for tailored responses to specific
user actions, enhancing the application's interactivity and user experience.

2.	 Modularity: By separating event generation from handling, developers can
create modular code that is easier to manage and maintain.

3.	 Reusability: Custom events and listeners can be reused across different parts
of the application or even in different projects, promoting code efficiency.

2.3.5 Advanced Event Handling Techniques

Advanced event handling techniques in Java enhance the responsiveness and functionality
of applications, enabling developers to create sophisticated user interactions. These
techniques extend beyond basic event handling, allowing for more complex user
interfaces and better management of event-driven programming.

1. Event Filtering

Event filtering allows developers to intercept events before they reach their target
components. This technique is useful for scenarios where you want to perform some
checks or pre-processing on events. For instance, you can use event filters to restrict
certain actions or log user interactions.

In Java, event filtering can be achieved using the EventFilter interface, which is part of
the JavaFX library. By implementing this interface, you can decide whether to consume
or propagate an event based on specific conditions.

2. Using Anonymous Classes for Listeners

Java allows the use of anonymous classes to implement event listeners directly where
they are needed. This technique reduces the need for separate classes or lengthy
implementations, making your code cleaner and more concise.

3. Lambda Expressions

With the introduction of Java 8, lambda expressions provide a more elegant way to

195 SGOU - SLM - BCA - Programming in Java

implement event listeners. They simplify the syntax and improve readability by allowing
you to express instances of single-method interfaces more succinctly.

4. Multiple Event Sources

Handling events from multiple sources can be achieved by creating a single listener
that responds to various components. This approach reduces code duplication and
centralizes event management.

5. Custom Event Objects

While earlier sections focused on defining custom events, advanced techniques include
creating rich custom event objects that carry additional data. This allows for more
context during event handling, making it easier to implement logic based on the e
vent's attributes.

6. Asynchronous Event Handling

In complex applications, handling events asynchronously can enhance performance. By
using background threads or the Java Executor framework, you can offload time-con-
suming tasks from the event dispatch thread, keeping the UI responsive.

Recap

	♦ Applets in Java are small programs that can be embedded in web pages to
make them interactive.

	♦ By combining applets and event handling, developers can create dynamic
web components that interact with users, making websites more engaging.

	♦ Java applets undergo a series of steps, called lifecycle methods, that manage
how they run from start to finish.

	♦ These methods - init(), start(), stop(), and destroy() - are automatically
triggered by the browser or applet viewer at different points in the applet’s
life.

	♦ Creating a Java applet begins by writing a Java class that extends the java.
applet.Applet class.

	♦ In Java, an event is an object that describes a change in the state of a source,
like a button press or a window being closed.

	♦ A listener is an object that "listens" for events and defines how to respond to
those events when they occur.

	♦ The Delegation Event Model is the foundation of how Java handles events
in graphical user interfaces (GUIs).

196 SGOU - SLM - BCA - Programming in Java

Objective Type Questions

1.	 What are Java applets embedded in?

2.	 Which class do Java applets extend?

3.	 What manages the different stages of a Java applet's lifecycle?

4.	 What object describes a change in the state of a source?

5.	 What listens for and responds to user actions in a GUI?

6.	 What is the foundation of Java’s event-handling model?

7.	 Which toolkit helps Java GUIs handle user interactions?

8.	 What allows Java developers to intercept events before they reach compon-
ents?

	♦ Event Listener interfaces allow different objects (called listeners) to respond
to various user interactions, like clicking a button, moving the mouse, or
pressing a key.

	♦ Event classes are like messengers that carry information about different
interactions between users and a graphical user interface (GUI).

	♦ When developing graphical user interfaces (GUIs) in Java, the Abstract
Window Toolkit (AWT) plays a key role, especially in handling user
interactions through events.

	♦ Custom event handling involves creating new event classes and listeners to
manage events that are unique to an application’s context.

	♦ Event filtering allows developers to intercept events before they reach their
target components.

	♦ Java allows the use of anonymous classes to implement event listeners
directly where they are needed.

	♦ With the introduction of Java 8, lambda expressions provide a more elegant
way to implement event listeners.

	♦ Handling events from multiple sources can be achieved by creating a single
listener that responds to various components.

	♦ While earlier sections focused on defining custom events, advanced
techniques include creating rich custom event objects that carry additional
data.

