

SREENARAYANAGURU OPEN UNIVERSITY

Vision

To increase access of potential learners of all categories to higher education, research and training,
and ensure equity through delivery of high quality processes and outcomes fostering inclusive educa-
tional empowerment for social advancement.

Mission

To be benchmarked as a model for conservation and dissemination of knowledge and skill
on blended and virtual mode in education, training and research for normal, continuing, and
adult learners.

Pathway

Access and Quality define Equity.

SREENARAYANAGURU OPEN UNIVERSITY
The State University for Education, Training and Research in Blended Format, Kerala

Programming with Python
Course Code: B21CA07DC

Semester - IV

Discipline Core Course
Undergraduate Programme

Bachelor of Computer Applications
Self Learning Material

(With Model Question Paper Sets)

Course Code: B21CA07DC
Semester - IV

Discipline Core Course
Bachelor of Computer Applications

PROGRAMMING WITH PYTHON

Academic Committee

Scrutiny

Design Control

Cover Design

Co-ordination

Development of the Content

Review and Edit

Linguistics
Dr. Aji S.
Sreekanth M. S.
P. M. Ameera Mol
Dr.Vishnukumar S.
Shamly K.
Joseph Deril K. S.
Dr. Jeeva Jose
Dr. Bindu N.
Dr. Priya R.
Dr. Ajitha R. S.
Dr. Anil Kumar
N. Jayaraj

Shamin S., Subi Priya Laxmi S.B.N.,
Greeshma P.P., Sreerekha V.K.,
Anjitha A.V., Aswathy V.S,
Dr. Kanitha Divakar.,

Azeem Babu T.A.

Jobin J.

Director, MDDC :
Dr. I.G. Shibi
Asst. Director, MDDC :
Dr. Sajeevkumar G.
Coordinator, Development:
Dr. Anfal M.
Coordinator, Distribution:
Dr. Sanitha K.K.

Dr. K.G. Krishnakumar
Shamin S.
Subi Priya Laxmi S.B.N.
Aswathy V.S.
Sreerekha V.K.
Anjitha A.V.
Dr. Kanitha Divakar
Greeshma P.P

Dr. Ashutosh Kumar Bhatt

Dr. Ashutosh Kumar Bhatt

July 2025

© Sreenarayanaguru Open University

Edition

Copyright

Scan this QR Code for reading the SLM
on a digital device.

Dear

With immense joy and excitement, I extend my heartfelt greetings to all
of you and warmly welcome you to Sreenarayanaguru Open University.

Established in September 2020 as a state-driven initiative, Sreenarayana-
guru Open University is dedicated to advancing higher education through
open and distance learning. Our vision is guided by the principle of “ac-
cess and quality define equity,” laying the foundation for a celebration of
excellence in education. I am delighted to share that we are steadfast in
our commitment to uphold the highest standards and refrain from com-
promising on the quality of education we offer. The university draws its
inspiration from the legacy of Sreenarayana Guru, a revered figure in the
Indian renaissance movement. His name serves as a constant reminder for
us to prioritize quality in all our academic endeavors.

Sreenarayanaguru Open University operates within the practical frame-
work of the widely recognized “blended format.” Acknowledging the
constraints faced by distance learners in accessing traditional classroom
settings, we have curated a pedagogical approach centered on three main
components: Self Learning Material, Classroom Counselling, and Virtual
Modes. This comprehensive blend is poised to deliver dynamic learning
and teaching experiences, maximizing engagement and effectiveness. Our
unwavering commitment to quality ensures excellence across all aspects of
our educational initiatives.

The University aims to offer you an engaging and stimulating educational
environment that fosters active learning. The SLM is designed to offer a
comprehensive and cohesive learning experience, fostering a deep interest
in the study of technological advancements in IT. Careful consideration
has been given to ensure a logical progression of topics, facilitating a clear
understanding of the discipline’s evolution. The curriculum is thoughtfully
crafted to provide ample opportunities for students to navigate through
the current trends in information technology. Furthermore, this course is
designed to provide essential insights into computer hardware, software
classification, and foundational HTML concepts crucial for web develop-
ment.
We assure you that the university student support services will closely
stay with you for the redressal of your grievances during your student-
ship. Feel free to write to us about anything that seems relevant regarding
the academic programme.
Wish you the best.

Regards,
Dr. Jagathy Raj V.P.						 01-07-2025

Contents

Block 01	 Introduction to Python, Data Structures and Operations 	 1
Unit 1		 Introduction to Python						 2
Unit 2		 Operators in Python 							 21
Unit 3		 Data Types in Python 							 31
Unit 4		 Built-in Methods of Data Structures					 42

Block 02	 Decision making, Loops, Comprehensions, Functions,			
		 Modules & Packages							 53
Unit 1		 Decision Making and Loops						 54
Unit 2		 Comprehensions							 68
Unit 3		 Functions								 78
Unit 4		 Modules & Packages							 94

Block 03	 File Handling, Object-Oriented Programming, Exception 		
		 Handling and Regular Expressions					 108
Unit 1		 File Handling								 109
Unit 2		 Object-Oriented Programming					 116
Unit 3		 Exception Handling and Regular Expressions			 133
Unit 4		 Regular Expressions							 146

Block 04	 Database Programming, Familiarizing NumPy, Matplotlib		
		 and Pandas								 155
Unit 1		 Database Programming						 156
Unit 2		 Familiarising NumPy							 166
Unit 3		 Introduction to Matplotlib						 178
Unit 4		 Introduction to Pandas						 194

Model Question Paper Sets								 211

Introduction to Python,
Data Structures and

Operations

BLOCK 1

Introduction to Python

Learning Outcomes

Prerequisites

	♦ familiarise with the fundamentals of Python programming

	♦ explore to set up a Python programming environment

	♦ identify statements, variable names, input, and output function

Why Python? A Language for everyone!

Picture yourself giving simple instructions to a computer, just like talking to a friend.
That’s where programming languages come in. They act as a bridge between humans
and computers, allowing us to communicate with computers efficiently. But not all
programming languages are easy to learn. Some have complex rules, tricky symbols
and a steep learning curve.

Now, what if there was a language that made coding as simple as writing a sentence in
English? A language that removes unnecessary complexity and allows even beginners
to create powerful programs with ease. No? That’s the Language Python!

Python is one of the most popular and beginner-friendly programming languages in

UNIT 1

The learner will be able to :

2 SGOU - SLM - BCA - Programming with Python

Discussion

Keywords

Program, Programming Language, Compiler, Interpreter, Variable name

Introduction
Python was created by Guido van Rossum. It is a well-designed programming
language. Python is useful for accomplishing real-world tasks. Python is an easy to
learn, powerful programming language. It has efficient high-level data structures and a
simple but effective approach to object-oriented programming. Python’s elegant syntax
and dynamic typing, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most platforms.

We can use Python for everything from website development, IoT, gaming, robotics,
implementing standalone programs, and many more. Python is used widely to implement
complex Internet services like search engines, cloud storage and tools, social media,
and so on. For example, Google uses Python language to make the search engine better
and more efficient. Google’s main search algorithms are written in C++ and Python.
One of the most popular languages used in Machine learning is Python. The availability
of a wide collection of library functions of Python makes the programming easy and
effective.

When Python is installed on a computer, it installs several components such as an
interpreter and supporting library. The Python interpreter is easily extended with new
functions and data types implemented in C or C++ (or other languages callable from C).
Python is also suitable as an extension language for customizable applications. The set
of instructions written in a high-level programming language (For example, Python) is
the source code and the file is called a source file.

the world today. It is free, open-source and widely used across industries - from web
development to artificial intelligence. Unlike languages like C++ and Java, Python
doesn’t require complex syntax with braces and semicolons. Its clean and readable
structure makes it easy to write, understand, and debug.

But that’s not all! Python is also one of the fastest-growing languages because of its
flexibility and simplicity. Whether you want to build a game, analyze data, develop
websites, or automate tasks, Python is the perfect tool to get started.

Are you ready to explore the power of Python and see how effortlessly you can bring
your ideas to life? Let's explore the world of Python and uncover the endless possibil-
ities it offers!

3 SGOU - SLM - BCA - Programming with Python

Python Goals

	♦ An easy and intuitive language

	♦ Open-source

	♦ Source code is as understandable as plain English;

What makes Python special?

	♦ Easy to learn

	♦ It's easy to use for writing programs or scripting

	♦ Easy to understand

	♦ It's easy to obtain, install and deploy

	♦ Python is free and open-source

	♦ Multiplatform; Available on Windows, Unix operating systems, and macOS.

Python enables programs to be written compactly and readably. Programs written in
Python are typically much shorter than equivalent C, C++, or Java programs, for several
reasons: The high-level data types allow you to express complex operations in a single
statement. Statement grouping is done by indentation instead of beginning and ending
brackets. No variable or argument declarations are necessary.

Python is extensible: You can add new features or use code from other languages like
C or C++. This makes it flexible and powerful, allowing developers to extend Python’s
capabilities by integrating it with existing software or special libraries, such as those for
graphics processing. If a certain functionality is not available in Python, programmers
can write additional code in another language and connect it with Python to enhance
performance and access special features. This makes Python a great choice for building
complex applications that require advanced functions from other programming
languages.

Advantages:

Python is a high-level programming language, making it easier for developers to write
and understand code without worrying about low-level hardware details. Its user-
friendly data structures allow efficient data management, simplifying tasks like data
manipulation and storage. For example, Python's list and dictionary structures are
commonly used in web development frameworks like Django to manage user sessions
and database records efficiently.

Being open-source, Python is freely available for use and modification, with a large
and active community constantly contributing new tools and improvements. It is a
versatile language, known for its simplicity, readability, and ease of learning, making it
an excellent choice for both beginners and experienced programmers. Python supports
both object-oriented and procedural programming, providing flexibility in coding styles.
For instance, YouTube uses Python to handle different parts of its website, including
video viewing and administrative tasks.

4 SGOU - SLM - BCA - Programming with Python

Python is portable, meaning it can run on different operating systems without
modification, and interactive, allowing real-time code execution. It also benefits from
third-party modules and extensive libraries like NumPy for numerical computations
and Pandas for data analysis, making it a powerful tool for various applications. Since
Python is a dynamically typed language, it automatically assigns data types based
on values, reducing the need for manual declarations. Its efficiency and clean object-
oriented design enhance performance, making it ideal for building prototypes with
minimal coding. Additionally, Python's capabilities extend to emerging fields such as
the Internet of Things (IoT) and machine learning, ensuring its relevance in modern
technology. Being an interpreted language, Python executes code line by line, making
debugging and testing easier for developers. Its cross-platform compatibility allows
applications to run seamlessly on different operating systems, enhancing its flexibility
and usability.

Disadvantages:

Global Interpreter Lock: It is a mechanism in Python that prevents multiple threads
from executing Python code at once. This can limit the parallelism and concurrency of
some applications.

Memory consumption is very high

Dynamically typed: The types of variables can change at runtime. This can make it
more difficult to catch errors and can lead to bugs.

Packaging and versioning: Python has a large number of packages and libraries,
which can sometimes lead to versioning issues and package conflicts.

Lack of strictness : Unlike statically typed languages such as C++ or Java, Python is
dynamically typed, meaning variables do not need to be explicitly declared with a data
type. While this makes coding easier, it can also lead to unexpected errors at runtime
that would have been caught earlier in a strictly typed language.

Let’s start the journey of learning Python programming by printing a message “hello
world “ program.

To write a program using the Python programming language, we need an IDE.
An integrated development environment (IDE) is an application that provides facilities
for software development. IDE consists of an editor to type the program, a facility to
highlight the mistakes identified by the IDE, and other features to develop an application
without spending much time.

A number of IDEs are available for programming in Python. Since we are new to
Python programming, let’s start with Jupyter Notebook Online, a simple environment
for Python programming.

Jupyter Notebooks allows: creation and execution of Python programs by integrating
code and its output into a single document. It opens the IDE in a standard web browser.

5 SGOU - SLM - BCA - Programming with Python

Fig 1.1.1 Python IDE

1.1.1 How to Start
Let’s start Jupyter Notebook Online as shown in fig 1.1.2 by opening the link https://
jupyter.org/try

 Fig 1.1.2 Python IDE

Start a new workbook as shown in fig 1.1.3. We can write the program in the cell
provided by the IDE.

Fig 1.1.3 Python IDE

6 SGOU - SLM - BCA - Programming with Python

Fig 1.1.4 shows python IDE, here we can write programs

Type print (“Hello World”) as shown in fig 1.1.4 below

Fig 1.1.4 Python IDE

Click on the Run button and click on Run Selected Cells or click on as shown
in fig 1.1.5 to execute the program and observe the result.

Fig 1.1.5 Python IDE

The following fig 1.1.6 shows the result will be displayed.

Fig 1.1.6 Python IDE

Congratulations, you have created a Python program and executed the same to see the
result.

Let’s try the following addition program.

7 SGOU - SLM - BCA - Programming with Python

The following are the steps to use our addition application.

1.	 Start

2.	 Input the first number and store it in variable a

3.	 Input the second number and store it in variable b

4.	 Add the two numbers and store the result in variable c
c = a + b

5.	 Display the result stored in c

6.	 End

Type the program given below as shown in fig 1.1.7 in the place where we have typed
hello world or create a new notebook and type the program.

 Fig 1.1.7 Python IDE

Note:
In Python

	♦ int – represents integers. Example 450, 67, 4

	♦ float – represents decimal numbers. Example 30.5

Write the following program in the IDE as shown in fig 1.1.8 and click on Run
button to execute the program.

a = int(input("Enter first number: "))

b = int(input("Enter second number: "))

c = a + b

print(f"The sum of {a} and {b} is {c}")

Output of the above program is

8 SGOU - SLM - BCA - Programming with Python

Enter first number: 5

Enter second number: 7

The sum of 5 and 7 is 12

Fig 1.1.8 Python IDE

While running the program you will be prompted to enter the first number and second
number. For example, enter 4 as the first number and 3 as the second number.

The result displayed will be: The sum of 5 and 7 is 12

This simple addition program has used different variable names such as a, b and c.
Don’t worry about the syntax and structure of this program yet—In this program, we
aim to get a basic idea about Python programming .

Download and install Python

Python is already installed with the Linux operating system. Python's infrastructure is
intensively used by many Linux OS components.

You can check it by typing the command python3 in the terminal. You will get the
following window if Python is already installed.

Fig 1.1.9 Python IDE

If you're a Windows or macOS user, download and install. Open https://www.python.
org/

9 SGOU - SLM - BCA - Programming with Python

Fig 1.1.10 Python IDE

Note: Search in Google or any other search engine to find the installation steps. Read
the instructions carefully for installation.

1.1.2 Python interactive mode
In Python interactive mode we can type each instruction and get it done. Type the
command python in the command prompt of the OS to open Python interactive mode.

Fig 1.1.11 Python IDE
	♦ When you type a statement in interactive mode, the interpreter executes it

and displays the result, if there is a result.

	♦ A program usually contains a collection of statements. If there is more than
one statement, the results appear one at a time as the statements execute.

Activity: Open the Python IDLE shell and type the following code and observe the
result.

Fig 1.1.12 Python IDE

10 SGOU - SLM - BCA - Programming with Python

1.1.3 Python IDE
An IDE (Integrated Development Environment) identifies source code better than a text
editor. There are several IDEs available to write Python programs.

Python 3 standard installation contains a very simple and useful application named
IDLE (Integrated Development and Learning Environment). After installing Python,
find IDLE somewhere under Python 3. x, and open it from the start menu of the
Operating system. This is what you should see:

Fig 1.1.13 Python IDE

Create a new source file by clicking the File in the IDLE’s menu and choosing New
File.

The following is a Python program to display the Hello world message written in
Python IDLE.

Fig 1.1.14 Python IDE

Save the file and click on Run in the IDLE’s menu. Don’t set any extension for the file
name you are going to save. Python automatically saves the file with the .py extension.
After running the program, you will see the output as shown below.

Fig 1.1.15 Python IDE

	♦ Write prin(“hello world”), save and run. (notice that letter t in print is
missing). You will get an error message as shown below.

11 SGOU - SLM - BCA - Programming with Python

Fig 1.1.16 Python IDE

NameError is: name print is not defined. Python did not understand the word prin.

Write print(“hello world” save and run. (Notice that the bracket is missing). You will
get an error message as shown below.

 	
Fig 1.1.17 Python IDE

Similarly, the IDE will generate error messages according to the mistakes in the program.

The following are the most popular IDE used to develop Python applications.

PyCharm:

PyCharm is an IDE for professional developers created by JetBrains

2. Spyder

Spyder is an open-source IDE written in Python, for Python.

To Do

Python statements

Search in Google or any other search engine to find popular Python IDEs and

compare their features.

12 SGOU - SLM - BCA - Programming with Python

Example 1:

The following is a Python program to input two integer numbers, add them, and display
the result.

a = int(input("Enter first number"))

b = int(input("Enter second number"))

c = a + b

print(f"The sum of {a} and {b} is {c}")

There are 4 statements in the above program. The statements are the instructions and we
write to tell Python what our programs or applications should do. To add two numbers,
first read the numbers and save them to memory locations or assign the two numbers to
variable names. The above program will let the user enter the numbers. While executing
the program, the user input two numbers. For example, 4 and 3. The output will be :
The sum of 4 and 3 is 7.

The last line uses an f-string (formatted string literal) in Python to display a message that
includes variable values directly within the string. The user can execute the program
again by giving the next set of numbers. A statement is a unit of code that the Python
interpreter can execute.