197 SGOU - SLM - BCA - Programming in Java

Assignments

1.	 Develop a simple Java applet that demonstrates the use of lifecycle methods
and event handling. Your applet should include the following components:

	 1. Applet Life Cycle

	 2. Event Handling

	 3. Custom Event Handling

	 4. Advanced Feature (Optional)

Answers to Objective Type Questions

1.	 Webpages

2.	 Applet

3.	 Methods

4.	 Event

5.	 Listener

6.	 Delegation

7.	 AWT

8.	 Filtering

9.	 Lambda

10.	Single

9.	 Which Java feature introduced in Java 8 simplifies event listener implemen-
tation?

10.	What type of listener can respond to multiple event sources?

198 SGOU - SLM - BCA - Programming in Java

Suggested Reading

1.	 Herbert, Schildt. "Java: The complete Reference 9th edition." (2014).

2.	 Balagurusamy, Emir. Programming in Java: A Primer. McGraw-Hill
Education, 2010.

3.	 Sierra, Kathy, and Bert Bates. Head First Java: A Brain-Friendly Guide. "
O'Reilly Media, Inc.", 2005.

References

1.	 Bates, Bert, and Kathy Sierra. Head First Java. 2nd ed., O'Reilly Media,
2005.

2.	 Rajshekhar, Sharanam Shah, and Vaishali Shah. JDBC, Servlets, and JSP
Black Book. Dreamtech Press, 2011.

3.	 Evans, David R., and John C. Debs. Database Programming with JDBC and
Java. 2nd ed., O'Reilly Media, 2000.

4.	 Eckel, Bruce. Thinking in Java. 4th ed., Prentice Hall, 2006.

5.	 Zakhour, Sowmya, et al. The Java Tutorial: A Short Course on the Basics.
6th ed., Addison-Wesley, 2015.

199 SGOU - SLM - BCA - Programming in Java

Java Database Connectivity

Learning Outcomes

Prerequisites

	♦ define JDBC and its role in Java applications.

	♦ identify key features of JDBC like platform independence and SQL support.

	♦ recall steps for establishing a JDBC database connection.

	♦ list SQL operations supported by JDBC.

	♦ state the benefits of using JDBC in Java.

Imagine you are trying to access a library. In this library, there are many books
(representing data) stored on various shelves (representing different databases). Now,
to find a book, you need a system to search, retrieve, and interact with the books in
an organized way. This is where a librarian comes in. The librarian serves as a bridge
between you and the shelves, helping you locate and manage the books efficiently.

In the world of Java programming, Java Database Connectivity (JDBC) acts like this
librarian. Just like how the librarian helps you interact with the books, JDBC helps a
Java application interact with different databases. It simplifies the process by providing
a standard method to connect to various types of databases, allowing you to search,
retrieve, update, and manage data (like how you would borrow, return, or read books
in the library).

The key idea here is that JDBC is a "bridge" between your Java application and a wide
range of databases, making sure you can perform all necessary data operations in a
smooth and efficient manner, much like a librarian would help you navigate through a
complex library system.

UNIT 4

After the successful completion of the course, the learner will be able to:

200 SGOU - SLM - BCA - Programming in Java

Discussion

2.4.1 Java Database Connectivity (JDBC)

Java Database Connectivity (JDBC) is a Java-based API (Application Programming
Interface) that allows Java applications to interact with databases. JDBC is a standard
Java API that provides a uniform interface for connecting to a wide range of relational
databases such as MySQL, PostgreSQL, Oracle, SQL Server, and many others. It is
part of the Java Standard Edition (Java SE) and has been a core feature since Java 1.1.

The primary purpose of JDBC is to enable Java applications to perform database
operations, such as creating, reading, updating, and deleting data (commonly known as
CRUD operations). JDBC acts as a bridge between a Java application and the database,
allowing developers to execute SQL queries, retrieve results, and manage database
transactions in a standardized way.

2.4.1.1 Key Features of JDBC

1.	 Platform Independence : JDBC provides a consistent interface that works
seamlessly with various database systems. Developers can write a single set
of code that can interact with different databases without requiring significant
modifications. This feature ensures flexibility and reduces the effort needed
to adapt applications for diverse environments.

2.	 SQL Support : JDBC enables Java applications to leverage the SQL language
for interacting with relational databases. It allows developers to perform
standard database operations like SELECT for data retrieval, INSERT for
adding records, UPDATE for modifying existing records, and DELETE for
removing data. By seamlessly integrating SQL with Java, JDBC provides a
powerful toolset for managing and querying relational databases efficiently.

3.	 Database Connectivity : With JDBC, Java applications can establish reliable
connections with databases. It facilitates the exchange of SQL queries and
the receipt of responses, allowing for smooth communication between the
application and the database system.