Type and execute the above program using

	♦ Jupyter Notebook Online

	♦ Python IDLE shell (Interactive mode)

	♦ IDE

1.1.4 Python variable name
In the programming context, variables are names that represent memory locations.
The memory of a computer can store a lot of data. Each data is stored in different
memory locations. From a programming perspective, these locations are identified with
a variable name. In the above program (Example 1) a, b, and c are variable names.

Note: While using variable names it’s better to use meaningful names related to data.
For example, if you want to store and process the age of a person, use an appropriate
variable name, say age to store the value. It helps in easy understanding of the program.
The concept is illustrated below.

 Age = 12

12

13 SGOU - SLM - BCA - Programming with Python

Fig 1.1.18 Memory Allocation

Here Age is the name of a memory location and the data or value stored is 12. The
print(Age) will fetch the data from the memory location named Age and display the
value or data 12. Remember Python is case sensitive, which means Age and age are
two different variable names.

1.1.4.1 Naming rules for Variables

1.	 Python is case sensitive, which means Age and age are two different variable
names.

2.	 The first character of the variable name must be an alphabet or an underscore
(_).

3.	 The rest of the variable name can consist of letters, underscores, or digits.

4.	 Special symbols (*, #, & etc) and space are not allowed for variable names.

5.	 Python keywords are not allowed as variable names.

The following are examples of Python keywords:

assert 		 else		 if 		 not 		 while

False		 in 		 pass 		 yield		 and 			

as 		 elif 		 global 		 nonlocal	 try

break 		 except		 import 	 or 		 with

def 		 for 		 lambda 	 return 	 await

continue 	 finally 		 is 		 raise 		 async

In Python # represents comments. Comments will not be executed by Python. This is
used by the programmer as a reference or as a note.

Examples of correct variable names:

Student_ID, student_id, Location, NumOfChildren

14 SGOU - SLM - BCA - Programming with Python

Examples of incorrect variable names:

23Age – started with numbers.

student@age - @ symbol not allowed in a variable name.

Input function
Python input function is input(). There will be situations where the program or
application has to interact with the user. The input() will read the input data from an
input device and convert the data into a string, then return the data to the variable name.

A= input(“ Enter a number”) will prompt the user to input a number, read the number
typed by the user, convert it into a string, return it to the variable A and store it in the
memory location. Note that the data will be stored as a string(not a number) even
though the user types a number. To convert the string to an integer, we can use the int(
) function.

A = int(input(“Enter a number”))

Example 2:

Username = input(“Enter the username”)

Password = input(“Enter Password)

Username and Password strings in this example.

Number_Of_Children =int(input(“ Enter a number”)).Here we used typecast int() to
convert the input data to an integer because the number of children holds an integer
value.

print() function

 Fig 1.1.19 Example to print a message

Syntax : print(objects, sep=separator, end=end, file=file)
The print function is used to display the result or specified message to the screen, or
another output device.

print (“Hello World”) will display the message Hello World

Note: The above program is written in Jupyter Notebook online. You may use any other
IDE of your choice.

15 SGOU - SLM - BCA - Programming with Python

Escape Sequences used in print()

Sometimes we need to display the output in different lines or with space in between or
in a particular format.

\n – newline character. This will create a new line.

\t – the tab space character

 Fig 1.1.20 Example to print a message	

In the above example, if you remove \n, Hello world will be printed in one line. The
following program is an example of using tabs to create space.

Fig 1.1.21 Example to print a message

Activity 1: Write the following program
My_name= "John"

print("My name is \n",My_name)

\n represents a new line. The text “My Name is” will be displayed in the first line and
the name John will be on the next line. Run the program after removing \n from the
code and check the output.

Activity 2:

1. Write the following program and check the output.

print(" @")

print(" @ @")

print(" @ @")

Note: Run the above code in Jupyter Notebook or any other IDE and do the following
activities.

	♦ Reduce the number of print() functions by using the \n escape in the above
program.

16 SGOU - SLM - BCA - Programming with Python

	♦ Remove any of the quotes, and identify the response; pay attention to where
Python shows an error

	♦ Remove some of the parentheses and identify the error.;

	♦ Use Print instead of print - what happens now?

	♦ Change the spelling of print to print and identify the error.

Play with the code while learning, modify any part of the code, learn from your mistakes,
and draw your conclusions.

2. Write the following program and check the output.

Mark1 = float(input(“Enter a mark”))

Mark2 = float(input(“Enter a Mark”))

Total = Mark1 + Mark2

print(Total)

Recap

	♦ The fundamentals of computer programming, i.e., how to create source code,
how the program is executed, the definition of a programming language.

	♦ Translating the source code using compiler and interpreter.

	♦ The basics about Python and its features.

	♦ Resources and different types of IDE to write Python programs.

	♦ Python statements

	♦ Naming rules of a variable

	♦ Input and output function to read data and display results.

17 SGOU - SLM - BCA - Programming with Python

Objective Type Questions

1.	 How many variables are in the following program?

 gender = “Male”

 print(“Your Gender is “,gender)

2.	 State the purpose of a compiler.

3.	 What is the language used to create a source code?

4.	 Identify any 3 languages used to make source code.

5.	 Identify the Python version used in this course.

6.	 State the purpose of an IDE.

7.	 What is the significance of a translator in programming?

8.	 State the purpose of a variable name.

Answers to Objective Type Questions

1.	 1

2.	 To translate source code to object code

3.	 Any high-level language

4.	 Python, C++, Java(or any other programming languages)

5.	 3.10.2

6.	 IDE can be used to type, edit, save, run, debug, etc.

7.	 Translates written in source code into machine code.

8.	 To identify the memory location

Assignments

1.	 Write the following program and check the output.

My_name = “John”

print(“My Name is “, My_name)

2.	 Write the following program and check the Python reaction.

18 SGOU - SLM - BCA - Programming with Python

	 My_name = “John”

	 print(“My Name is “, My_nam)

 Here I have used My_name to store the name. But in the print function, I

 missed the last letter e of the My_name variable. Python will consider these two

 different variable names.

3.	 Change the above program by using the correct variable name in the print
function

 		 Print(“My Name is “, My_name)

4.	 Run the above program by removing the brackets and identify the error

5.	 Run the above program by removing the quotes and identify the error.

6.	 Write a program to display your family members' names.

7.	 Write a program to input your family members names and display the names.

8.	 Write and run the following code.

	 My_name= "kkg"

	 print("My name is \ \n",My_name)

 	 Replace \n with \t and see the result.

9.	 Write and run the following code

 	 My_name= "KKG"

 	 print("My name is \t \t",My_name)

 	 print("My name is Python ")

 	 print("My name is \t \t",My_name, end =" ")

 	 print("My name is Python Guru")

Use the end parameter with more space in between the quotes and observe the
result.

 print("My name is \t \t",My_name,end =" ")

Use end parameter with any characters or symbols in between the quotes and
observe the result

 print("My name is \t \t",My_name,end ="@@@@@@@@@@@@ ")

19 SGOU - SLM - BCA - Programming with Python

10.	Write and Run the following code.

 My_name= "KKG"

 print("My name is \t \t", My_name , end =" \n")

 print("Programming is fun ")

 My_name= "Peter"

 print("My name is \t \t",My_name , "," Hello”, sep =” ******”)

 print(“My name is Python Guru”)

use sep parameter with more space in between the quotes and observe the result
use sep parameter with any characters or symbols in between the quotes and
observe the result

11.	Write a program to input the age of your parents and display the age using
the sep parameter.

12.	 Guess the output of the following code and run the code to check the output.

 My_name= "John"

 print("My name is \t \t",My_name ,"Hello" ,sep ="|", end = "\n")

 print("My name is Python")

References

1.	 Learning Python by Mark Lutz, O'Reilly Media, 2013.

2.	 Python Crash Course by Eric Matthes, No Starch Press, 2019.

3.	 Fluent Python by Luciano Ramalho, O'Reilly Media, 2022.

Suggested Reading

1.	 A Beginner’s Guide To Learn Python In 7 Day, Author: Ramsey Hamilton

2.	 Python Programming For Beginners: Learn The Basics Of Python
Programming (Python Crash Course, Programming for Dummies). Author:
James Tudor

3.	 https://www.python.org/about/gettingstarted/

20 SGOU - SLM - BCA - Programming with Python

Operators in Python

Learning Outcomes

Prerequisites

	♦ identify different types of operators in Python.

	♦ recognise various arithmetic, relational, and logical operators in programs.

	♦ define assignment and increment/decrement operators correctly.

	♦ perform operations using bitwise, membership, and identity operators.

	♦ understand and apply operator precedence and associativity rules.

Before diving into the world of Python programming, it's important to understand how
computers make decisions and perform calculations. Just like we use symbols like "+"
for addition or ">" to compare numbers in math, Python uses operators to carry out
different operations in a program. These operators help a program calculate values,
compare data, make choices, and much more. Learning how to use them is a key step
in becoming a confident Python programmer.

Python provides several types of operators such as arithmetic, relational, logical,
assignment, bitwise, membership, and identity. Each of these plays a specific role in
writing code that performs tasks. For example, arithmetic operators help you do math,
relational operators let your code compare values, and logical operators help your code

UNIT 2

At the end of this unit, the learner will be able to:

21 SGOU - SLM - BCA - Programming with Python

Discussion
1.2.1 Python Operators
When we withdraw money from an ATM, the amount withdrawn will be deducted from
the account. The program will subtract the amount. Subtracting amount is an operation
and the operator used is minus (-). Operators are special symbols in a programming
language that carries out arithmetic, logic, and other operations. The value or data that
the operator operates on is called the operand. The following are the types of operators
(Fig 1.2.1) in Python.

1.	 Arithmetic Operators

2.	 Assignment Operators

3.	 Comparison (Relational) Operators

4.	 Logical Operators

5.	 Bitwise Operators

6.	 Membership Operators

7.	 Identity Operators

 Fig 1.2.1 Tyes of Python operators

Keywords

Logical Operators, Bitwise Operators, Comparison Operators, Membership
Operators, Operator Precedence

make decisions. Once you understand how these work, you’ll be able to write programs
that are interactive, smart, and capable of handling real-world logic.

Imagine you're creating a simple fitness app that calculates calories burned based on
steps walked, checks if the user met their goal, and gives a motivational message. You
would use arithmetic operators to calculate total calories, comparison operators to
check if the goal is reached, and logical operators to decide what message to display.
With the power of Python operators, you can build programs that do more than just run
they can think and respond like a real assistant.

22 SGOU - SLM - BCA - Programming with Python

1.2.1.1 Arithmetic Operators
Arithmetic operators are used to perform mathematical operations like addition,
subtraction, multiplication etc. Table 1.2.1 contain the basic arithmetic operators used
in Python (Assume the values of a and b are 5 and 3).

Table 1.2.1 Arithmetic Operators

Operator Name Description Example

+ Addition Adds two numbers a + b = 8

- Subtraction Subtracts one number from another a - b = 2

* Multiplication Multiplies two numbers a * b = 15

/ Division Divides one number by another (result
with decimal)

a / b = 1.6

% Modulus Gives the remainder of a division a % b = 2

** Exponent Raises one number to the power of
another.

a ** b = 125

// Floor Division Divides and removes the decimal
(gives whole number)

a // b = 1

1.2.1.2 Assignment Operators
This operator is used to assign values to variable. Table 1.2.2 specify the assignment
operators is shown below.

Table 1.2.2 Assignment Operators

Operator Description Example

= Assigns a value to a variable x = 5

+= Adds and assigns (x = x + value) x += 2

- = Subtracts and assigns (x = x - value) x -= 2

*= Multiplies and assigns (x = x * value) x *= 5

/= Divides and assigns (x = x / value) x /= 3

//= Floor divides and assigns (x = x // value) x //= 2

%= Modulus and assigns (x = x % value) x %= 5

**= Power and assigns (x = x ** value) x **= 1

1.2.1.3 Comparison Operators
While writing programs or applications we will use comparison operators. For example,

23 SGOU - SLM - BCA - Programming with Python

the ATM application will check the entered amount is less than or equal to (<=) the
available amount. If the result is true, you will get money, otherwise, the machine will
inform you that you do not have a sufficient amount in the account. All comparison
operators will compare the data and return True or False.

Table 1.2.3 Comparison Operators

Operator Description Example

= = Equal to 5 == 5 (True)

!= Not equal to 5! = 2 (True)

> Greater than 5 > 2 (True)

< Less than 5 < 2 (False)

>= Greater than or equal to 5 >= 5 (True)
<= Less than or equal to 6 <= 5 (False)

1.2.1.4 Logical Operators
Two or more relations that compare the data can be logically joined together using the
logical operators OR and AND. For example, an application will check if the username
is correct, and the password is correct when you log in.

1. AND Operator
The AND operator is used to check if multiple conditions are all true. It returns True
only if both (or all) conditions are true; otherwise, it returns False as shown in Table
1.2.4.

Table 1.2.4 AND Operator

X Y X AND Y
True True True
True False False
False True False
False False False

2. OR Operator
The result of an OR operator is True if at least one of the conditions being evaluated
is True. If all the conditions are False, then the result is False as shown in Table 1.2.5.

Table 1.2.5 OR Operator

X Y X OR Y
True True True
True False True
False True True
False False False

24 SGOU - SLM - BCA - Programming with Python

Note: X and Y should be Boolean, otherwise it will return the integer

3. NOT (boolean NOT) Operator

The negation of a Boolean is the opposite of its current Boolean value. Description of
NOT operator is shown below table 1.2.6.

Table 1.2.6 NOT Operator

X NOT X

True False

False True

Example:

 a = True

 b = False

 print (a and b)

 print (a or b)

 print (not a)

Output:

	 False

	 True

	 False

1.2.1.5 Bitwise Operators
Bitwise operators are used to perform operations on the binary representations of
integers. These operators work at the bit level, meaning they perform operations on
individual bits (0s and 1s) of the numbers. Table 1.2.7 shows the bitwise operators used
in Python.

Table 1.2.7 Bitwise Operators

Operator Name Description Example Result
& Bitwise AND Returns 1 if both bits

are 1
5 & 3 → 0101 & 0011
= 0001

1

| Bitwise OR Returns 1 if at least
one bit is 1

5 | 3 → 0101 | 0011
= 0111

7

^ Bitwise XOR Returns 1 if bits are
different

5 ^ 3 → 0101 ^ 0011
= 0110

6

25 SGOU - SLM - BCA - Programming with Python

~ Bitwise No Inverts all the bits (1
becomes 0, 0 becomes
1)

~5→~0101=1010
(in 2’s complement)

-6

<< Left Shift Shifts bits to the left,
filling with 0s

5 << 1 → 0101 << 1 =
1010

10

>> Right Shift Shifts bits to the right,
dropping bits

5 >> 1 → 0101 >> 1 =
0010

2

1.2.1.6 Membership Operators
Membership operators are used to check if a value exists inside a sequence like a
string, list, tuple, or set. Membership Operators are summarized in Table 1.2.8.

Table 1.2.8 Membership Operators

Operator Description Example

in True if a value is inside a list, string, or set 'a' in 'apple' → True

not in True if a value is not inside a list, string, or set. 'x' not in 'apple' → True

1.2.1.7 Identity Operators
This operator is used to compare the memory locations of two objects. They check
whether two variables refer to the same object in memory, not just if their values are
the same. Table 1.2.9 shows the Identity Operators used.

Table 1.2.9 Identity Operators

Operator Description Example
is True if two variables point to the same

object (same memory address)
x is y, the result is True if id(x) is
the same as id(y)

is not True if two variables point to different
objects

x is not y; the result is True if
id(x) is different from id(y)

1.2.2 Order of Operations
In an expression with more than one operator, the order of execution of operators
depends on the rules of precedence as shown in Table 1.2.10.

Table 1.2.10 Order of Precedence

Priority Operator Description Associativity
1 () Parentheses Left to Right
2 ** Exponentiation Right to Left
3 ~x Bitwise NOT Right to Left
4 *, /, //,

%
Multiplication, Division,
Floor Division, Modulus

Left to Right

26 SGOU - SLM - BCA - Programming with Python

5 +, - Addition, Subtraction Left to Right
6 <<, >> Bitwise Shift Left and Right Left to Right

7 & Bitwise AND Left to Right
8 ^ Bitwise XOR Left to Right
9 | Bitwise OR Left to Right

10 in, not in Membership Left to Right

11 not Logical NOT Right to Left
12 and Logical AND Left to Right
13 or Logical OR Left to Right

Example 1:

x = 2

y = 4

z = x + y / 2

print(z) // will display 4.0

In this expression + and / are the operators. y/2 will be executed first, and the result will
be added to x.

Example 2:

x = 2

y = 4

z = (x+y)/2

print(z) // will display 3.0

In this expression + and / are the operators. Expressions in parentheses are evaluated
first. x + y will be executed first, and the result will be divided by 2.

Recap

	♦ Python Operators: Symbols that carry out operations on operands. They
help us perform different types of operations like arithmetic, comparisons,
logical checks, and more.

	♦ Types of Operators

	♦ Arithmetic Operators: Used for basic mathematical calculations like
addition, subtraction, multiplication, etc.

	♦ Assignment Operators: Used to assign values to variables, such as =
or compound assignments like += and -= that perform an operation and
assign the result in one step.

27 SGOU - SLM - BCA - Programming with Python

	♦ Comparison Operators: Used to compare two values and return True or
False (e.g., ==, =, >, <).

	♦ Logical Operators: Used to combine multiple conditions with and, or,
and not.

	♦ Bitwise Operators: Perform operations on the binary representation of
integers, such as &, |, ^, and shifts (<<, >>).

	♦ Membership Operators: Check if a value is a member of a sequence
(like a string or list) using in and not in.

	♦ Identity Operators: Compare memory addresses to check if two variables
point to the same object, using is and is not.

	♦ Order of Operations: For evaluating expressions with multiple operators,
operators with higher precedence (like parentheses () and exponentiation
**) are evaluated first, followed by other operators in a specific order (e.g.,
multiplication * before addition +).

Objective Type Questions

1.	 What operator will be used to check if 15 is not equal to 10.

2.	 What operator will be used to check if 15 is equal to 10.

3.	 What will be the output of the following code?

 	 x = ((6+5**2) -(30 *2/4))/2
 	 print(x)

4.	 What will be the output of the following code?

 		 x = ((6+5**2) -(30 *2/4))/2
 		 print (x >6)

5.	 Identify the output of the following code.

 		 mark = 30
 		 age = 50
 		 result = mark > 50 and age < 10
 		 print(result)

6.	 The negation of a Boolean is the opposite of its _________

7.	 What does the in operator check in Python?

8.	 What type of operator is * in Python?

28 SGOU - SLM - BCA - Programming with Python

9.	 What is the result of 5 // 2?

10.	Which operator checks if two variables refer to the same object in memory?a

1.	 !=

2.	 ==

3.	 8.0 (Use the operator rule of precedence)

4.	 True

5.	 False

6.	 Current Boolean value

7.	 Membership

8.	 Arithmetic

9.	 2

10.	is

Answers to Objective Type Questions

Assignments

1.	 Write a Python program to calculate the area of a rectangle. The length of
the rectangle is 7 units, and the width is 5 units. Use arithmetic operators to
compute the area.

2.	 Write a Python program that assigns a value of 10 to a variable a and then
performs the following operations using assignment operators:

	 a. Add 5 to a

	 b. Subtract 3 from a

	 c. Multiply a by 2

	 d. Divide a by 4.

	 After each operation, print the value of a.

29 SGOU - SLM - BCA - Programming with Python

3.	 Write a Python program that compares two integers x = 12 and y = 8 using
all the comparison operators (==,!=, >, <, >=, <=). Print the result of each
comparison.

4.	 Write a Python program that checks if a given number n is between 10 and
20 (inclusive). Use logical operators (and, ornot) to check if n satisfies the
condition 10 <= n <= 20.

5.	 Write a Python program that checks if a character 'a' is present in the string
'apple' and if the number 7 is in the list [1, 3, 5, 7, 9]. Use the membership
operators (in, not in) and print the results.

References

1.	 Chase, S. (2018). Python for Data Analysis (2nd ed.). O'Reilly Media.

2.	 Van Rossum, G., & Drake, F. L. (2001). Python 2.0 Reference Manual.
Python Software Foundation.

3.	 Sweiger, A. (2019). Automate the Boring Stuff with Python (2nd ed.). No
Starch Press.

4.	 Müller, A. C., & Guido, S. (2016). Introduction to Machine Learning with
Python. O'Reilly Media.

Suggested Reading

1.	 Python Crash Course, Eric Matthes (No Starch Press, 2016)

2.	 Zelle, J. M. (2016). Python programming: An introduction to computer
science (3rd ed.). Franklin, Beedle & Associates.

3.	 Downey, A. B. (2015). Think Python: How to think like a computer scientist
(2nd ed.). O’Reilly Media.

4.	 Beazley, D. M. (2009). Python essential reference (4th ed.). Addison-Wesley
Professional

5.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

30 SGOU - SLM - BCA - Programming with Python

Data Types in Python

Learning Outcomes

Prerequisites

	♦ define different data types in Python.

	♦ identify the index positions of elements in a Python list.

	♦ list the steps to perform slicing on a Python list.

	♦ explain the characteristics of Python tuples.

	♦ list the examples of immutable and mutable data types in Python.

Imagine you are developing a simple app to manage student information at a school.
For each student, you need to store different types of data like their name (text), age
(number), date of birth (date), and subjects they are studying (a list of items). You may
also need to check whether the student is eligible for a scholarship (True or False), store
their hobbies without any duplicates (a set), or organize their details using labels like
"name", "age", and "grade" (a dictionary). This real-life situation introduces the need
for data types in Python, where each kind of information is stored using a suitable type
such as int, float etc. Understanding data types helps learners manage and organize data
efficiently in any Python program.

UNIT 3

At the end of this unit, the learner will be able to:

Keywords

 integer, float, Boolean, sequence, list, dictionary, tuple, set

31 SGOU - SLM - BCA - Programming with Python

Discussion

1.3.1 Data types in Python
Data is processed by applications or programs in different ways. For example, in a
student registration process, different types of data are collected, such as name, date
of birth, address, and family monthly income, etc. Each of these data types serves a
specific purpose. The name consists of alphabetic characters, the date of birth is stored
as a date type, and the family’s monthly income is represented as numeric data.

A data type is a classification that specifies the type of data a variable can hold in
a program. It determines the memory allocation required for storing the data. For
example, the memory needed to store 'KKG', 5, and 5.10 will vary because they belong
to different data types. In Python, various data types as given in Fig 1.3.1.

Fig 1.3.1 Classification of python data types

1.3.2 Numeric Data Types
In Python, the numeric data type is used to represent values that are numbers. These
numbers can be integers, floating-point numbers, or complex numbers. Python provides
three built-in classes for this: int for integers, float for decimal numbers, and complex
for complex numbers.

1. Integers
Represented by the ‘int' class in Python, these are whole numbers that can be either
positive or negative, without any decimal or fractional part. Python allows integers of
any length, limited only by the available memory.

2. Float
The float data type represents decimal (floating-point) numbers. It is used to store
numbers that have a fractional component. Examples include 4.5 and 890.67.

3. Complex numbers
In Python, complex numbers are represented in the form a + bj, where:

32 SGOU - SLM - BCA - Programming with Python

	♦ a is the real part

	♦ b is the imaginary part

Complex numbers are widely used in geometry, scientific calculations, signal processing,
and calculus.

Example: 3+4j

1.3.3 Boolean Data Types

The Boolean data type in Python represents two values: True and False, which are
commonly used in logical operations and conditional statements. It is a subclass of
integers, where True is equivalent to 1 and False is equivalent to 0.

a = 5

b = 10

print(a > b)

print(a < b)

Output

False

True

1.3.4 Sequence Data Types
In Python, sequence data types allow storing multiple values in an ordered manner. They
support indexing, slicing, and iteration. The primary sequence data types in Python are:

a = 5

print(type(a))

b = 5.0

print(type(b))

c = 2 + 4j

print(type(c))

Output

<class 'int'>

<class 'float'>

<class 'complex'>

33 SGOU - SLM - BCA - Programming with Python

	♦ String

	♦ List

	♦ Tuple

1.3.4.1 String
A string in Python is a sequence of characters, which can include letters, numbers,
symbols, and spaces. Strings are mainly used for handling text data, such as names,
addresses, or messages. Strings in Python are enclosed in single (‘ ’), double (" "), or
triple (''' ''' or """ """) quotes.

Example:

text1 = "Hello World"

text2 = "Covid-19"

Even if a string contains only numbers, it is still considered a string if it is enclosed in
quotes. For example “222345” is not a number, it is a string.

Different Types of String Representation

Python allows strings to be defined using:

1. Single Quotes ('')

Strings can be enclosed in single quotes.

Example:

 Message = 'Hello World'

2. Double Quotes (" ")

Strings can also be enclosed in double quotes

Example:

 Message = "Hello World"

3. Triple Quotes (''' ''' or """ """)

Triple quotes allow multiline strings. Three single quotes or double quotes can be used.
Example:

Message = ''' Programming is fun. Python is a high-level language. Python is used by
Facebook, Google, NASA and other companies '''

When we input the data from the keyboard, the number will be considered as string
only. See the following example and output.

Activity 1: Run the following program and check the output

34 SGOU - SLM - BCA - Programming with Python

mark = input("Enter a mark")

print(mark)

print(type(mark))

Input:

Enter a mark: 67.9

Output:

67.9

<class 'str'>

1.3.4.2 Python List

We have already discussed variable names. Typically, only one piece of data can be
represented by a single variable. For example:

 Student_name = "KKG"

However, there are many situations where we need to read, store, process, and output
multiple pieces of data, maybe dozens or even thousands. Imagine having to create
different variable names for each value like

X = 20

X1 = 100

X2 = 30

...

Xn = 19

Using a single variable to store all these values would be easier and more convenient,
and this is where lists are useful.

For example:

X = [20, 100, 30, ..., 19]

A list in Python is a sequence data type that stores an ordered collection of items. It
allows you to store multiple values in a single variable. Lists are mutable, meaning you
can add, remove, or change elements. They are defined using square brackets [] and the
values are separated by commas.

For Example:

 x = ["KKG", "pen", "beach"]

35 SGOU - SLM - BCA - Programming with Python

Here, x is a list that stores multiple string items. On the other hand, writing x = "KKG"
would mean that x holds only a single string value.

A list is similar to an array in many other programming languages. Though a list can
contain items of different types, it usually holds items of the same type. In a list with n
items, the first item has index 0, and the last has index n-1 as in Fig 1.3.2

 Fig. 1.3.2 List of 5 elements

1.3.4.3 Tuple
A tuple in Python is a sequence data type that stores an ordered collection of items,
similar to a list. However, tuples are immutable, meaning their elements cannot be
changed once they are defined. Tuples are defined using parentheses ().

Example:

colors = ("Red", "Green", "Blue")

 print(colors)

Output:

('Red', 'Green', 'Blue')

1.3.5 Set
A set in Python is a sequence data type that stores an unordered collection of unique
items. Sets are mutable, meaning you can add or remove elements, but they do not
allow duplicate values. Sets are defined using curly braces { }.Set elements cannot be
accessed using an index because sets are unordered and do not maintain any specific
order of items. However, you can iterate through the elements using a for loop or check
if a particular value exists in the set using the in keyword.

Example:

fruits = {"Apple", "Banana", "Cherry"}

print(fruits)

Output:

{'Apple', 'Banana', 'Cherry'}

36 SGOU - SLM - BCA - Programming with Python

1.3.6 Dictionary
A dictionary in Python is a mutable, unordered collection of key-value pairs. Unlike
sequence data types, dictionaries store data in the form of keys and their corresponding
values, and items are accessed using keys instead of indexes. Dictionaries are defined
using curly braces { }, with each key-value pair separated by a colon (:). The dictionaries
are ordered, which means that the items have a defined order, and you can refer to an
item by using an index.Dictionary keys in Python are case-sensitive, meaning keys with
the same name but different letter cases are considered separate and distinct entries.

The main operations on a dictionary are

1.3.6.1 Creating and Printing a Dictionary

student = {"name": "Helen", "age": 20, "department": "Computer Science"}

print(student)

{'name': 'Helen', 'age': 20, 'department': 'Computer Science'}

1.3.6.2 Accessing an Item from the Dictionary
In the following example, the dictionary is named cars and it stores car manufacturer
names as keys and their respective countries as values.

cars = { "Maruthi": "India", "Toyota": "Japan", "KIA": "Korea" }

x = cars.get("KIA")

print(x)

Output:

Korea

1.3.6.3 Display all Keys from a Dictionary

cars = { "Maruthi": "India", "Toyota": "Japan", "KIA": "China" }

print(cars.keys())

Output:

['Maruthi', 'Toyota', 'KIA']

1.3.6.4 Adding a new Item to a Dictionary

Student_Phone = {"KKG": 8608754, "John": 890744}

Student_Phone["Shan"] = 989643

print(Student_Phone)

37 SGOU - SLM - BCA - Programming with Python

Output:

{'KKG': 8608754, 'John': 890744, 'Shan': 989643}

In this example:

The dictionary Student_Phone initially contains two entries. A new key-value pair
"Shan": 989643 is added using the assignment statement. Finally, the updated dictionary
is printed, showing all the stored names and phone numbers.

1.3.7. Differences between List, Tuple, Dictionary, and Set
Table 1.3.1 Comparison of List, Tuple, Dictionary and Set

Property List Tuple Dictionary Set

Ordered Yes Yes From version 3.7 No

Indexed Yes Yes Yes No

Key and Value
Pair

No No Yes No

Bracket type [] () { } { }

Changeable(add/
Remove values)

Yes No Yes Yes

Allow duplicate
values

Yes Yes No No

38 SGOU - SLM - BCA - Programming with Python

Recap

Data Types in Python

	♦ Data types tell Python what kind of data is being used — like text, numbers,
or a group of items

Numeric Data Types

	♦ int: Whole numbers like 5 or 100.

	♦ float: Decimal numbers like 3.14 or 10.5.

	♦ complex: Numbers with a real and imaginary part, like 3 + 4j.

Boolean Data Type

	♦ This type has only two values: True or False. It is used in comparisons like
checking if one number is greater than another.

Sequence Data Types

	♦ String: A group of characters, like "hello". You can use single, double, or
triple quotes. Input from the user is always a string.

	♦ List: A group of values that you can change. It uses square brackets, like [1,
2, 3]. You can access items by position.

	♦ Tuple: Similar to a list, but you cannot change the values. It uses round
brackets, like (1, 2, 3).

Dictionary

	♦ A dictionary stores data in key-value pairs. You can quickly look up a value
by its key. Example: {"name": "John", "age": 25}.

Objective Type Questions

1.	 Which data type in Python is used to store whole numbers without decimals?

2.	 What symbol is used to define a tuple?

3.	 Which data type allows storing key-value pairs?

4.	 Which collection type is immutable: list or tuple?

5.	 Which data type is used to store text data?

6.	 What is the output type of input() function in Python?

39 SGOU - SLM - BCA - Programming with Python

7.	 Which Python numeric type includes real and imaginary parts?

8.	 Which symbol is used to define a list in Python?

9.	 Which data type in Python does not allow duplicate values and is unordered?

10.	What is the Boolean value of 5 < 3 in Python?

Answers to Objective Type Questions

1.	 int

2.	 ()

3.	 dictionary

4.	 tuple

5.	 string

6.	 string

7.	 complex

8.	 []

9.	 set

10.	False

Assignments

1.	 Write a Python program to create an empty list, dictionary, set, and tuple.

2.	 Write a Python program to store the subjects’ names you are studying this
semester as a list and print them.

3.	 Write a Python program to store your family member’s phone numbers and
names in a dictionary and print them.

4.	 Using examples, identify the differences between dictionary and list.

5.	 Mention any two real-time situations in which list will be more suitable than
set.

40 SGOU - SLM - BCA - Programming with Python

Suggested Reading

1.	 A Beginner’s Guide To Learn Python In 7 Day, Author: Ramsey Hamilton

2.	 Python Programming for Beginners: Learn The Basics Of Python
Programming (Python Crash Course, Programming for Dummies). Author:
James Tudor

3.	 https://www.python.org/about/gettingstarted/

References

1.	 Python online documents. https://docs.python.org/3/library/operator.html

6.	 Explain the difference between a list and a tuple in Python. Provide examples.

7.	 What is a dictionary in Python? Write a program to create a dictionary with
at least three key-value pairs and access its elements.

41 SGOU - SLM - BCA - Programming with Python

Built-in Methods of Data
Structures

Learning Outcomes

Prerequisites

●	 define built-in methods used with Python data structures like lists, tuples,
sets, and dictionaries.

●	 describe how to use list methods such as append(), insert(), and pop() to
manipulate data.

●	 explain the purpose of set methods like add(), union(), and difference() in
managing unique collections.

●	 describe dictionary methods such as update(), keys(), and values() used to
manage key-value pairs.

Before beginning this unit, learners should have a basic understanding of Python
programming, including its syntax, structure, and the ability to write and run simple
Python programs. They should be familiar with core data structures such as lists, tuples,
sets, and dictionaries, and understand how data is stored, accessed, and manipulated
using indexing and slicing especially with lists and tuples.

This foundational knowledge is essential because Python’s built-in methods, used with
these data structures, allow programmers to organize, access, and manipulate data
more efficiently. Methods like append(), pop(), union(), and update() simplify common
tasks such as adding or removing data, combining sets, or updating key-value pairs in
dictionaries. Learning how to use these methods helps write cleaner, faster, and more
readable code skills that are crucial for real-world applications like managing student
records, processing data, or building user-focused software. Mastery of these methods
forms a strong foundation for writing practical and professional Python programs.

UNIT 4

In this unit, you will learn:

42 SGOU - SLM - BCA - Programming with Python

Keywords

List, dictionary, tuple, set, methods. append, update, pop, remove, union, difference

Discussion
1.4.1 Python built-in method
Python has a set of built-in methods used for different data structures like lists, sets,
dictionaries, and tuples. These methods help manage and manipulate data easily.. For
example, we can use the append method to add a new student to an existing student list
or remove a customer name from the customer list by using remove method.

Each data structure has its own set of built-in methods:

	♦ List Methods – for ordered collections of items.

	♦ Set Methods – for unordered collections of unique items.

	♦ Dictionary Methods – for key-value data management.

	♦ Tuple Methods – for immutable, ordered collections.

1.4.2 List Methods
A list is a mutable, ordered collection of items. List methods help you modify and
access elements efficiently.

	♦ append() : You can add new items at the end of the list, by using
the append() method or adds an item to the end of the list.

	 Example

	 Student_List= ["John", "KKG", "Jane"]

	 Student_List.append("Shan")

	 print(Student_List)

	 Output : ['John', 'KKG', 'Jane', 'Shan']

	♦ insert(i, item)
Insert an item at a given position(index). The first argument is the index of the element
before which to insert, so Student_List. insert(1, x) inserts before the specified index
in the list.