4.	 Data Handling : JDBC enables Java programs to retrieve and manipulate
data from databases efficiently. It provides methods to access specific records
or process large datasets, making it easier to handle complex data operations
within applications.

5.	 Error Management : JDBC includes built-in mechanisms for handling errors
and exceptions related to SQL operations. These tools allow developers to
address unexpected issues gracefully, ensuring that the application remains
stable and user-friendly in case of database-related problems.

2.4.1.2 How JDBC Works

JDBC uses a driver manager to connect a Java application and the target database. The

201 SGOU - SLM - BCA - Programming in Java

following steps describe how JDBC works:

1.	 Loading the JDBC Driver : A JDBC driver is a specialized software
component that facilitates communication between a Java application and
a specific database. The driver must be loaded into the application to enable
interaction with the database system before any database operations can be
performed.

2.	 Establishing a Connection : Using the JDBC API, the Java application
establishes a connection with the target database. This process involves
specifying key details such as the database URL, username, and password
to authenticate and initiate the connection.

3.	 Creating a Statement : Once the connection is established, the application
creates a statement object. This object serves as a medium to execute SQL
commands, such as queries or updates, within the database.

4.	 Executing SQL Queries : The statement object is used to execute SQL
queries, enabling the application to perform operations like retrieving data,
inserting new records, updating existing records, or deleting records from
the database.

5.	 Processing the Results : After executing a query, the database sends the
results back to the application. These results can then be processed, analyzed,
or displayed to the user as required by the application.

6.	 Closing the Connection : Once all necessary database operations are
completed, the connection should be closed. This step is crucial to release
system resources, maintain database performance, and ensure the security
of the application.

2.4.1.3 Benefits of Using JDBC

	♦ Flexibility: JDBC allows Java applications to connect to any relational
database that supports JDBC.

	♦ Efficiency: It optimises performance by using native SQL for database
operations.

	♦ Standardisation: Being a standard API, JDBC offers a uniform approach
for database connectivity, making it easier to switch between different
databases.

2.4.2 Steps to Configure a JDBC Development Environment

To develop Java applications using JDBC, you need to set up your development
environment correctly. This setup involves installing the necessary software and confi-
guring your project to use the JDBC API. Here are the steps to get started:

1.	 Install Java Development Kit (JDK).

202 SGOU - SLM - BCA - Programming in Java

2.	 Install a database management system (DBMS).

3.	 Download the appropriate JDBC driver for your DBMS.

4.	 Set up the database by creating required schemas and tables.

5.	 Configure your project to include the JDBC driver in the classpath.

6.	 Write and test Java code to establish a database connection using JDBC.

After installing the Java Development Kit (JDK) and a database management system
(DBMS), proceed with setting up JDBC by downloading the appropriate JDBC driver
for your DBMS. Configure your project to include the JDBC driver in the classpath,
set up the database by creating the necessary schemas and tables, and write Java code
to establish a connection to the database using JDBC. Test the connection to ensure
everything is working correctly.

2.4.2.1 Add JDBC Driver to the Project

	♦ Select the JDBC Driver: Determine the JDBC driver for your specific
database (e.g., MySQL, PostgreSQL, Oracle, etc.). JDBC drivers are
typically available for download from the database vendor's website.

	♦ Download the Driver: Download the appropriate JDBC driver JAR file.

	♦ Add the Driver to Your Project: In your IDE, add the JDBC driver JAR file
to your project's build path:

	♦ For Eclipse: Right-click on the project > Build Path > Configure Build
Path > Add External JARs.

	♦ For IntelliJ IDEA: Right-click on the project > Open Module Settings >
Libraries > + > Add JARs.

	♦ For NetBeans: Right-click on the project > Properties > Libraries > Add
JAR/Folder.

2.4.2.2 Establish Database Connectivity

	♦ Install the Database: Make sure the database you want to connect to is
installed and running. For example, install MySQL, PostgreSQL, Oracle, or
any other relational database.

	♦ Create a Database: Create a new database or use an existing one. Take note
of the database name, username, and password.

	♦ Configure Database Access: Ensure the database is configured to accept
connections from your development environment. For local development,
this often involves setting the database to accept connections from localhost.

2.4.2.3 Write a JDBC Test Program

	♦ Create a New Java Project: Open your IDE and create a new Java project.

203 SGOU - SLM - BCA - Programming in Java

	♦ Write the JDBC Code: Write a simple Java program to test the JDBC conn-
ection.