	 Example

	 Student_List= ["John", "KKG", "Jane"]

	 Student_List.insert(1,"Sam")

43 SGOU - SLM - BCA - Programming with Python

	 print(Student_List)

	 Output : ['John', 'Sam', 'KKG', 'Jane']	

	♦ list.remove(x)

	 Removes the first occurrence of the specified value.

	 Example

	 Student_List= ["John", "KKG", "Jane"]

	 Student_List.remove("KKG")

	 print(Student_List)

	 Output : ['John', 'Jane']

	♦ list.pop([i])

	 Remove the item at the given position in the list, and return it. If no index is 	
	 specified, pop() removes and returns the last item in the list.

	 Example

	 Student_List = [“John”,”KKG”,”Jane”]

	 print(Student_List.pop(1))

	 Output : KKG

	♦ list.clear()

	 Remove all items from the list.

	 Example

	 Student_List.clear()

	 Output: []

	♦ list.count(x)

	 Return the number of times x appears in the list.

	 Student_List= ["John", "KKG", "Jane", "John"]

	 Example

	 print(Student_List.count("John"))

	 Output : 2

	♦ list.reverse()

	 Reverse the elements of the list in place

44 SGOU - SLM - BCA - Programming with Python

	 Example

	 Student_List= ["John", "KKG", "Jane"]

	 Student_List.reverse()

	 print(Student_List)

	 Output : ['Jane', 'KKG', 'John']

	♦ list.sort()
	 Sort the items of the list in place.

	 Example
	 Student_List= ["John", "KKG", "Jane"]

	 Student_List.sort()

	 print(Student_List)

	 Output : ['Jane', 'John', 'KKG']

Exercise 1:

Student_List= ["John", "KKG", "Jane"]

print(Student_List[0:2:1])

Output : ['John', 'KKG']

step 1: Add 3 more names to the list

Student_List.extend(["Sam", "Ravi", "Meena"])

step2 : Change the start , end and step numbers and observe the result.

Student_List= ["John", "KKG", "Jane"]

print(Student_List[:])

What is the start, end, and step index of the above code?

Start: 0 (default)

End: len(Student_List)

Step: 1 (default)

Exercise 2:
Guess the output, write and run the code and observe the result

Student_List= ["John", "KKG", "Jane"]

print(Student_List[-3:])
Output :['John', 'KKG', 'Jane']

45 SGOU - SLM - BCA - Programming with Python

1.4.2.1 Reading and printing a list using loops
(Note: Looping will be discussed later)

Student_List= []

for i in range(3):

	 Sname = input("Enter a name : ")

	 Student_List= Student_List+ [Sname]

print(Student_List[:])

Output: Enter a name : John

	 Enter a name : Sam

	 Enter a name : Jane

	 ['John', 'Sam', 'Jane']

1.4.3 Set Built-in Methods
A set is an unordered collection of unique elements. It’s commonly used for operations
involving membership tests, union, intersection, and difference. The following are some
of the set methods available in Python.

1. clear() : To delete all elements from list

car = {"Maruthi", "Toyota", "Mahindra"}

car.clear()

print(car)

Output: set()

2. add() : To add an item to set

car= {"Maruthi", "Toyota", "Mahindra"}

car.add("Kia")

print(car)

Output : {'Toyota', 'Kia', 'Mahindra', 'Maruthi'}

3. copy(): To make a copy of a set.

car= {"Maruthi", "Toyota", "Mahindra"}

newcar = car.copy()

print(newcar)

Output : {'Toyota', 'Mahindra', 'Maruthi'}

46 SGOU - SLM - BCA - Programming with Python

4. difference(): To return a set that contains the difference between two sets.

m = n.difference(x)

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.difference(y)

print(z)

Output : {'cherry', 'banana'}

5. union() : Return the union of two sets.

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.union(y)

print(z)

Output : {'google', 'microsoft', 'apple', 'cherry', 'banana'}

6. discard(): To remove an item from a set.

fruits = {"apple", "banana", "cherry"}

fruits.discard("banana")

print(fruits)

Output : {'apple', 'cherry'}

1.4.4 Dictionary built-in methods
Dictionaries store data in key-value pairs. Python provides various methods to
manipulate and retrieve data from dictionaries efficiently.The following are some of
the Dictionary methods.

1. update(): To update a dictionary by adding a new item.

car= {"Maruthi": "2004", "Toyota": "2008 ", "Mahindra": "2007 "}

print(car)

car.update({"KIA": "2010"})

print(car)

Output : {'Maruthi': '2004', 'Toyota': '2008 ', 'Mahindra': '2007 '}

 {'Maruthi': '2004', 'Toyota': '2008 ', 'Mahindra': '2007 ', 'KIA': '2010'}

2. clear(): To clear the items and return an empty dictionary.

47 SGOU - SLM - BCA - Programming with Python

car= {"Maruthi": "2004", "Toyota": "2008 ", "Mahindra": "2007 "}

car.clear()

print(car)

Output : {}

3. copy(): To return the copy of an existing dictionary.

car= {"Maruthi": "2004", "Toyota": "2008 ", "Mahindra": "2007 "}

x= car.copy()

print(x)

Output : {'Maruthi': '2004', 'Toyota': '2008 ', 'Mahindra': '2007 '}

4. keys() :To return all the keys used in a dictionary.

car= {"Maruthi": "2004", "Toyota": "2008 ", "Mahindra": "2007 "}

x= car.keys()

print(x)

Output :dict_keys(['Maruthi', 'Toyota', 'Mahindra'])

5. Values(): To return the values of a dictionary

car= {"Maruthi": "2004", "Toyota": "2008 ", "Mahindra": "2007 "}

x= car.values()

print(x)

Output :dict_values(['2004', '2008 ', '2007 '])

1.4.5 Tuples built-in Methods
A tuple is an ordered, immutable collection. Python offers limited methods for tuples
because their content cannot be changed after creation. The following are some of the
Dictionary methods.

1. Count(): To find the number of times a specified word is repeated.

car= ("Maruthi", "Toyota","Maruthi", "Mahindra","Maruthi")

x= car.count("Maruthi")

print(x)

Output : 3

2. Index(): To find the position or index of an item in a tuple.

In the following example, the tuple has 4 items. The value Mahindra is repeated two

48 SGOU - SLM - BCA - Programming with Python

times. The index method will display the first occurrence. The index of Maruti is zero.
The index of the first occurrence of Mahindra is 1.

car= ("Maruthi","Toyota","Mahindra","Mahindra")

x= car.index("Mahindra")

print(x)

Output : 2
Table 1.4.1 Additional built in method

Function Description Example

len() Returns the number of elements in the tuple len((1, 2, 3)) → 3

max() Returns the maximum value in the tuple max((5, 1, 3)) → 5

min() Returns the minimum value in the tuple min((5, 1, 3)) → 1

sum() Returns the sum of all numeric values sum((1, 2, 3)) → 6

sorted() Returns a sorted list from the tuple sorted((3, 1, 2)) → [1, 2, 3]

tuple() Converts an iterable into a tuple tuple([1, 2, 3]) → (1, 2, 3)

Recap

	♦ Built-in methods in Python Lists

	♦ Built-in methods in Python Tuple

	♦ Built-in methods in Python Dictionary

	♦ Built-in methods in Python Sets.

	♦ These built-in methods will help us to do various operations using the data
structures.

49 SGOU - SLM - BCA - Programming with Python

Objective Type Questions

1.	 What is the list method used to remove all items from the list?

2.	 What is the list method used to remove the last item from the list?

3.	 What is the tuple method to count the repeated values?

4.	 What will be the output of the following code?

 mark_list= [30,45,36,33,45,50,48]

 print(mark_list[1:2:2])

5.	 What will be the output of the following code?

 mark_list= [30,45,36,33,45,50,48]

 print(mark_list[1:7:2])

6.	 Count() function is used to

7.	 The function is used to return the values of a dictionary

8.	 Function used to update a dictionary by adding a new item

9.	 Which of the following data structures is immutable?

10.	Which method is used to add an element to a set?

Answers to Objective Type Questions

1.	 Clear()

2.	 Pop()

3.	 Count()

4.	 [45]

5.	 [45, 33, 50]

6.	 Find the number of times a specified word is repeated

7.	 values()

8.	 update()

9.	 Tuple

10.	add()

50 SGOU - SLM - BCA - Programming with Python

Assignments

1.	 Read the marks of 10 students and add them to a list. Find the total and
average marks. Display the mark list, total and average.

2.	 Write two programs that use list methods.
For example
mark = [20,14,11]
print(“marks before append :” , mark)
mark.append(80)
print(“marks after append :” , mark)
output : Marks before append : [20,14,11]
 Marks after append : [20,14,11,80]

3.	 Write the output of the following.

List before execution List Methods Output

Mark = [20, 14, 11] Mark.append(80)

age = [2, 4, 1, 5] age.extend([3,9])

ClassAList = [“John”, “KKG”]
ClassBList = [“Shan”, ”Jain”]

ClassAList.extend(ClassBList)

Mark= [2, 4, 1, 5] Mark.insert(2,50)

Age= [22, 4, 11, 5] Age.remove(2)

Age= [22, 4, 11, 5] Age.remove(5)

ClassBList = [“Shan”,”Jain”] ClassBlist.pop()

Age = [2, 4, 1, 5] Age.sort()

References

1.	 A Beginner’s Guide To Learn Python In 7 Day, Author: Ramsey Hamilton

2.	 Python Programming For Beginners: Learn The Basics Of Python
Programming (Python Crash Course, Programming for Dummies). Author:
James Tudor

3.	 Python Programming For Beginners: Learn The Basics Of Python
Programming (Python Crash Course, Programming for Dummies). Author:
James Tudo

51 SGOU - SLM - BCA - Programming with Python

Suggested Reading

1.	 https://docs.python.org/3/tutorial/datastructures.html

2.	 https://docs.python.org/3/tutorial/

3.	 https://www.w3schools.com/python/

4.	 https://www.programiz.com/python-programming

52 SGOU - SLM - BCA - Programming with Python

Decision making, Loops,
Comprehensions, Functions,

Modules & Packages

BLOCK 2

Decision Making and Loops

Learning Outcomes

Prerequisites

	♦ define decision-making statements in Python

	♦ list the different types of loops used in Python

	♦ identify the syntax of if, if-else and elif statements

	♦ recall the keywords used in Python loop control statements

	♦ familiarise the types of nested structures used in conditional and looping
statements

Imagine you are playing a video game. You walk through a hallway and come across
two doors. One is locked, and one is open. What do you do? You check which one is
open and go through it. Later, you find a treasure chest. You open it once, but what if
there are five treasure chests? You repeat the action for each one, one by one. You have
just made decisions and repeated actions just like Python can do in your programs.
So far, you have learned how to give instructions to a computer using Python: storing
information in variables, doing math, and printing results. But now, it is time to make
your programs smarter. What if your code could choose what to do based on different
situations? Or repeat tasks many times without you rewriting them. This is where deci-
sion-making and loops come in. Like the game character who checks doors or opens
treasure chests, your program can now decide what to do and repeat actions as needed.

UNIT 1

After completing this unit, the learner will be able to:

Key Words

if, if else, nested if, elif, break, continue, pass, for, while

54 SGOU - SLM - BCA - Programming with Python

Discussion
2.1.1 Decision Making
Decision-making statements in Python are used to control the flow of a program based
on certain conditions. These statements allow a program to make choices and execute
different blocks of code depending on whether a condition is true or false.

In python, there are four types of decision-making statements.

	♦ if statement

	♦ if else statement

	♦ nested if statement

	♦ elif ladder statement

2.1.1.1 if statement
The if statement is the simplest decision-making statement. It decides whether certain
statements need to be executed or not. It contains a body of statements that runs only
when the condition given in the if statement is true. If the condition is false, then the
statements are skipped over and not executed.

Syntax

if expression:

	 statement (s)

Fig 2.1.1 Flowchart of if statement

Example:

x = 105

55 SGOU - SLM - BCA - Programming with Python

if x > 100:

print ("x is greater")

Output

x is greater

2.1.1.2 if else statement
In if else statement if the condition of if statement is true, then all the statements which
are

written under if statement will execute, otherwise the else part will execute. The else
block should be right after the if block and it is executed when the expression is False.

Syntax:

if expression:

	 statement(s)

else:

	 statement(s)

 Fig 2.1.2 Flowchart of if else statement
Example:

x = 100

y = 200

if x > y:

	 print ("x is greater")

else:

56 SGOU - SLM - BCA - Programming with Python

	 print ("y is greater")

Output

y is greater

2.1.1.3 Nested if statements
A nested if statement in Python is an if statement placed inside another if or else
block. This structure can have several levels, enabling programmers to check multiple
conditions one after another This can be implemented in two ways. In the first method,
if statement can be placed inside the if code block and in second method, if statement
can be placed inside the if-else statement.

Syntax: Nested if construct
if expression:
	 statement(s)
if expression:
	 statement(s)
Syntax: Nested if construct with else condition
if expression:
	 statement(s)
else:
	 statement(s)
if expression:
	 statement(s)

 Fig 2.1.3 Flowchart of nested if statement

Example:
x = 10

57 SGOU - SLM - BCA - Programming with Python

if x >= 0:
	 if x == 0:
		 print("Zero")
	 else:
		 print ("Positive number")
else:
	 print ("Negative number")
Output:
Positive number
2.1.1.4 elif ladder statements
The elif (short for else if) statement allows to check multiple conditions for TRUE
and executing a set of code as soon as one of the conditions evaluates to TRUE. It is
similar to an if-else statement and the only difference is that in else, it will not check the
condition but in elif it will check the condition.
Syntax:
if expression:
	 statement(s)
elif expression:
	 statement(s)
elif expression:
	 statement(s)
else:
	 statement(s)

 Figure 2.1.4: Flowchart of elif ladder statement

58 SGOU - SLM - BCA - Programming with Python

Example:

x= -2

if x > 0:

print ("Positive number")

elif x == 0:

print("Zero")

else:

print ("Negative number")

Output

Negative number

2.1.2 Loops
A loop allows you to repeat a set of instructions as long as a certain condition is true
or for a specific number of times. Instead of writing the same code over and over, use a
loop to automate repetition.

Python supports three types of looping statements.

	♦ for loop

	♦ while loop

	♦ nested loops

2.1.2.1 for loop
In Python, the for loop allows you to iterate through elements of any sequence, such as
a list, tuple, or string. It applies the same set of instructions to each item in the sequence.
The loop begins with the keyword for, followed by a variable that takes on the value of
each item, one at a time. The in keyword connects this variable to the sequence being
looped through. A colon (:) marks the start of the loop block, and the indented code
below runs once for every item in the sequence.

Before a for loop begins, the sequence is evaluated. If it is a list, it is processed first. The
loop then assigns the first item to the loop variable. On each iteration, the code block
runs using that item, and the loop moves to the next one continuing until all items are
processed.
Syntax:

for var in sequence:

	 statement(s)
Here, var is a variable to which the value of each sequence item will be assigned
during each iteration. Statements represents the block of code that you want to execute
repeatedly.

59 SGOU - SLM - BCA - Programming with Python

The for loop in python is used to iterate over a sequence like list, tuple, string or range
using range ()
Syntax : For variable in range(limit):
	 # Body of the loop

Fig 2.1.5 Flowchart of for loop

Example:

for i in range(10):

print (i, end = " ")

Output

0 1 2 3 4 5 6 7 8 9

2.1.2.2 while loop
A while loop in Python repeatedly runs a block of code as long as a given condition
is true. It starts with the while keyword, followed by a condition and a colon. The
indented code below runs until the condition becomes false.

In the while loop, the test expression is checked first. The body of the loop is executed
only if the expression evaluates to True. After the first iteration, the test expression is
again checked. This process will continue until the test expression becomes False.

Syntax:

while expression:

	 statement(s)

60 SGOU - SLM - BCA - Programming with Python

Fig 2.1.6 Flowchart of while loop

Example:

n = 10

sum = 0

i = 1

while i<= n:

sum = sum + i

i = i+1

print ("The sum is", sum)

Output

The sum is 55

2.1.2.3 Using else Statement with while Loop
In Python, you can use the else statement in conjunction with a while loop to execute a
block of code when the loop has completed all iterations and the condition evaluated in
the while statement becomes False. The else block is not executed if the loop is exited
prematurely by a break statement.

x = 0

while x < 5:

	 print(x)

	 x += 1

61 SGOU - SLM - BCA - Programming with Python

else:

	 print ("x is no longer less than 5")

Output

	 1

	 2

	 3

	 4

	 X is no longer less than 5

2.1.2.4 Nested loops
A nested loop means loops inside the loops. The inner or outer loop can be any type,
such as a while loop or for loop. For example, the outer while loop can contain an inner
for loop and vice versa. There is no limitation on the chaining of loops. The inner loop
will execute one time for each iteration of the outer loop. The number of iterations will
be equal to the number of iterations in the outer loop multiplied by the iterations in the
inner loop.

Syntax: Nested for loop within for loop

forouter_iterating_varinouter_sequence:

	 forinner_iterating_var in inner_sequence:

	 statement(s)

Syntax: Nested while loop within while loop

while outer_expression:

	 while inner_ expression:

		 statement(s)

Example:

for i in range (1, 11):

	 for j in range (1, 11):

		 print (i * j, end=' ')

print ()

Output

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

62 SGOU - SLM - BCA - Programming with Python

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

2.1.2.5 Loop Control Statements
Statements used to control loops and change the execution from its normal sequence are
called control statements. Python supports three types of looping statements.

	♦ break statement

	♦ continue statement

	♦ pass statement

1. break statement
It is used to terminate the execution of the loop statement and the execution transfers to
the next statement following the loop.

Example:

fo r i in range (10):

if i == 5:

break // Exit the loop when i is 5

print(i)

print ("Loop finished")

Output

0

1

2

3

4 Loop finished
In this example, the loop iterates from 0 to 9. However, when i becomes 5, the break
statement is executed, and the loop terminates. The "Loop finished." message is then
printed.

63 SGOU - SLM - BCA - Programming with Python

2.continue statement

When the program encounters a continue statement, the python interpreter ignores the
rest of the statements in the loop body for the current iteration and returns the program
execution to the very first statement in the loop body.

Example:

fori in range (10):

if i % 2 == 0:

continue //Skip even numbers

print(i)

Output

1

3

5

7

9

Here, when i is even (the condition i % 2 == 0 is true), the continue statement is executed.
This causes the print(i) statement to be skipped, and the loop moves to the next value of
i. Only the odd numbers are printed.

3.pass statement

The pass statement is considered as a null operation statement. The interpreter executes
the pass statement like a valid python statement but nothing happens when pass is
executed.

Example: it can be used in an if statement to skip the current iteration.

for i in range (5):

 if i == 2:

 pass // Do nothing when i is 2

 else:

 print(i)

Output
0

1

3

4

64 SGOU - SLM - BCA - Programming with Python

In this case, when i is 2, the pass statement is executed, which does nothing, and the loop
continues to the next iteration

Recap

	♦ Python supports if, if-else, nested if, and elif ladder for decision making

	♦ The if statement runs a block only if the condition is true

	♦ The if-else statement chooses between two blocks based on a condition

	♦ Nested if statements are used to check multiple conditions inside each other

	♦ The elif ladder checks multiple conditions and runs the first true one

	♦ Python has three loop types: for, while, and nested loops

	♦ The for loop iterates over sequences like lists or strings

	♦ The while loop repeats as long as a condition is true

	♦ Nested loops allow placing one loop inside another for complex iteration

	♦ The break statement exits a loop immediately

	♦ The continue statement skips the current loop iteration

	♦ The pass statement does nothing and acts as a placeholder

Objective Type Questions

1.	 Is ‘if-else’ a decision-making statement?

2.	 What keyword would you use to add an alternative condition to an if
statement?

3.	 What will be the output of the following code?

 	 x = [1, 2, 3, 4, 5]

 	 sum = 0

 	 for var in x:

 sum += var

 	 print(sum)

4.	 Is do while is a valid loop in Python?

65 SGOU - SLM - BCA - Programming with Python

Answers to Objective Type Questions

1.	 Yes

2.	 elif

3.	 15

4.	 No

5.	 No

6.	 FALSE

7.	 break

8.	 pass

9.	 colon

10.	continue

5.	 if (x >= 20), is it a valid Python if statement?

6.	 If the else statement is used with a while loop, the else statement is executed
when the condition becomes -----

7.	 Which keyword is used to end a loop prematurely?

8.	 What control statement can be used to create empty blocks?

9.	 Which symbol is used to indicate the start of a block in loops and conditionals?

10.	Which keyword skips the current iteration of a loop?

Assignments

1.	 Explain the different types of decision-making statements in Python
with syntax and examples

2.	 Write a Python program to print Fibonacci series.

3.	 Write a Python script to print a multiplication table from 1 to 10 using
nested for loops.

66 SGOU - SLM - BCA - Programming with Python

References

1.	 Chase, S. (2018). Python for Data Analysis (2nd ed.). O'Reilly Media.

2.	 Van Rossum, G., & Drake, F. L. (2001). Python 2.0 Reference Manual.
Python Software Foundation.

3.	 Sweiger, A. (2019). Automate the Boring Stuff with Python (2nd ed.). No
Starch Press.

4.	 Müller, A. C., & Guido, S. (2016). Introduction to Machine Learning with
Python. O'Reilly Media.

5.	 Fluent Python by Luciano Ramalho (2015). O'Reilly Media.

4.	 Explain the difference between Python for loop and while loop.

5.	 Write a Python program that uses a for loop and continue to print only the
vowels from the string "Python Programming is fun".

Suggested Reading

1.	 Python Crash Course, Eric Matthes (No Starch Press, 2016)

2.	 Zelle, J. M. (2016). Python programming: An introduction to computer
science (3rd ed.). Franklin, Beedle & Associates.

3.	 Downey, A. B. (2015). Think Python: How to think like a computer scientist
(2nd ed.). O’Reilly Media.

4.	 Beazley, D. M. (2009). Python essential reference (4th ed.). Addison-Wesley
Professional

5.	 Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

67 SGOU - SLM - BCA - Programming with Python

Comprehensions

Learning Outcomes

Prerequisites

	♦ define list, dictionary, set, and generator comprehensions.

	♦ recall the syntax of list comprehension.

	♦ identify the structure of the dictionary and set comprehensions.

	♦ list the differences between list and generator comprehensions.

	♦ explain the purpose of using comprehensions in Python.

Before learning comprehensions in Python, you are already familiar with basic
programming concepts such as loops (for, while), conditional statements (if, else), and
creating and using data structures like lists, dictionaries, and sets. You have written
programs that process these structures element by element, often using loops to modify
or filter the contents.

Now, imagine if you could achieve the same results using fewer lines of code, with
better readability and efficiency. This is where Python comprehensions become useful.
By connecting your knowledge of loops and data structures, you will now learn how to
use a more elegant and concise way of constructing and transforming sequences.

UNIT 2

After completing this unit, the learner will be able to:

Keywords

List Comprehension, Dictionary Comprehension, Set Comprehension, Generator
Expression, Python Iterables

68 SGOU - SLM - BCA - Programming with Python

Discussion
2.2.1 What is Comprehension
Comprehensions in Python provide concise and efficient constructs that allow
programmers to build new sequences from existing ones. These constructs are not only
compact but also promote better readability and performance.

To understand the concept of comprehension more intuitively, let us consider the
following real-life analogy.

Suppose there are five black dolls placed in a basket. Each doll has a unique number
embossed on it. Alongside the basket, there is a tin of white paint, and the task is to
repaint all black dolls into white ones.

There are two ways to perform this task:

	♦ Method 1: Paint each doll one by one.

	♦ Method 2: Paint all the dolls simultaneously.

Clearly, the second method is more efficient and convenient.
Now, let us map this scenario to a programming context. Suppose these dolls are
represented as elements in a Python list, where each item is a string that combines
the color and number of the doll - for example, a black doll with the number 2 is
represented as "B2".

To transform all black dolls into white ones, we need to update the color code from "B" to
"W" for each element. Python comprehensions allow us to perform this transformation
efficiently by generating a new list from the existing one in a single, readable line of
code.

Understanding Through an Example
Let us now implement this concept using both traditional loop-based programming and
list comprehensions.

Without Comprehension (Using a For Loop)
In this approach, we iterate over each element of the black_list and append a
corresponding "white" value to a new list named white_list.

black_list = ["black", "black", "black", "black", "black"]

print(black_list)

white_list = []

for item in black_list:

 white_list.append("white")

print(white_list)

69 SGOU - SLM - BCA - Programming with Python

Output:

['black', 'black', 'black', 'black', 'black']

['white', 'white', 'white', 'white', 'white']

In the first line of output, the original list black_list is displayed, showing all the black
dolls. The second line shows the newly created white_list, containing all white-colored
items.

With List Comprehension
Python allows the same logic to be implemented more efficiently using list
comprehension. The entire transformation can be achieved in a single line:

white_list = ["white" for list_item in black_list]

Here:

	♦ white_list is the new list to be created.

	♦ "white" is the value to be added for each item.

	♦ list_item is a temporary variable used to iterate over the black_list.

The complete code is given below:

black_list = ["black", "black", "black", "black", "black"]

print(black_list)

white_list = ["white" for list_item in black_list]

print(white_list)

Output:

['black', 'black', 'black', 'black', 'black']

['white', 'white', 'white', 'white', 'white']

From the above example, it is clear that using list comprehension not only reduces the
number of lines of code but also enhances clarity and simplicity.

2.2.2 Types of Comprehensions in Python
Python supports four main types of comprehensions:

1.	 List Comprehension
2.	 Dictionary Comprehension

70 SGOU - SLM - BCA - Programming with Python

3.	 Set Comprehension
4.	 Generator Comprehension

2.2.2.1. List comprehension
List comprehension is a powerful and concise feature in Python that allows the creation
of new lists by processing elements from an existing iterable, such as a list, tuple, or
string. It simplifies the code by replacing traditional looping constructs with a single
line of expression.

Components of a List Comprehension

A list comprehension generally consists of the following components:

1. Input Sequence (iterable):
This is the source of elements. It can be a list, tuple, string, or any iterable object.

2. Variable (loop variable):
A temporary variable that represents each member of the input sequence during iteration.

3. Predicate Expression (Optional Condition):
A filtering condition that is applied to each element of the input sequence.
Only the elements that satisfy this condition are included in the output list.

4. Output Expression:
An expression that determines how each element in the output list should be formed.
This can be a transformation of the input element or the element itself.

General Syntax

my_list = [<expression> for <item> in <iterable> if <condition>]

	♦ <expression> – This is the value you want to put in the new list. It can be the
item itself or something you do with the item (like a calculation).

	♦ <item> – A name used to refer to each thing in the original list, one at a time.

	♦ <iterable> – The original list (or similar group of items) that you are going
through.

	♦ <condition> – An optional rule. If you include it, only the items that meet
this rule will go into the new list.

Example: Filtering Items Based on a Condition
Let us consider an example where we want to extract only those days from a list of
week days that contain the letter "u"

Output:

['Sunday', 'Tuesday', 'Thursday', 'Saturday']

71 SGOU - SLM - BCA - Programming with Python

As a result, a new list new_list is created containing only the elements 'Sunday',
'Tuesday', 'Thursday', and 'Saturday', as they all contain the letter 'u'.

2.2.2.2 Dictionary Comprehensions
In Python, a dictionary is an unordered collection of data that stores values in the
form of key-value pairs. Each key is unique and is used to retrieve its corresponding
value efficiently. Python provides a convenient and elegant way to create or modify
dictionaries using dictionary comprehensions, which are similar in structure and
purpose to list comprehensions.

Before understanding dictionary comprehensions, it is important to recall some basic
characteristics of dictionaries:

	♦ All elements in a dictionary are enclosed within curly braces {}.

	♦ Each element in the dictionary is represented as a key-value pair, where the
key and value are separated by a colon : (e.g., "name": "John").

	♦ Keys must be unique and immutable (e.g., strings, numbers, or tuples), while
values can be of any data type.

	♦ Values are accessed using their corresponding keys, not their positions,
unlike lists or tuples.

What is Dictionary Comprehension?
Dictionary comprehension is a concise way to create a new dictionary by iterating over
an iterable and applying an expression that generates key-value pairs.

It helps in:

	♦ Creating dictionaries from lists, tuples, or ranges.

	♦ Filtering data based on a condition.

	♦ Applying transformations to both keys and values.

Syntax of Dictionary Comprehension

dictionary = {<key_expression>: <value_expression> for <item> in
<iterable> if <condition>}

Where,

	♦ <key_expression> – An expression that defines the key for each dictionary
item.

	♦ <value_expression> – An expression that defines the value associated with
the key.

	♦ <item> – The loop variable representing each element in the iterable.

	♦ <iterable> – The data source from which elements are drawn (e.g., a list,
range, or tuple).

72 SGOU - SLM - BCA - Programming with Python

	♦ <condition> – (Optional) A filtering condition to include only selected items.

Example: Creating a Dictionary of Squares

my_dict = {x: x ** 2 for x in range(10)}

print(my_dict)

Output:

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

In the above example, the first part of the comprehension specifies how the key-value
pairs should be generated for each iteration. The second part functions similarly to a
standard for loop, where we specify the iterable that Python should process.

2.2.2.3 Set Comprehensions
Set comprehension in Python is a concise and elegant way to construct a new set
by performing operations on each element of an iterable. It is very similar to list
comprehension, with one important difference, sets do not allow duplicate elements.
Therefore, set comprehensions automatically eliminate duplicates from the result.

Syntax:

set_name = {expression for element in iterable}

Where,
	♦ set_name: Refers to the name of the new set that is being created.

	♦ expression: Defines the value to be included in the new set. This expression
can be a direct reference to the element, or it can be a more complex
expression such as a mathematical operation.

	♦ element: Represents each individual item taken from the given iterable.

	♦ iterable: Any Python object capable of returning its elements one at a time
(e.g., list, tuple, set, or range).

Example:

old_set = [10, 20, 30, 40, 50]

new_set = {element * 2 for element in old_set}

print("The old set is:")

print(old_set)

print("The newly created set is:")

print(new_set)

73 SGOU - SLM - BCA - Programming with Python

Output:

The old set is:

[10, 20, 30, 40, 50]

The newly created set is:

{100, 40, 10, 20, 50, 60, 30, 70, 80, 90}

2.2.2.4 Generator Comprehensions
Generator comprehensions in Python are syntactically similar to list comprehensions.
However, unlike list comprehensions, which generate the entire list in memory at once,
generator comprehensions produce items one at a time and on demand. This characteristic
makes them significantly more memory efficient, especially when working with large
datasets.

Syntax:

gen_list = (<expression> for <item> in <iterable> if <condition>)

Where,

	♦ gen_list: Refers to the generator object that will be created.

	♦ expression: Represents the operation or transformation to be applied to each
element from the original iterable.

	♦ item: Denotes the current item being accessed from the iterable during
iteration.

	♦ iterable: Any Python object capable of returning its elements one at a time
(such as a list, set, tuple, or range).

	♦ condition(optional): A logical expression used to filter elements from the
iterable. Only elements satisfying this condition are processed and included
in the generator output.

Example:

old_list = [1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 9]

new_gen = (var for var in old_list if var % 2 == 0)

print("New values using generator comprehensions:")

for var in new_gen:

 print(var)

74 SGOU - SLM - BCA - Programming with Python

Output:

New values using generator comprehensions:

2

4

4

6

Recap

	♦ Comprehensions provide a concise way to build new sequences from existing
ones.

	♦ Python supports four main types of comprehensions:

1.	 List Comprehension

2.	 Dictionary Comprehension

3.	 Set Comprehension

4.	 Generator Comprehension

	♦ List Comprehension : Used to create new lists from iterables.

	♦ General Syntax: [<expression> for <item> in <iterable> if <condition>]

	♦ Dictionary Comprehension: Creates dictionaries using key-value pairs from
iterables.

	♦ Syntax: {<key_expr>: <value_expr> for <item> in <iterable> if
<condition>}

	♦ Set Comprehension : Creates sets (unique elements only) from iterables.

	♦ Syntax: {expression for element in iterable}

	♦ Generator Comprehension: Creates generator objects (yields items one by
one, memory efficient).

	♦ Syntax: (<expression> for <item> in <iterable> if <condition>)

75 SGOU - SLM - BCA - Programming with Python

Objective Type Questions

1.	 What will be the output of the following Python code?

	 list_string = ['a','b','c','d','e','f','g','h','i','j','k']
 	 a = [print(k) for k in list_string if k not in "aeiou"]

2.	 Write a list comprehension for producing a list of numbers between 1 and
1000 and are divisible by 3.

3.	 State the main difference between list and generator comprehension.

4.	 What will be the output of the following Python code?

	 print([if k%2==0: k; else: k+1; for k in range(4)])

5.	 ----- comprehension allows us to retrieve values based on the keys.

6.	 A key-value pair is often called

7.	 Write syntax for declaring dictionary comprehension.

8.	 days = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"]

	 new_list = [i for i in days if "u" in i]

 	 print(new_list)

9.	 Which symbols are used to define dictionary comprehensions?

10.	What is the general syntax of a list comprehension with a condition?

Answers to Objective Type Questions

1.	 b c d f g h j k

2.	 [i for i in range(1000) if i%3==0]

3.	 Memory allocation

4.	 [1, 1, 3, 3]

5.	 Dictionary

6.	 Dictionary

7.	 dictionary = {expression for key: value in iterable (if conditional)}

76 SGOU - SLM - BCA - Programming with Python

8.	 Sunday, Monday, Tuesday, Wednesday, Thursday,Friday, Saturday

9.	 Curly braces {} with key-value pairs

10.	[expression for item in iterable if condition]

Assignments

1.	 State the advantages of comprehensions in Python over loops.

2.	 Explain different python comprehension in detail.

3.	 Write the list comprehension equivalent for:
	 {x : x is a whole number less than 20, x is even} (including zero)

4.	 Write a Python program using list comprehension to create a list of even
numbers from 1 to 20.

5.	 Use dictionary comprehension to create a dictionary where the keys are
numbers from 1 to 5 and the values are their squares.

References

1.	 https://coderpad.io/blog/development/python-list-comprehension-guide/

Suggested Reading

1.	 Guide To: Functional Python & Comprehension Constructs, Matt Harrison,
2013

2.	 Severance, Charles. Python for everybody: Exploring Data using python 3.
Charles Severance, 2016.

3.	 Ramalho, Luciano. Fluent Python: Clear, concise, and effective programming.
" O'Reilly Media, Inc.", 2015.

77 SGOU - SLM - BCA - Programming with Python

Functions

Learning Outcomes

Prerequisites

	♦ familiarise the concept and importance of functions in Python.

	♦ make aware of how to define and call user-defined functions in Python.

	♦ explore the different types of arguments in Python functions

	♦ gain knowledge on variable-length arguments

	♦ identify the concepts of scope and lifetime of variables in Python functions.