Here is a basic example for connecting to a MySQL database. See Program : Example
JDBC Connection establishment

 Program 2.4.1: Example of JDBC Connection

2.4.2.6 Compile and Run the Java Program

Compile the Program: Use the IDE to compile the Java program or use the command line:

javac JDBCExample.java

Run the Program: Execute the compiled program using the IDE or command line:

java JDBCExample

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

public class JDBCExample {

 public static void main(String[] args) {

String jdbcURL = "jdbc:mysql://localhost:3306/your_database";

 String username = "your_username";

 String password = "your_password";

 try {

 	 Connection connection = DriverManager.getConnection(jdbcURL,
username, password);

 	 System.out.println("Connected to the database successfully!");

 connection.close();

 } catch (SQLException e) {

System.out.println("Error connecting to the database: " + e.getMessage());

		 }

	 }

}

204 SGOU - SLM - BCA - Programming in Java

2.4.2.7 Verify the Connection

Check the console output to confirm that the connection to the database was successful.
If there are any errors, they will be displayed, and you should resolve them accordingly
(e.g., incorrect URL, username, or password)

2.4.3 Processing SQL Statements with JDBC

Java Database Connectivity (JDBC) allows developers to interact with databases using
SQL statements. Here is an outline of the steps required to process SQL statements with
JDBC, along with detailed explanations of each step:

2.4.3.1 Establishing a Connection

To interact with a database, the first step is to establish a connection. This involves
using the DriverManager class to connect to the database by providing the database
URL, username, and password.

2.4.3.2 Connecting with DataSource Objects

Using DataSource objects is the preferred way to connect to a database in JDBC.
DataSource objects provide a more flexible and portable way to create database
connections. They can be configured to use connection pooling, which improves
performance by reusing existing database connections.

2.4.3.3 Handling SQLExceptions

When working with databases, errors may occur, such as connection issues or incorrect
SQL syntax. JDBC provides the SQLException class to handle these errors gracefully,
ensuring the application continues to run or provides meaningful error messages.

2.4.3.4 Setting Up Tables

To perform database operations, you need tables. This step involves using SQL scripts
or JDBC API methods to create and populate the necessary database tables. This setup
is crucial for running queries and storing data.

2.4.3.5 Retrieving and Modifying Values from ResultSets

After setting up the tables, you can retrieve and modify data using SQL queries. A result
set, which contains the data requested, is returned when a query is executed. We can
then iterate through this result set to retrieve and manipulate the values.

2.4.3.6 Using Prepared Statements

Prepared statements provide a more efficient and secure way to execute SQL queries.
They are precompiled SQL statements that can be reused multiple times with different
parameters, reducing the risk of SQL injection attacks and improving performance.

2.4.3.7 Using Transactions

Transactions allow you to control when a series of SQL statements are executed. You

205 SGOU - SLM - BCA - Programming in Java

can group multiple operations into a single transaction and commit them only when all
operations are successful, ensuring data integrity.

2.4.3.8 Using RowSet Objects

RowSet objects in JDBC are specialised versions of ResultSet objects, providing greater
flexibility for managing and manipulating tabular data. Unlike standard ResultSet
objects, RowSet objects can operate in both connected and disconnected modes, which
makes them particularly useful for applications that need to work with data offline or
need to frequently exchange data between different components. Here's an overview of
the different types of RowSet objects and their use cases:

2.4.4 Types of RowSet Objects

1. JdbcRowSet

	♦ Description: A JdbcRowSet is a connected RowSet that maintains an active
connection to the database. It combines the capabilities of a ResultSet with
additional features such as scrolling through data in both directions (forward
and backwards) and the ability to update rows directly.

	♦ Use Case: Ideal for applications that require a constant connection to the
database for real-time data operations, such as monitoring systems or appli-
cations that frequently update database records.

Example:

Program 2.4.2 Example of JdbcRowSet

2. CachedRowSet

	♦ A CachedRowSet is a disconnected RowSet that caches data in memory.
Once data is retrieved from the database, it can be manipulated without
maintaining an active database connection. Changes can be synchronised

JdbcRowSet jdbcRowSet = RowSetProvider.newFactory().createJdbcRowSet();

jdbcRowSet.setUrl("jdbc:mysql://localhost:3306/your_database");

jdbcRowSet.setUsername("your_username");

jdbcRowSet.setPassword("your_password");

jdbcRowSet.setCommand("SELECT * FROM your_table");

jdbcRowSet.execute();

while (jdbcRowSet.next()) {

System.out.println("Column Data: " + jdbcRowSet.getString("column_name"));

}

206 SGOU - SLM - BCA - Programming in Java

back to the database later.

	♦ Useful for applications that need to work with data offline, such as mobile
applications, or for minimizing database connections to reduce overhead.

Example:

 Program 2.4.3: Example of CachedRowSet

3. JoinRowSet

A JoinRowSet provides SQL join capabilities. It enables data to be joined from multiple
RowSet objects, effectively mimicking an SQL JOIN operation without requiring a
direct SQL query on the database.

Suitable for merging data from multiple sources or tables in memory without requiring
additional SQL joins in the database.

Example:

CachedRowSet cachedRowSet = RowSetProvider.newFactory().

createCachedRowSet();

cachedRowSet.setUrl("jdbc:mysql://localhost:3306/your_database");

cachedRowSet.setUsername("your_username");

cachedRowSet.setPassword("your_password");

cachedRowSet.setCommand("SELECT * FROM your_table");

cachedRowSet.execute();

cachedRowSet.absolute(2); // Move to the second row

cachedRowSet.updateString("column_name", "new_value");

cachedRowSet.updateRow(); // Apply the changes

JoinRowSet joinRowSet = RowSetProvider.newFactory().createJoinRowSet();

CachedRowSet rowSet1 = RowSetProvider.newFactory().createCachedRowSet();

CachedRowSet rowSet2 = RowSetProvider.newFactory().createCachedRowSet();

// Configure rowSet1 and rowSet2 with appropriate data...

joinRowSet.addRowSet(rowSet1, "common_column");

joinRowSet.addRowSet(rowSet2, "common_column");

207 SGOU - SLM - BCA - Programming in Java

while (joinRowSet.next()) {

 System.out.println("Joined Data: " + joinRowSet.getString("common_column"));

}

FilteredRowSet

A FilteredRowSet allows for data filtering using custom filter criteria. It implements
the Predicate interface, enabling developers to specify conditions for filtering rows in
the RowSet.

Ideal for applications that need to display or manipulate data based on dynamic filtering,
such as search results or data views that change based on user input.

Example:

Program 2.4.4: Example of JoinRowSet

FilteredRowSet filteredRowSet = RowSetProvider.newFactory().createFil-
teredRowSet();

filteredRowSet.setUrl("jdbc:mysql://localhost:3306/your_database");

filteredRowSet.setUsername("your_username");

filteredRowSet.setPassword("your_password");

filteredRowSet.setCommand("SELECT * FROM your_table");

filteredRowSet.execute();

Predicate filter = new Predicate() {

 	 @Override

 	 public boolean evaluate(RowSet rs) {

 		 // Implement custom filter logic here

 		 return true;

 	 }

 		 // Implement other required methods...

 };

filteredRowSet.setFilter(filter);

208 SGOU - SLM - BCA - Programming in Java

Program 2.4.5: Example of FilteredRowSet

4. WebRowSet

A WebRowSet is a RowSet that can read and write data in XML format. It provides
methods for reading data from an XML document and writing data to XML, making
it useful for web applications or services that need to exchange data in a standardized
format.

Suitable for web services or applications that require data exchange or persistence in
XML format, such as RESTful web services.

Example: WebRowSet

 Program 2.4.6: Example of WebRowSet

2.4.5 Using Stored Procedures in JDBC
Stored procedures are precompiled collections of one or more SQL statements stored
in the database. They act like functions, allowing you to encapsulate complex database
operations into reusable blocks of code. By using stored procedures, you can simplify
application logic, improve performance by reducing network traffic (as multiple SQL
operations are executed on the database server), and ensure consistent execution of
repetitive tasks.

JDBC provides support for stored procedures, enabling developers to create, execute,
and manage them from Java applications. Here’s how to use stored procedures with
JDBC:

while (filteredRowSet.next()) {

 System.out.println("Filtered Data: " + filteredRowSet.getString("column_
name"));

 }

WebRowSet webRowSet = RowSetProvider.newFactory().createWebRowSet();

webRowSet.setUrl("jdbc:mysql://localhost:3306/your_database");

webRowSet.setUsername("your_username");

webRowSet.setPassword("your_password");

webRowSet.setCommand("SELECT * FROM your_table");

webRowSet.execute();

webRowSet.writeXml(System.out); // Write the data as XML to the console

209 SGOU - SLM - BCA - Programming in Java

2.4.5.1 Why should we Use Stored Procedures ?

1.	 Simplifies Complex Operations : Stored procedures encapsulate complex
business logic and database operations directly within the database. This
reduces the need for intricate coding in the Java application, simplifying
development and maintenance.

2.	 Improves Performance : Stored procedures minimize network traffic by
allowing multiple SQL statements to be executed in a single call. Additionally,
they benefit from precompilation by the database, leading to faster execution
times.