Having a strong foundation in fundamental programming concepts is crucial before
embarking on the study of Python functions. It is necessary to be familiar with basic
programming concepts like variables, data types, control flow structures, and the fun-
damental syntax of Python. Additionally, a solid understanding of Python's built-in data
structures such as lists, dictionaries, and tuples is essential, as functions often operate
on these structures. Proficiency in manipulating and understanding their properties will
greatly enhance the comprehension of Python functions.

 Understanding variable scope and its impact on variable accessibility within functions
is also vital. Knowledge of local and global variables, as well as their scopes, is nec-
essary to comprehend how Python functions behave. A grasp of these concepts will
provide insights into how variables are defined, accessed, and modified within func-
tions.

Furthermore, having a basic understanding of object-oriented programming (OOP) con-
cepts can be advantageous when exploring more advanced aspects of Python functions.
Familiarity with concepts like classes, objects, methods, and inheritance will deepen
the understanding of how functions can be utilized within an object-oriented paradigm.

UNIT 3

After completing this unit, learners will be able to:

78 SGOU - SLM - BCA - Programming with Python

Discussion
A function is a group of statements designed to carry out a specific task. The main
purpose of using functions is to combine commonly used or repetitive tasks into a
single block of code. This allows us to perform the same task multiple times throughout
a program without rewriting the code each time. As programs become larger and more
complex, functions help keep the code organized, reusable, and easier to manage.

2.3.1 Advantages of Functions

1.	 Modularity: Functions break down complex programs into smaller,
manageable parts, making code more understandable, testable, and
maintainable. They promote code reusability and the principle of avoiding
repetition.

2.	 Code Organisation: Functions provide a structured approach to program-
ming by dividing code into logical units. This improves overall code
navigation, comprehension, and reduces the likelihood of errors. Well-
organized code is easier to read and maintain.

3.	 Reusability: Functions enable code reuse, allowing them to be called
multiple times with different inputs. This eliminates the need for redundant
code, promoting efficient programming practices.

4.	 Abstraction: Functions hide internal implementation details, allowing
users to focus on what the function does and how to use it. This simplifies
programming and promotes a higher-level understanding of the program's
functionality.

5.	 Testing and Debugging: Functions facilitate testing and debugging efforts
as they can be individually tested to ensure proper functionality. Debugging
becomes more manageable as errors can be isolated to specific functions,
enabling focused troubleshooting.

6.	 Collaboration: Functions promote collaboration by dividing code into
independent units, enabling different team members to work on separate
functions concurrently. Functions also facilitate code sharing and open-
source collaboration within the Python community.

7.	 Code Maintainability: Functions enhance code maintainability by isolating
specific tasks. Updates or changes can be made to individual functions,
reducing the risk of introducing bugs. This simplifies the maintenance
process, particularly in large and complex projects.

Key Concepts

Arguments, Global Variable, Local Variable, Recursion

79 SGOU - SLM - BCA - Programming with Python

2.3.2 Types of Function

There are two types of functions

	♦ User Defined Functions

	♦ Built-in Functions

2.3.2.1 User Defined Functions
User-defined functions are those functions that we define ourselves to do certain specific
tasks. A user-defined function in Python is a piece of code that you create to perform
a particular task. It enables you to group a set of instructions together under a unique
name, enhancing the modularity and organization of your code. This named entity
becomes a custom function within your program, allowing you to call it repeatedly
with different inputs.

Creating a Function

We can define our own functions in Python by using the "def" keyword.

The syntax of a Python function is

def function_name (parameter1, parameter2, ...):

"""

 Docstring: Description of the function (optional).

 """

To define a function in Python, we use the "def" keyword, followed by the function
name, which should be a valid identifier in Python. If the function takes any parameters,
they are placed within parentheses and separated by commas.

A docstring, which is an optional multi-line string enclosed in triple quotes ("""), can be
included right after the function definition. This docstring provides a brief description
of the function’s purpose, parameters, and return values.

The function body comprises the code block that specifies the behavior of the function.
It starts with a colon (:) and is indented consistently. The body can contain multiple
statements, all indented at the same level.

If the function is expected to return a value, the "return" statement is used to specify
the value(s) to be returned. The return statement is optional, and if it is not included,
the function will automatically return None. It is possible to return a single value or
multiple values separated.

Here is a simple python function definition:

	 def greet(name): """Prints a greeting message."""

print("Hai, " + name + "!")

In this example, we have defined a function called greet that takes a parameter ‘name’.

80 SGOU - SLM - BCA - Programming with Python

The function's purpose is to print a greeting message to the console. When the function
is called with a specific name, it will print "Hai, " followed by the provided name and
an exclamation mark.

Calling a Function

To call a function in Python, you simply write the function name followed by parentheses.
If the function requires any arguments, you provide them inside the parentheses.

To call the above example function, we write:

greet("Ann")

Here the passed string argument is "Ann". The function is then executed, resulting in
the output “Hai, Ann!" being displayed on the console.

2.3.2.2 Built-in Functions
Built-in functions are an integral part of Python's standard library, offering a broad range
of functionalities that streamline coding tasks. These functions are readily accessible
without the need for additional installation or setup. An example of such a fundamental
built-in function is print (), which enables us to display text or variables on the console.
By simply passing the desired content as arguments, we can swiftly output information
to the user. For instance, executing print ("Hello, world!") will print the phrase "Hello,
world!" on the console.

Python's built-in functions provide numerous ways to manipulate and analyze data.
One such function is sorted(), which returns a new list containing the sorted elements
from the input iterable. For instance, using sorted([5, 2, 7, 1, 3]) will yield [1, 2, 3, 5, 7],
showcasing how the function arranges the elements in ascending order. Another useful
built-in function is len(),which determines the length of an object, such as a string, list,
or tuple. By employing len(), we can quickly ascertain the number of elements in a
given collection. For example, len("Python") will return the value 6, representing the
length of the string "Python".

2.3.3 Arguments
Arguments are the values that you pass to a function during its invocation. They serve
as inputs for the function to perform specific operations or calculations. Python supports
various types of arguments, including:

1.	 Positional Arguments: These arguments are provided to a function in the same
order as they are defined in the function's parameter list. The values are assigned
to the respective parameters based on their positions.

Example:
	 def add_numbers(x, y):

	 """Adds two numbers."""

	 return x + y

	 result = add_numbers(3, 5)

81 SGOU - SLM - BCA - Programming with Python

print(result)

Output: 8

In this example, 3 is assigned to x and 5 is assigned to y based on their positions.

2.	 Keyword Arguments: With keyword arguments, you explicitly specify the
parameter name followed by the corresponding value, separated by an equal
sign. This allows you to pass arguments in any order, disregarding their position
in the parameter list.

Example:

def add_numbers(x, y):

 """Adds two numbers."""

 return x + y

result = add_numbers(y=4, x=2)

print(result)

Output: 6

Here, the function is called with keyword arguments, allowing us to specify the values
explicitly.

3.	 Default Arguments: Default arguments have predefined values assigned to
them in the function's parameter list. If an argument is not supplied during the
function call, the default value is used instead.

Example:

def greet(name, message="Hai"):

 """Prints a personalized greeting."""

print(message + ", " + name)

greet("Ann")

Output: Hai, Ann

greet("Balu", "Hello")

Output: Hello, Balu

In this example, the message parameter has a default value of "Hai". If not provided,
the default value is used.

4.	 Variable-length Arguments: Python functions can accept a varying number of
arguments. To achieve this, you can use the asterisk (*) before a parameter name
for variable-length positional arguments, or two asterisks (**) for variable-
length keyword arguments.

82 SGOU - SLM - BCA - Programming with Python

Example:

def add(*numbers):

 """Addition of numbers."""

 total = sum(numbers)

 return total

result = add(1, 2, 3, 4, 5)

print(result)

Output: 15

The function add accepts a variable number of positional arguments using *numbers.
The arguments are treated as a tuple inside the function.

	♦ def add(*numbers): -This defines a function named add that accepts a
variable number of arguments.

	♦ The asterisk * before numbers collect all positional arguments into a tuple
called numbers.

	♦ total = sum(numbers) - The built-in sum() function is used to add all the
values inside the numbers tuple.

	♦ return total - The total sum is returned from the function.

5.	 Unpacking Arguments: Arguments can be unpacked from a list or tuple using
the asterisk (*) operator. This allows you to pass the individual elements of a
sequence as separate arguments to a function.

Example:

def add(a, b, c):

 """Adds three numbers."""

 return a + b + c

numbers = [2, 3, 4]

result = add(*numbers)

print(result)

Output: 9

In this example, the elements of the numbers list are unpacked using * and passed as
separate arguments to the add function.

Function Definition:
	♦ def add(a, b, c): defines a function named add that takes three parameters: a, b, and c.

83 SGOU - SLM - BCA - Programming with Python

	♦ return a + b + c returns the sum of the three parameters.

List Creation:

	♦ numbers = [2, 3, 4] creates a list named numbers containing three integers.

Argument Unpacking:

	♦ result = add(*numbers) uses the * operator to unpack the list numbers into
separate arguments.

	♦ This is equivalent to calling add(2,34).

	♦ The * operator is used to unpack iterables (like lists or tuples) into separate
positional arguments when calling a function.This is useful when the number
of elements in the iterable matches the number of parameters the function
expects.

2.3.4 Pass by Reference and Pass by Value
Pass by Value and Pass by Reference are two different methods used to provide
arguments to functions in programming.

2.3.4.1 Pass by Reference (Mutable Objects)
In Python, when an object is passed as an argument to a function using pass by
reference, a reference to the object's memory location is passed. This means that any
modifications made to the object within the function will impact the original object
outside the function as well. However, it is important to note that in Python, all variable
assignments are references to objects. So, when an object is passed to a function, a
reference to the object is passed as well. If the function modifies the object directly, the
changes will be visible outside the function since it operates on the same underlying
object.

Example:

def modify_list(lst):

lst.append(4) # Modifying the list within the function

test_list = [1, 2, 3]

modify_list(test_list)

print(test_list)

Output: [1, 2, 3, 4]

Function Definition:

	♦ modify_list(lst) is a function that takes a list lst as its parameter.

	♦ Inside the function, lst.append(4) adds the integer 4 to the end of the list.

List Initialization:

	♦ test_list = [1, 2, 3] creates a list with elements 1, 2, and 3.

84 SGOU - SLM - BCA - Programming with Python

Function Call:

	♦ modify_list(test_list) calls the function with test_list as the argument. Since
lists are mutable in Python, any modifications made to lst inside the function
will affect test_list.

In this example, the test_list object (a list) is passed to the modify_list function. The
function modifies the list by appending an element. Since lists are mutable objects, the
changes made to the list within the function are also reflected in the original list outside
the function.

2.3.4.2 Pass by Value (Immutable Objects)
When using pass by value, a copy of the object's value is passed as an argument to a
function. This means that any modifications made to the object within the function do
not affect the original object outside the function. However, it is important to note that
in Python, objects of immutable types, such as integers, strings, and tuples, are passed
by value. If the function modifies the object directly, a new object is created, while the
original object remains unchanged.

Example:

def modify_number(num):

num += 1 # Modifying the number within the function

test_number = 5

modify_number(test_number)

print(test_number)

Output: 5

In this example, the test_number object (an integer) is passed to the modify_number
function. However, integers are immutable objects in Python. Therefore, any modifi-
cations made to the num variable within the function do not affect the original
test_number object outside the function.

2.3.5 Scope and Lifetime of Variables
Scope and lifetime of variables determine where and for how long a variable is accessible
and exists in a program.

2.3.5.1 Scope

	♦ Global Scope: Variables defined outside any function or class have global
scope, meaning they can be accessed from anywhere within the program.

	♦ Local Scope: Variables defined inside a function or block have local scope,
which means they are only accessible within that specific function or block.

2.3.5.2 Lifetime of Variables
	♦ Global Variables: Global variables are created when the program starts and

85 SGOU - SLM - BCA - Programming with Python

persist throughout the entire execution of the program. They are destroyed
when the program terminates.

	♦ Local Variables: Local variables have a limited lifetime within the scope of
the function or block in which they are defined. They are created when the
function or block is entered and cease to exist when the function or block is
exited.

Example:

def test_function():

local_var = 15 # Local variable within the function

print("Local variable:", local_var)

global_var = 25 # Global variable

test_function()

print("Global variable:", global_var)

#Output:

Local variable: 15

Global variable: 25

In this example, we have a function called test_function() that defines a local variable
local_var with a value of 15. This variable is only accessible within the scope of the
function. When the function is called, the local variable is created and printed.

We also have a global variable global_var defined outside the function. Global variables
are accessible from anywhere in the program. It is printed after the function call.

2.3.6 Return Values
Return values in Python pertain to the values that a function can provide to the caller
once it has executed its tasks. The return statement is employed to indicate the specific
value that a function will return.

1. Single Value Return
To return a single value, a function employs the return statement followed by the value
that will be returned. This allows the function to provide a single result to the caller.

Example:

def multiply(a, b):

return a * b

result = multiply(3, 4)

print(result)

Output: 12

86 SGOU - SLM - BCA - Programming with Python

2. Multiple Value Return
Functions have the ability to return multiple values by listing them separated by commas
within the return statement. This allows the function to provide multiple results as a
tuple or any other sequence type.

Example:

def get_person_details():

name = "Ann"

age = 25

occupation = "Teacher"

return name, age, occupation

person = get_person_details()

print(person)

Output: ("Ann", 25, "Teacher")

3. Empty Return
In situations where a return statement is encountered without a value or if a function
lacks a return statement, Python implicitly returns None.

Example:
def is_even(number):

if number % 2 == 0:

		 return True

		 else:

		 return

result1 = is_even(4)

result2 = is_even(5)

print(result1) # Output: True

print(result2) # Output: None
In this example, we have a function called is_even() that checks whether a given number
is even. If the number is divisible by 2, the function returns True using the return True
statement. If the number is not even, the function does not explicitly provide a return
value.

When we call is_even() with the number 4, the function returns True, indicating that 4
is an even number. We assign the return value to the variable result1 and print it, which
outputs True.

87 SGOU - SLM - BCA - Programming with Python

When we call is_even() with the number 5, which is an odd number, the function does
not have a return statement for this case. In such situations, Python implicitly returns
None. We assign the return value to the variable result2 and print it, which outputs
None.

2.3.7 Function within Functions
In Python, it is permissible to define a function within another function, which is referred
to as a nested function or a function within a function. This allows for the creation
of a local function that can only be accessed and invoked from within the enclosing
function. The inner function has visibility and access to the variables and parameters of
the outer function, forming a nested scope.

Example:

def outer_function():

	 def inner_function():

		 print("This is the inner function")

	 print("This is the outer function")

		 inner_function()

outer_function()

In this example, the outer_function defines the inner_function within it. When the
outer_function is called, it prints "This is the outer function" and then invokes the
inner_function. The inner_function, in turn, prints "This is the inner function".

2.3.8 Anonymous Functions
Anonymous functions in Python are also known as lambda functions. They are compact
and inline functions that can be defined without the traditional "def" keyword. Instead,
lambda functions are created using the "lambda" keyword, followed by a parameter list,
a colon (:), and an expression that defines the function's behavior.

For example, consider a lambda function that calculates the square of a given number:

square = lambda x: x ** 2

result = square(5)

print(result)

Output: 25

In this example, we define an anonymous function (lambda function) named "square"
that takes an argument "x" and returns its square (x ** 2).

We then call the lambda function with the argument "5" and store the result in the
variable "result". Finally, we print the value of "result", which outputs "25".

88 SGOU - SLM - BCA - Programming with Python

2.3.9 Recursive Function
A recursive function is a function that invokes itself during its execution. It is employed
when a problem can be divided into smaller, similar subproblems. With each recursive
call, the function addresses a reduced version of the problem until a base case is
encountered, which serves as the stopping condition for the recursion.

Example:

def factorial(n):

 if n == 0:

	 return 1

 else:

	 return n * factorial(n - 1)

In this example, the factorial function takes an integer n as an argument. It checks if n
is equal to 0, which represents the base case. If it is, the function returns 1. Otherwise,
it recursively calls itself with the argument n - 1 and multiplies the result by n. This
process continues until the base case is reached.

Let's use this function to calculate the factorial of 5:

def factorial(n):

	 if n == 0:

		 return 1

	 else:

		 return n * factorial(n - 1)

result = factorial(5)

print(result)

Output: 120

In this case, we call the factorial function with the argument 5 and assign the result to
the variable result. The factorial of 5 is calculated by recursively multiplying 5 by the
factorial of 4, which further multiplies 4 by the factorial of 3, and so on, until we reach
the base case. The final result, 120, is then printed.

89 SGOU - SLM - BCA - Programming with Python

Recap

	♦ A function is a set of statements that performs a specific task and avoids code
repetition.

	♦ Functions help make programs modular, organized, reusable, and easier to
manage.

	♦ Functions improve code readability, maintenance, and collaboration in large
projects.

	♦ Two main types of functions: user-defined functions and built-in functions.

	♦ User-defined functions are created using the def keyword and can be reused
multiple times.

	♦ Built-in functions are provided by Python and can be used without importing
anything

	♦ Function syntax includes the function name, optional parameters in
parentheses, an optional docstring, and an indented function body.

	♦ The return statement is used to return a value from a function; if not used,
the function returns None by default.

	♦ Functions can be called using their name followed by parentheses, with
arguments passed if needed.

	♦ Positional arguments are matched by position, keyword arguments are
matched by name.

	♦ Default arguments allow functions to be called with fewer arguments than
defined.

	♦ Variable-length arguments use *args for positional and **kwargs for
keyword arguments.

	♦ Unpacking arguments from lists or tuples can be done using the * operator.

	♦ Python uses pass by reference for mutable objects like lists; changes affect
the original object.

	♦ Python uses pass by value for immutable objects like integers; changes
inside the function do not affect the original.

	♦ Global scope means the variable is accessible throughout the program; local
scope means it is accessible only within the function.

	♦ Global variables exist for the entire duration of the program; local variables
are created and destroyed during function execution.

	♦ Functions can return a single value, multiple values as a tuple, or None if no
return is specified.

90 SGOU - SLM - BCA - Programming with Python

Objective Type Questions

1.	 Which keyword is used to define a user-defined function in Python?

2.	 What symbol is used to denote a docstring in a function?

3.	 What is the default return value of a Python function if no return statement
is used?

4.	 What kind of function is defined without a name in Python?

5.	 What type of arguments are passed using the parameter names?

6.	 What kind of arguments have predefined values in the function definition?

7.	 What is the term for a function that calls itself?

8.	 What do you call a function defined inside another function?

9.	 Which built-in function is used to find the number of elements in a list or
string?

10.	What is the scope of a variable defined inside a function?

	♦ Nested functions (functions within functions) are possible, and inner
functions can access variables from the outer function.

	♦ Anonymous functions (lambda functions) are defined using the lambda
keyword and are useful for short, simple tasks.

	♦ Recursive functions call themselves and must include a base case to prevent
infinite recursion.

Answers to Objective Type Questions

1.	 def

2.	 Triple quotes (""")

3.	 None

4.	 Lambda function

5.	 Keyword arguments

91 SGOU - SLM - BCA - Programming with Python

Assignments

1.	 Write a Python function called "calculate_average" that takes in a list of
numbers as an argument and returns the average of those numbers.

2.	 Create a Python function called "reverse_string" that takes a string as input
and returns the reverse of that string.

3.	 Implement a Python function named "count_vowels" that accepts a string
and returns the count of vowels (a, e, i, o, u) present in that string.

4.	 Write a Python function called "is_palindrome" that takes a string as input
and checks if it is a palindrome. The function should return True if the string
is a palindrome and False otherwise.

5.	 Develop a Python function called "find_maximum" that accepts a list of
numbers and returns the largest number from that list.

6.	 Default arguments

7.	 Recursive function

8.	 Nested function

9.	 len()

10.	Local scope

References

1.	 Matthes, E. (2019). Python Crash Course: A Hands-On, Project-Based
Introduction to Programming. No Starch Press.

2.	 Ramalho, L. (2015). Fluent Python: Clear, Concise, and Effective
Programming. O’Reilly Media.

3.	 Beazley, D., & Jones, B. K. (2013). Python Cookbook: Recipes for Mastering
Python 3. O'Reilly Media.

4.	 https://docs.python.org/3/tutorial/modules.html

92 SGOU - SLM - BCA - Programming with Python

Suggested Reading

1.	 Lutz, M. (2013). Learning Python (5th ed.). O'Reilly Media.

2.	 Zelle, J. M. (2016). Python programming: An introduction to computer
science (3rd ed.). Franklin, Beedle & Associates Inc.

3.	 Sweigart, A. (2019). Automate the boring stuff with Python: Practical
programming for total beginners (2nd ed.). No Starch Press.

4.	 Beazley, D. M., & Jones, B. K. (2013). Python cookbook: Recipes for
mastering Python 3 (3rd ed.). O'Reilly Media.

5.	 Downey, A. (2015). Think Python: How to think like a computer scientist
(2nd ed.). O'Reilly Media.

93 SGOU - SLM - BCA - Programming with Python

Modules & Packages

Learning Outcomes

Prerequisites

	♦ understand the concept and purpose of Python modules and packages.

	♦ create and define your own Python modules containing functions, classes,
and variables.

	♦ import and use modules in your Python scripts for code reuse and organization.

	♦ create and structure your own Python packages with subpackages.

	♦ import modules and subpackages from packages using the appropriate
import statements.

	♦ understand the hierarchical structure of packages and how to navigate
through subpackages.

To learn and understand Python modules and packages effectively, it is important to
have certain prerequisites. First, you should have a basic understanding of Python,
including variables, data types, control structures, functions, and basic object-oriented
programming concepts. Additionally, a good grasp of Python syntax is necessary,
which includes knowledge of defining functions and classes, using modules, import
statements, and working with variables and data structures. Understanding fundamen-
tal programming concepts like code organization, code reuse, and modularization is
beneficial, as it helps in comprehending the purpose and advantages of modules and
packages. Familiarity with file and directory operations in Python, such as reading and
writing files, navigating directories, and manipulating file paths, will be useful when
dealing with modules and packages organized in a file system hierarchy. Lastly, setting
up a Python environment on your machine, including the installation of Python and a
suitable code editor or IDE, is necessary to write and execute Python code. By fulfilling
these prerequisites, you will be better equipped to grasp the concepts, implementation,
benefits, and best practices related to Python modules and packages.

UNIT 4

After completing this unit, you will be able to:

94 SGOU - SLM - BCA - Programming with Python

Discussion

2.4.1 Modules
Python modules are files that contain Python code, defining functions, classes, and
variables that can be utilized in other Python programs. Their purpose is to organize
and reuse code, encouraging modularity and reusability. Modules aid in separating
different concerns and making code easier to maintain. They can be either built-in
modules included in the Python standard library or external modules developed by the
Python community and installed using tools like pip. By importing modules into our
programs, we can access their functionality and utilize their defined objects to perform
various tasks, saving time and effort by avoiding the need to write code from scratch.

2.4.1.1 Creating a Python module
Creating a Python module follows a simple syntax. To define a module, you create a
new Python file with a .py extension. Inside this file, you can define functions, classes,
and variables that you intend to use in other Python programs. These definitions allow
you to organize and reuse code effectively.

Example:

Here's an example of creating a Python module named math_operations.py. Write the
code first.

def add(a, b):

 return a + b

def subtract(a, b):

 return a - b

def multiply(a, b):

 return a * b

def divide(a, b):

 if b != 0:

 return a / b

 else:

print("Error: Division by zero is not allowed.")

Key words

Import, module, package

95 SGOU - SLM - BCA - Programming with Python

Now save the file as math_operations.py. The module named math_operations.py will
be created. In this example, the module math_operations contain four functions: add,
subtract, multiply, and divide. These functions perform basic mathematical operations
and can be reused in other Python programs. In Python, both modules and normal files
are files containing Python code, but they serve different purposes. A normal Python file
(e.g., script.py) is meant to be executed as a standalone program. A module is a Python
file (.py) that is intended to be imported and used in other scripts.

2.4.1.2 The import Statement
The import statement is used in Python to bring modules or specific objects from
modules into the current program's namespace. It allows us to access and utilize the
functionality defined within the imported modules.

Syntax:

import module_name

Example:

import math_operations

result = math_operations.add(5, 3) [Refer section 2.4.1.1]

print(result)

Output: 8

result = math_operations.divide(10, 2)

print(result)

 # Output: 5.0

In the above code, we import the math_operations module and use its functions add and
divide to perform addition and division operations respectively.

2.4.1.3 Naming a Module

Choosing a suitable name for a Python module is crucial and involves the following
guidelines:

1.	 Descriptive: Opt for a name that precisely describes the module's purpose
and functionality. A descriptive name allows others to understand its role
with minimal effort.

2.	 Concise: Keep the module name short and avoid unnecessary length. Shorter
names are easier to type, remember, and fit well within code.

3.	 Lowercase: Use lowercase letters for module names. This is a common
convention in Python, distinguishing modules from classes and constants.

4.	 Underscores: When using multiple words in the module name, separate
them with underscores (_) for better readability. For example, it prefers

96 SGOU - SLM - BCA - Programming with Python

"my_module" instead of "mymodule".

5.	 Avoid conflicts: Ensure that the module name doesn't conflict with any
Python keywords or built-in module names. This helps prevent naming
clashes and potential issues.

6.	 Meaningful and self-explanatory: Select a module name that conveys
meaning and is self explanatory. This empowers developers, including
yourself in the future, to grasp the module's purpose without delving into the
code details. For example, if developing a module for string manipulation
utilities, consider names like "string_utils" or "str_helpers". These names
clearly convey the module's focus on string-related functionalities.

2.4.1.4 Renaming a Module

To rename a module in Python, you need to perform the following steps:

1.	 Change the module file name: Modify the name of the module file by
renaming it while preserving the .py extension. For instance, if the original
module file was named "old_module.py", rename it to "new_module.py".

2.	 Update import statements: Scan through other code files and locate import
statements that refer to the original module name. Update these import
statements to use the new module name instead. Replace occurrences of
"import old_module" with "import new_module".

3.	 Modify module references: If there are any references to the original
module within the code files, update them to reflect the new module name.
For example, if there was a function called "old_module.some_function()",
change it to "new_module.some_function()".

4.	 Test and validate: Execute the code and ensure that everything functions
correctly after renaming the module. Verify for any errors or unexpected
behavior, and make any necessary adjustments.

2.4.1.5 Variables in Module
Variables within a Python module can be accessed and used by other programs that
import the module. They serve as containers for storing data that can be shared between
different parts of a program or even across multiple programs. This allows for efficient
data organization and sharing, promoting code modularity and reusability.

Example:

my_module.py

my_variable = "Hello, World!"

def print_variable():

print(my_variable)

97 SGOU - SLM - BCA - Programming with Python

In this example, the module my_module contains a variable named my_variable assigned
with the string value "Hello, World!". It also includes a function print_variable() that
prints the value ofmy_variable.

2.4.1.6 Executing a Module as a Script
To execute a Python module as a script, you can utilize the special construct if __name__
== "__main__". This construct allows you to differentiate between when the module is
being directly executed as a script versus when it is being imported as a module.

Here's an example of how to execute a module as a script:

def add(a, b):

 return a + b

def subtract(a, b):

 return a - b

if __name__ == "__main__":

 # Code block executed when the module is run as a script

 result = add(5, 3)

print("Result:", result)

In the above example, the module defines two functions, add and subtract. The if __
name__ == "__main__" condition is used to determine if the module is being directly
executed. If it is, the code block within the condition will be executed.

To run the module as a script, you can execute the following command in the terminal
or command prompt:

python module_name.py

Replace module_name with the actual name of your module file. This will execute the
code within the if _ _name_ _ == "_ _main_ _" condition.

When the module is imported and used by another Python script, the code within the
if __name_ _ == "_ _main_ _" block will not be executed. This allows the module
to be imported and its functions to be used without any interference from the script-
execution-specific code.

By using the if _ _name_ _ == "_ _main_ _" construct, you can execute specific code
when running a module as a script while still enabling it to be imported and utilized as
a module in other scripts.

2.4.1.7 The Module Search Path
The module search path in Python is a collection of directories that the Python interpreter
examines when attempting to import modules in a program. The module search path is
determined by the sys.path variable, which is a list of directory locations.

98 SGOU - SLM - BCA - Programming with Python

When importing a module, Python follows a specific order to search for the module in
different locations. The search path is checked in the following sequence:

1.	 Current Directory: Python first checks the directory where the script or
interactive interpreter is executed. This allows for importing modules from
the same directory as the script.

2.	 PYTHONPATH environment variable: Python examines the directories
specified in the PYTHONPATH environment variable. This variable
stores a list of directories, separated by colons (:) on Unix-like systems and
semicolons (;) on Windows.

3.	 Default module directory: Python checks the standard library directories
that are part of the Python installation. These directories contain built-in
modules and other standard library modules.

4.	 Third-party module directories: If the module is not found in the previous
locations, Python searches in directories typically used for installing third-
party modules. These directories are commonly determined by package
managers, such as site-packages or dist-packages.

The module search path can be modified programmatically by adding or modifying
entries in thesys.path list. This can be helpful when you need to include additional
directories for module searching during runtime.

To examine the current module search path, you can access the sys.path variable:

	 import sys

	 print(sys.path)

This will display a list of directories constituting the module search path. dir() function

In Python, the dir() function is a powerful tool for inspecting the contents of a module
and retrieving a list of names, attributes, and methods defined within it. By calling
dir(module_name), you can explore the specific names associated with that module.

Here's an example demonstrating the usage of dir() on a module:

Import a module

import my_module

Display names, attributes, and methods of the module

print(dir(my_module))

In the above code, we import the my_module module and then use the dir() function to
retrieve a list of names associated with it. The output will include functions, variables,
classes, and other objects defined within the my_module.

Using dir() on a module provides valuable insights into the available functionality and
objects within the module. It helps in understanding what the module offers and allows

99 SGOU - SLM - BCA - Programming with Python

you to utilize its attributes and methods effectively.

Keep in mind that the dir() function provides only the names defined within the module,
without providing detailed explanations or documentation. For more information about
a specific attribute or method, you can use the help() function, passing the module and
the name as arguments (e.g., help(my_module.some_function)).

The dir() function helps explore a module’s contents, allowing you to harness its
capabilities for building robust and efficient Python programs.

2.4.1.8 Built-in Modules
Python provides an extensive range of built-in modules that offer various functionalities
to developers. These modules are part of the Python standard library and come pre-
installed, eliminating the need for manual installation. Some commonly used built-in
modules in Python include math for mathematical operations, random for random
number generation and selection, datetime for manipulating and formatting dates
and times, os for performing operating system-related tasks, sys for system-specific
operations, re for working with regular expressions, json for JSON manipulation, csv
for handling CSV files, urllib for working with URLs and HTTP operations, and sqlite3
for interacting with SQLite databases. These built-in modules offer a wide range of
functionalities and simplify common programming tasks, providing developers with
efficient and effective tools for their Python programs.

2.4.2 Packages
Python packages provide a way to structure and distribute code efficiently. Essentially,
a package is a directory containing one or more Python modules, along with an optional
special file named _ _init_ _.py. It facilitates the grouping of related modules thereby
establishing a hierarchical organization for your code.

The primary purpose of packages is to enable code organization and reuse in a modular
and scalable manner. By organizing modules into packages, you can prevent naming
conflicts, enhance code maintainability, and improve code readability. Moreover,
packages can be shared with others, fostering code collaboration and reuse.

To create a package, you create a directory with a unique name and include the _ _init_
_.py file within it. The _ _init_ _.py file can be empty or include initialization code that
runs when the package is imported.

Packages can have sub-packages, which are essentially nested directories containing
their own _ _init_ _.py files. This nesting capability allows for a hierarchical arrangement
of packages, facilitating the organization of code at different levels of abstraction.

Package installation and management can be handled using package managers like pip,
which is the predominant package manager in the Python ecosystem. Utilizing pip, you
can effortlessly install, upgrade, and uninstall packages from the Python Package Index
(PyPI), a community-maintained repository of Python packages.

Once a package is installed, its modules can be imported and utilized in other Python
scripts through the import statement. This statement grants access to functions, classes,
and variables defined within the package's modules.

100 SGOU - SLM - BCA - Programming with Python

2.4.2.1 Package Initialization
Package initialization in Python refers to the process of preparing a package for use
when it is imported. It involves executing the code within the _ _init_ _.py file located
in the package directory.

The _ _init_ _.py file serves as an indicator that the directory is a Python package. It
can contain Python code that is executed during package import. This initialization
code typically handles tasks like importing specific modules, setting up package-level
variables, or performing any necessary initialization logic.

Common scenarios for package initialization include:

Importing Modules: The _ _init_ _.py file can include import statements to bring in
modules within the package. This simplifies access to the package's modules and their
contents when the package is imported.

Setting Package-Level Variables: Initialization code can define variables that are
accessible at the package level. These variables can be shared among the package's
modules or used for configuration purposes.

Executing Initialization Logic: The _ _init_ _.py file can contain code that carries out
initialization steps required by the package. This may involve tasks such as establishing
database connections, configuring logging, or registering components.

While the _ _init_ _.py file is optional, it provides a way to customize package behavior
during import and serves as a central location for package initialization.

When a package is imported, the Python interpreter automatically executes the code
within the _ _init_ _.py file, if present. This initialization code runs only once, regardless
of how many times the package is imported in a program.

By leveraging package initialization, you ensure that your package is properly set up
and ready for use upon import. This simplifies package organization and allows for
better control over the package's behavior and functionality.

Example:
Suppose you have a package named "my_package" with the following directory
structure: my_package/

 _ _init_ _.py

 module1.py

 module2.py

To initialize the package, follow these steps:

Create the _ _init_ _.py file: Inside the "my_package" directory, create a file named
__init__.py. This file can be left empty or include initialization code.

Define module files: Within the "my_package" directory, create two Python module
files, module1.py and module2.py. Each module will contain functions or variables

101 SGOU - SLM - BCA - Programming with Python

related to specific functionalities.

Here's an example of how you can initialize the package:

init.py:

print("Initializing my_package...")

Import modules within the package

from . import module1

from . import module2

module1.py:

def function1():

print("This is function 1 from module 1")

module2.py:

def function2():

print("This is function 2 from module 2")

In the __init__.py file, we print a message to indicate that the package is being
initialized. We also import the modules module1 and module2 using relative imports
(from . import ...).

Now, let's use the package in another Python script:

main.py:

import my_package

print("Package imported!")

my_package.module1.function1()

my_package.module2.function2()

When you run the main.py script, the output will be:

Initializing my_package...

Package imported!

This is function 1 from module 1

This is function 2 from module 2

In this example, when the my_package package is imported, the __init__.py file is
executed, and the initialization code within it is run. It prints the initialization message
and imports the module1 and module2 modules.

You can then access the functions defined in the modules using the package name and
module name as demonstrated in main.py.

102 SGOU - SLM - BCA - Programming with Python

This example demonstrates the process of package initialization in Python, where
the __init__.py file is crucial for setting up the package during import. Remember to
modify the package and module names and customize the functionality based on your
specific requirements.