3.	 Enhances Security : By restricting direct access to the database and its
structures, stored procedures enhance security. They allow users to perform
only specific, predefined operations, safeguarding the underlying data.

2.4.6 Steps to Use Stored Procedures in JDBC
2.4.6.1 Creating a Sample Table and Stored Procedure in MySQL

Before creating a stored procedure, you need a sample table in your database. Here's an
example that demonstrates how to set up a table and create a stored procedure:

1. Create a Sample Table

CREATE TABLE employees (

 emp_id INT AUTO_INCREMENT PRIMARY KEY,

 name VARCHAR(100) NOT NULL,

 department VARCHAR(50),

 salary DECIMAL(10, 2)

);

2. Insert Sample Data into the Table

INSERT INTO employees (name, department, salary)

VALUES

('Alice', 'HR', 50000.00),

('Bob', 'Engineering', 75000.00),

('Charlie', 'Marketing', 60000.00);

3. Create a Stored Procedure

The following stored procedure retrieves employees from a specific department:

CREATE PROCEDURE GetEmployeesByDepartment(IN dept_name VARCHAR(50))

210 SGOU - SLM - BCA - Programming in Java

BEGIN

 SELECT emp_id, name, salary

 FROM employees

 WHERE department = dept_name;

END

4. Call the Stored Procedure

Use the following SQL command to call the procedure and retrieve employees from the
"Engineering" department:

CALL GetEmployeesByDepartment('Engineering');

5. Output Example

The result will display the emp_id, name, and salary of employees in the specified
department.

Establish a Database Connection in Java Use JDBC to establish a connection to the
database where the stored procedure is defined:

Connection conn = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/your_database", "your_username", "your_password");

Prepare the CallableStatement: To call the stored procedure, you use the CallableStatement
interface. It allows you to call stored procedures in a standard way across different
databases.

In JDBC, a CallableStatement is used to execute stored procedures in a database.
Stored procedures are predefined SQL code blocks stored in the database that can
be executed multiple times, often to encapsulate complex database operations. The
CallableStatement interface extends PreparedStatement and allows Java applications to
call these stored procedures. You create a CallableStatement by using the prepareCall()
method on a Connection object and providing the appropriate SQL syntax for calling
the procedure. This enables applications to execute the stored procedure and handle
input and output parameters.

The executeUpdate() method is commonly used with CallableStatement or
PreparedStatement to execute SQL statements that modify the database, such as
INSERT, UPDATE, or DELETE operations. It returns an integer value representing
the number of rows affected by the operation. This method is crucial for determining
whether a modification query was successful and how many rows were impacted,
making it particularly useful for transactional operations or batch processing where
result tracking is important.

CallableStatement stmt = conn.prepareCall("{CALL GetEmployeeName(?, ?)}");

The {CALL GetEmployeeName(?, ?)} syntax is the JDBC escape syntax for calling

211 SGOU - SLM - BCA - Programming in Java

stored procedures. The question marks (?) represent placeholders for input or output
parameters.

Set Input and Register Output Parameters Use the setXXX methods to set input
parameters and the registerOutParameter method to register output parameters:

stmt.setInt(1, 101); // Set the input parameter (employee ID)

stmt.registerOutParameter(2, java.sql.Types.VARCHAR); // Register the output
parameter (employee name)

1. Execute the CallableStatement Execute the stored procedure using the execute
method:

stmt.execute();

2. Retrieve Output Parameters After execution, retrieve the output parameter values
using the appropriate getXXX method:

String employeeName = stmt.getString(2); // Get the output parameter (employee name)

System.out.println("Employee Name: " + employeeName);

3. Close Resources Always close the CallableStatement and Connection objects to
release database resources:

stmt.close();

conn.close();

4. Using a Stored Procedure in JDBC : Here’s a complete example that demonstrates
how to call a stored procedure from a Java application using JDBC:

Example Program: Fetching Data from a Table

Sample Table: employees

CREATE TABLE employees (

 id INT PRIMARY KEY,

 name VARCHAR(100),

 department VARCHAR(50),

 salary DECIMAL(10, 2)

);

INSERT INTO employees (id, name, department, salary) VALUES

(1, 'John Doe', 'IT', 70000.00),

(2, 'Jane Smith', 'HR', 65000.00),

(3, 'Mike Brown', 'Finance', 72000.00);

212 SGOU - SLM - BCA - Programming in Java

Java Program: Fetch and Display Data

import java.sql.*;

public class FetchDataExample {

 public static void main(String[] args) {

 String url = "jdbc:mysql://localhost:3306/your_database";

 String username = "your_username";

 String password = "your_password";

 try {

 // Establish database connection

 Connection conn = DriverManager.getConnection(url, username, password);

// Query to fetch employees with salary greater than a specific amount

 String query = "SELECT id, name, department, salary FROM employees WHERE
salary > ?";

 // Prepare the statement

 PreparedStatement stmt = conn.prepareStatement(query);

 stmt.setDouble(1, 68000.00); // Set the salary threshold

 // Execute the query

 ResultSet rs = stmt.executeQuery();

 // Display the results

 System.out.println("Employees with salary greater than 68000:");

 System.out.println("ID\tName\t\tDepartment\tSalary");

 System.out.println("--");

 while (rs.next()) {

 int id = rs.getInt("id");

 String name = rs.getString("name");

 String department = rs.getString("department");

	 double salary = rs.getDouble("salary");

 System.out.printf("%d\t%-15s%-15s%.2f\n", id, name, department, salary);

 }

213 SGOU - SLM - BCA - Programming in Java

 // Close the resources

 rs.close();

 stmt.close();

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Steps to Run the Program

1. Set Up the Database:

	♦ Create the employees table and insert sample data as shown above.

	♦ Update the url, username, and password variables with your database
credentials.

2. Compile and Run:

	♦ Save the Java code in a file named FetchDataExample.java.

	♦ Compile it using javac FetchDataExample.java.

	♦ Run the program using java FetchDataExample.

Expected Output

	 Employees with salary greater than 68000:

	 ID Name Department Salary

	 --

	 1 John Doe 	 IT 70000.00

	 3 Mike Brown Finance 72000.00

214 SGOU - SLM - BCA - Programming in Java

Recap

	♦ JDBC Overview: JDBC (Java Database Connectivity) is an API that allows
Java applications to connect and interact with relational databases.

	♦ Platform Independence: JDBC provides a uniform interface to connect
Java applications to different databases like MySQL, Oracle, SQL Server,
etc.

	♦ SQL Support: JDBC allows executing SQL commands (such as SELECT,
INSERT, UPDATE, DELETE) from Java applications.

	♦ Driver Management: JDBC uses a driver manager to load the appropriate
database driver and manage database connections.

	♦ Steps in JDBC Connection:

	♦ Load the appropriate JDBC driver.

	♦ Establish a connection to the database using a URL, username, and
password.

	♦ Create a statement object for executing SQL queries.

	♦ Execute SQL queries (e.g., retrieving or updating data).

	♦ Process the results from the queries.

	♦ Close the connection after operations are completed.

	♦ Error Handling: JDBC includes mechanisms for managing SQL exceptions
and errors during database operations.

	♦ Efficiency: JDBC supports database connection pooling and transaction
management for better performance.

Objective Type Questions

1.	 What is the primary purpose of JDBC in Java applications?

2.	 Which Java package contains the classes and interfaces for JDBC?

3.	 Name the interface used to establish a connection to a database in JDBC.

4.	 How can you load a specific database driver in a JDBC program?

5.	 What method is used to establish a connection to a database in JDBC?

215 SGOU - SLM - BCA - Programming in Java

6.	 What is the SQL command for retrieving data from a database using JDBC?

7.	 Which interface is used to execute SQL queries in JDBC?

8.	 How do you close a database connection in JDBC to free resources?

9.	 What is the difference between Statement and PreparedStatement in JDBC?

10.	What is the purpose of ResultSet in JDBC?

11.	Which exception is commonly thrown when a database operation fails in
JDBC?

12.	What is a DataSource in JDBC?

13.	Describe the role of the DriverManager class in JDBC.

14.	How can you retrieve the number of columns in a ResultSet in JDBC?

15.	What are the main benefits of using PreparedStatement over Statement?

16.	How do you handle transactions in JDBC?

17.	Explain how to use a stored procedure in JDBC.

18.	What is a CallableStatement used for in JDBC?

19.	What does the method executeUpdate() return in JDBC?

20.	How can you fetch metadata about a database in JDBC?

Answers to Objective Type Questions

1.	 The primary purpose of JDBC is to enable Java applications to interact with
databases.

2.	 The java.sql package contains the classes and interfaces for JDBC.

3.	 The Connection interface is used to establish a connection to a database in
JDBC.

4.	 You can load a specific database driver using Class.forName("driver_class_
name").

5.	 The DriverManager.getConnection() method is used to establish a connection
to a database.

216 SGOU - SLM - BCA - Programming in Java

6.	 The SQL command for retrieving data is SELECT.

7.	 The Statement interface is used to execute SQL queries in JDBC.

8.	 You close a database connection using the close() method on the Connection
object.

9.	 Statement is used for simple queries without parameters, while
PreparedStatement is used for precompiled queries with parameters.

10.	The purpose of ResultSet is to hold the data retrieved from a database after
executing a query.

11.	The SQLException is commonly thrown when a database operation fails in
JDBC.

12.	A DataSource is an interface that provides a more flexible way to obtain
database connections compared to DriverManager.

13.	The DriverManager class manages a list of database drivers and establishes
a connection to a database.

14.	You can retrieve the number of columns in a ResultSet using the
getMetaData().getColumnCount() method.

15.	Benefits of using PreparedStatement include improved performance and
protection against SQL injection.

16.	You handle transactions in JDBC using Connection.setAutoCommit(false),
followed by commit() or rollback().

17.	To use a stored procedure in JDBC, you create a CallableStatement and call
it using the appropriate syntax.

18.	A CallableStatement is used for executing stored procedures in JDBC.

19.	The executeUpdate() method returns the number of rows affected by the
SQL statement.

20.	You can fetch metadata about a database using the DatabaseMetaData
interface.

217 SGOU - SLM - BCA - Programming in Java

Suggested Reading

1.	 Fisher, Maydene, Jon Ellis, and Jonathan Bruce. JDBC™ API Tutorial and
Reference. Addison-Wesley Professional, 2001.

2.	 Oracle. JDBC API Documentation. Oracle, https://docs.oracle.com/javase/8/
docs/technotes/guides/jdbc/. Accessed 30 Sept. 2024.

3.	 Schildt, Herbert. Java: The Complete Reference. 10th ed., McGraw-Hill
Education, 2017.

4.	 Horstmann, Cay S. Core Java Volume II: Advanced Features. 11th ed.,
Pearson, 2019.

5.	 McLaughlin, Brett. Building Java Enterprise Applications. O’Reilly Media,
2002.

Assignments

1.	 Write a Java program to establish a connection with a MySQL database
using JDBC. Use the appropriate driver, and print a success message once
the connection is established.

2.	 Explain the role of the DriverManager class in JDBC. How does it manage
the database drivers, and what steps are involved in using it to connect to a
database?

3.	 Create a JDBC program to perform a simple CRUD operation (Create,
Read, Update, Delete) on a database table. Implement at least one SQL
query for each operation.

References

1.	 Bates, Bert, and Kathy Sierra. Head First Java. 2nd ed., O'Reilly Media,
2005.

2.	 Rajshekhar, Sharanam Shah, and Vaishali Shah. JDBC, Servlets, and JSP
Black Book. Dreamtech Press, 2011.

3.	 Evans, David R., and John C. Debs. Database Programming with JDBC and
Java. 2nd ed., O'Reilly Media, 2000.

4.	 Eckel, Bruce. Thinking in Java. 4th ed., Prentice Hall, 2006.

5.	 Zakhour, Sowmya, et al. The Java Tutorial: A Short Course on the Basics.
6th ed., Addison-Wesley, 2015.

218 SGOU - SLM - BCA - Programming in Java

kÀ-Æ-I-e-m-i-m-e-m-K-o-X-w

þ-þ

h-n-Z-y-b-mÂ k-z-X-{-´-c-m-I-W-w

h-n-i-z-]-u-c-c-m-b-n a-m-d-W-w

{-K-l-{-]-k-m-Z-a-m-b-v-- h-n-f-§-W-w

K-p-c-p-{-]-I-m-i-t-a \-b-n-¡-t-W

I-q-c-n-c-p-«-nÂ \-n-¶-p R-§-s-f

k-q-c-y-h-o-Y-n-b-nÂ s-X-f-n-¡-W-w

k-v-t-\-l-Z-o-]-v-X-n-b-m-b-v---- h-n-f-§-W-w

\-o-X-n-s-s-h-P-b-´-n]-m-d-W-w

i-m-k-v-{-X-h-y-m-]-v-X-n-s-b-¶-p-t-a-I-W-w

P-m-X-n-t-`-Z-a-m-s-I a-m-d-W-w

t-_-m-[-c-i-v-a-n-b-nÂ X-n-f-§-p-h-m³

Ú-m-\-t-I-{-µ-t-a P-z-e-n-¡-t-W

I-p-c-o-¸-p-g- {-i-o-I-p-a-mÀ

SREENARAYANAGURU OPEN UNIVERSITY

219 SGOU - SLM - BCA - Programming in Java