2.4.2.2 Subpackages
Subpackages in Python provide a means of structuring and organizing code within
packages in a hierarchical manner. They facilitate improved modularity, organization,
and reusability of related components or functionality. Subpackages enable the creation
of complex projects by establishing a multi-level package structure.

To create a subpackage, you can follow these steps:

Begin by creating the main package directory, which serves as the parent directory
for the subpackage. This directory should include an init.py file that can either be left
empty or contain initialization code specific to the package.

Inside the main package directory, create a subdirectory with a unique name that will
function as the subpackage. This subdirectory should also have an init.py file, which
can be empty or contain initialization code specific to the subpackage.

Include one or more module files (Python files) within the subpackage directory to hold
the code relevant to the subpackage. These modules can consist of functions, classes,
or other code elements.

By utilizing subpackages, developers can enhance code maintainability, separation
of concerns, and code reuse. Subpackages allow for the logical grouping of related
modules, facilitating easier navigation and utilization of specific functionality within
a project.

Example:

Suppose you are working on a project related to geometry calculations and want to
organize your code into subpackages. You can create a main package called "geometry"
and include subpackages such as "shapes" and "utils".

The directory structure would look like this:

geometry/

 __init__.py

 shapes/

 __init__.py

 circle.py

 rectangle.py

 utils/

 __init__.py

103 SGOU - SLM - BCA - Programming with Python

 calculations.py

In this example, the "geometry" package serves as the main package. It contains two
subpackages, "shapes" and "utils", represented by separate directories. Each subpackage
has its own __init__.py file, indicating that they are Python subpackages.

The "shapes" subpackage includes two module files: "circle.py" and "rectangle.py".
These files can contain classes and functions related to calculations and properties of
circles and rectangles.

The "utils" subpackage consists of one module file: "calculations.py". This file can
contain utility functions or calculations that are commonly used in geometry operations.

To import and use modules from the subpackages, you can use the dot notation: from
geometry.shapes.circle import Circle from geometry.utils.calculations

import calculate_area

circle = Circle(radius = 5)

area = calculate_area(circle)

print(f"The area of the circle is: {area}")

Here, we import the Circle class from the "shapes.circle" subpackage and the calculate_
area function from the "utils.calculations" subpackage. This allows us to create a circle
object and calculate its area using the imported functionality.

Recap

	♦ Module – A module is a .py file containing reusable Python code like
functions and variables.

	♦ Creating a Module – You create a module by saving Python code in a file
with a .py extension.

	♦ Importing a Module – Use the import statement to access functions and
variables from a module.

	♦ Naming a Module – Module names should be short, lowercase, descriptive,
and avoid conflicts.

	♦ Renaming a Module – Rename the file and update all related import
statements and references.

	♦ Variables in a Module – Variables defined in a module can be accessed
from other scripts that import it.

	♦ Executing a Module as Script – The if __name__ == "__main__" block
lets you run code only when the module is executed directly.

104 SGOU - SLM - BCA - Programming with Python

Objective Type Questions

1.	 What is a module?

2.	 What is a package?

3.	 What does init.py file do?

4.	 How do you import a module?

5.	 What keyword is used to import specific items from a module?

6.	 What is a subpackage?

7.	 What keyword is used to create a package?

8.	 What is the purpose of a package?

9.	 What keyword is used to import all items from a module?

10.	What is the main benefit of using modules and packages?

	♦ Module Search Path – Python searches for modules in a specific order
defined in the sys.path list.

	♦ Built-in Modules – Python includes many ready-to-use built-in modules
like math, os, and json.

	♦ Package – A package is a folder of related modules with an __init__.py file
to make it importable.

	♦ Package Initialization – Code in __init__.py runs when the package is
imported and can initialize the package.

	♦ Subpackage – A subpackage is a package within another package, helping
organize complex projects.

	♦ Using Subpackages – You can import specific parts of subpackages using
dot notation like from package.sub.module import item.

Answers to Objective Type Questions

1.	 File

2.	 Directory

105 SGOU - SLM - BCA - Programming with Python

3.	 Initialization

4.	 import

5.	 from

6.	 Nested

7.	 init.py

8.	 Organization

9.	 *

10.	Reusability

Assignments

1.	 Create a module that contains functions for calculating the area and
circumference of a circle, and import it to calculate these values for user-
provided input.

2.	 Design a package with subpackages representing different categories of
animals, each containing modules with functions to display information
about specific animals, and import them to display details based on user
input.

3.	 Create a module that includes a function to generate a random password,
and import it to generate and display a password with a user-defined length.

4.	 Develop a package with subpackages for basic mathematical operations
(addition, subtraction, etc.) and import the appropriate subpackage and
module to perform calculations based on user input.

References

1.	 Python Software Foundation. (2023). The Python Standard Library.

2.	 Beazley, D. M., & Jones, B. K. (2013). Python Cookbook (3rd ed.). O'Reilly
Media.

3.	 Lutz, M. (2013). Learning Python (5th ed.). O'Reilly Media.

106 SGOU - SLM - BCA - Programming with Python

Suggested Reading

1.	 Matthes, E. (2019). Python Crash Course: A Hands-On, Project-Based
Introduction to Programming. No Starch Press.

2.	 Ramalho, L. (2015). Fluent Python: Clear, Concise, and Effective
Programming. O'Reilly Media.

3.	 https://docs.python.org/3/tutorial/modules.html

4.	 Sweigart, A. (2015). Automate the Boring Stuff with Python: Practical
Programming for Total Beginners. No Starch Press.

5.	 Downey, A. (2015). Think Python: How to Think Like a Computer Scientist
(2nd ed.). O'Reilly Media.

107 SGOU - SLM - BCA - Programming with Python

File Handling, Object-
Oriented Programming,
Exception Handling and

Regular Expressions

BLOCK 3

108 SGOU - SLM - BCA - Programming with Python

File Handling

Learning Outcomes

Prerequisites

	♦ define file handling in Python and its importance in managing data.

	♦ describe the various file modes used to open files in Python.

	♦ explain how the with statement is used for safe file operations.

	♦ describe the purpose of cursor handling functions like seek() and tell().

Think about tracking your daily spending in a notebook. At first, writing down each
expense works fine. But as time goes on, the notebook may become cluttered, difficult
to navigate, or even damaged, making it hard to review or total your expenses. Now,
consider using Python to manage this task more efficiently. With file handling, you can
create a file on your computer to record your spending, add new entries each day, easily
view past records, make updates, or delete unnecessary data. This method keeps your
information organized and safe, and it simplifies tasks like calculations or summaries.
Essentially, Python’s file handling serves as a reliable digital notebook for managing
and storing important data.

UNIT 1

After completing this unit, learners will be able to:

Keywords

open(), read(),write(),tell(),Truncation, Cursor Positioning

109 SGOU - SLM - BCA - Programming with Python

Discussion

3.1.1 Introduction to File Handling
Python also provides file handling and enables users to read and write files as well as
perform a variety of other operations on files. Like many other concepts in Python, the
idea of file management has been extended to a number of other languages, but their
implementations are either difficult or time-consuming. Python handles text and binary
files differently, and this is crucial. A text file is created by the character sequences in
each line of code. A unique character known as the EOL or End of Line character, such
as the comma (,) or newline character, is used to end each line of a file. It signals the
interpreter that a new line has started and ends the current one. The reading and writing
files will come first.

3.1.2 File Handling Functions
File handling functions in Python are built-in functions that enable you to carry out
various file operations like creating, opening, reading, writing, appending, and closing
files. These functions are essential in accessing and manipulating data stored in external
text or binary files, making file input/output (I/O) tasks more efficient and manageable.

3.1.2.1 open() function
We must first open the file before we can read from it or write to it. To do this, we should
use the built-in Python function open(), but we must first give the mode, which denotes
the goal of the opening file.

	 f = open(filename, mode)

r : Read an existing file by opening it.

w : initiates a write operation on an open file. The data will be replaced if it already
exists in the file.

a : Start an add operation on an existing file. Existing data won't be replaced by it.

r+ : To both read from and write to the file. It will replace any prior data in the file.

w+ : Opens the file for both reading and writing. If the file already exists, its content
will be overwritten and if it does not exist, it will create a new file.

a+ : To add to and read from the file with data. Existing data won't be replaced by it.

	 file = open('myfile.txt', 'r') # This will print each line one by one in the file

	 for i in file:

		 print (i)

The file will be opened in read-only mode by the open command, and every line in the
file will be printed by the for loop.

110 SGOU - SLM - BCA - Programming with Python

3.1.2.2 read() mode
In Python, there are various methods for reading files. Use file.read() to extract a string
containing every character in the file if necessary (). The complete code would operate
as follows:

file = open("myfile.txt", "r")

print (file.read())

The following code will cause the interpreter to read the first five characters of any
stored data and return them as a string, which is another way to read a file:

file = open("myfile.txt", "r")

print (file.read(5))

3.1.2.3 Creating a file using write() mode

file = open("myfile.txt", "w")

file.write("Writing new content")

file.write("It allows us to write in a particular file")

file.close()

Close() terminates all resources that are currently in use and releases this specific
program from the system.

file = open('myfile.txt','a')

file.write("This will add this line")

file.close()

The following additional commands are used in file handling to accomplish different
tasks:

	 rstrip(): This function removes all right-side spaces from each line of a file.

	 lstrip(): This function removes any left-side spaces from each line of a file.

3.1.2.4 Renaming a File
We will use the.rename() method from the os module to rename our file. Two arguments
are required by the.rename() method:

 1. The string type of the current file name.
 2. The newly renamed file's name, which must be supplied as a string type.

import os

os.rename('myfile.txt', 'outfile.txt')

111 SGOU - SLM - BCA - Programming with Python

3.1.2.5 Delete a File
You must import the OS module and call its os.remove() function in order to delete a
file:

import os

os.remove("myfile.txt")

	♦ Check if File exist:

Before attempting to delete a file, you might want to verify if it already exists to avoid
receiving an error:

import os

if os.path.exists("myfile.txt"):

 os.remove("myfile.txt")

else:

print("The file does not exist")

	♦ Delete Folder

The os.rmdir() function can be used to completely remove a folder:

import os

os.rmdir("myfolder")

3.1.3 Cursor Positioning Methods
Cursor positioning methods are techniques or functions used in programming, text
editing, or terminal applications to shift the cursor to a desired location on the screen
or within a file.

3.1.3.1 seek() method
In Python, you can move the cursor to a specific location using the seek() function.

file = open("myfile.txt", 'r')

file.seek(0)

file.close()

The cursor will then be moved to index position 0, and file reading will once more
begin at the beginning.

3.1.3.2 The tell() method
The tell() method in Python prints the current position of our cursor.

 file = open("myfile.txt", 'r') # Open the file in read mode

112 SGOU - SLM - BCA - Programming with Python

 file.tell()	 # Initially, the file pointer is at the start of the file, This will print 0

 file.read(5) # Read the first 5 characters

 print(file.tell()) # Now the file pointer has moved 5 bytes forward, This will print 5

 file.read(6) # Read another 6 characters (total 11 characters read so far)

print(file.tell()) # The file pointer has now moved 6 more bytes forward (total of 11
bytes), This will print 11.

3.1.4 Truncating a File
In Python, it is also possible to truncate a file. We can truncate the file to the required
length by using the truncate() method.

file = open('myfile.txt', 'w')

file.truncate(20)

Recap

	♦ Python provides built-in support for file handling to perform operations like
creating, opening, reading, writing, appending, and closing files.

	♦ Text and binary files are handled differently in Python.

	♦ The open() function is used to open a file and requires a filename and mode
('r', 'w', 'a', 'r+', 'w+', 'a+').

	♦ The read() method is used to read the contents of a file.

	♦ The write() method allows writing data to a file; it replaces existing content
if in 'w' mode.

	♦ The append() mode adds new content to the end of the file without removing
existing data.

	♦ The close() method should be used to release system resources after file
operations.

	♦ The os.rename() function renames a file.

	♦ The os.remove() function deletes a file, and os.rmdir() removes a folder.

	♦ os.path.exists() checks if a file exists before performing actions on it.

	♦ The seek() method moves the file cursor to a specified location.

	♦ The tell() method returns the current position of the file cursor.

	♦ The truncate() method is used to reduce the file size to a given number of
bytes.

113 SGOU - SLM - BCA - Programming with Python

Objective Type Questions

1.	 Which function is used to open a file in Python?

2.	 What mode is used to read a file?

3.	 Which mode is used to write to a file and overwrite existing content?

4.	 Which method moves the cursor to a specific position in a file?

5.	 Which method returns the current position of the cursor in a file?

6.	 Which function is used to close a file?

7.	 Which method removes all right-side spaces from a line?

8.	 What method is used to delete a file?

9.	 Which method is used to reduce the size of a file?

10.	What mode is used for both reading and writing, overwriting content if the
file exists?

Answers to Objective Type Questions

1.	 open

2.	 r

3.	 w

4.	 seek

5.	 tell

6.	 close

7.	 rstrip

8.	 remove

9.	 truncate

10.	w+

114 SGOU - SLM - BCA - Programming with Python

Assignments

1.	 Write a Python program to create a file, write some content into it, and then
read and display the content.

2.	 Explain the different file access modes in Python with suitable examples for
each.

3.	 Write a Python script to append a new line of text to an existing file and
display the updated content.

4.	 Using the os module, write a Python program to rename and then delete a
file, ensuring the file exists before each operation.

5.	 Demonstrate the use of seek() and tell() methods in a Python program to
manipulate and track the cursor position within a file

References

1.	 Matthes, E. (2019). Python Crash Course: A Hands-On, Project-Based
Introduction to Programming. No Starch Press.

2.	 Ramalho, L. (2015). Fluent Python: Clear, Concise, and Effective
Programming. O’Reilly Media.

3.	 Beazley, D., & Jones, B. K. (2013). Python Cookbook: Recipes for Mastering
Python 3. O'Reilly Media.

4.	 https://docs.python.org/3/tutorial/modules.html

Suggested Reading

1.	 Lutz, M. (2013). Learning Python (5th ed.). O'Reilly Media.

2.	 Zelle, J. M. (2016). Python programming: An introduction to computer
science (3rd ed.). Franklin, Beedle & Associates Inc.

3.	 Sweigart, A. (2019). Automate the boring stuff with Python: Practical
programming for total beginners (2nd ed.). No Starch Press.

4.	 Beazley, D. M., & Jones, B. K. (2013). Python cookbook: Recipes for
mastering Python 3 (3rd ed.). O'Reilly Media.

5.	 Downey, A. (2015). Think Python: How to think like a computer scientist
(2nd ed.). O'Reilly Media.

115 SGOU - SLM - BCA - Programming with Python

Object-Oriented Programming

Learning Outcomes

Prerequisites

	♦ define object-oriented programming (OOP) in the context of Python.

	♦ describe the main OOP principles (class, object, inheritance, polymorphism,
encapsulation, and abstraction).

	♦ identify the role of the __init__ method and self-keyword in class construction.

	♦ recognise the different types of inheritance used in Python with examples.

	♦ recall the syntax for creating a class and instantiating objects in Python.

Have you ever thought about how your favorite apps like WhatsApp or a ride-booking
service like Uber work behind the scenes? These apps are made of different parts that
work together just like real-world objects. Each user, message, or vehicle is treated as
a separate "thing" with properties and actions. This is the core idea behind Object-
Oriented Programming (OOP) organizing code around real-world entities. Before
diving into OOP, it’s helpful to understand basic Python concepts like variables, data
types, functions, and control structures such as loops and conditionals.

Now, imagine a smartphone. It has apps (objects), each with specific functions. The
Camera app can open, click photos, and zoom. These functions are like methods, and
the app itself holds data like brightness, filter, and focus called attributes. In Python, we
model such real-world items using classes (blueprints) and objects (actual instances).
This structure helps developers manage complexity by grouping related behavior and
data together in a meaningful way.

With the help of OOP concepts, you can write code that is not only cleaner but also
reusable and flexible. Features like encapsulation keep data safe, abstraction hides
unnecessary details, inheritance lets you reuse code, and polymorphism allows one
interface to work in multiple ways. Understanding these concepts allows you to build
powerful and realistic applications in Python, just like the ones you use daily. This unit
will open your mind to a more logical, scalable way of programming and once you start
thinking in objects, programming becomes both easier and more exciting.

UNIT 2

At the end of this unit, the learner will be able to:

116 SGOU - SLM - BCA - Programming with Python

Discussion
3.2.1 Introduction to Object-Oriented Programming in Python
Object-Oriented Programming (OOP) is a powerful programming paradigm that helps
organize code by modeling real-world entities as software objects. Unlike procedural
programming, where code is written as a sequence of steps, OOP structures programs
around classes (blueprints) and objects (instances of those classes). This approach
makes code more modular, reusable, and easier to maintain. Python, as a high-level and
beginner-friendly language, fully supports OOP and provides simple syntax to define
and use classes and objects effectively.

In Python’s OOP, key concepts such as encapsulation, abstraction, inheritance, and
polymorphism play a vital role. These concepts allow developers to hide internal
details, simplify interfaces, reuse existing code, and design flexible applications. For
example, a class called Car can represent vehicles with shared properties like color and
speed, while different types of cars (like ElectricCar or SportsCar) can inherit from it
and extend or modify behaviors. Learning OOP in Python provides a strong foundation
for building scalable software and real-world applications.

3.2.2 Concepts of Object-Oriented Programming (OOPs)
Object-Oriented Programming (OOP) in Python is a method of structuring code that

Keywords

Class, Objects, Polymorphism, Encapsulation, Inheritance, Data Abstraction

117 SGOU - SLM - BCA - Programming with Python

models real-world entities using classes and objects. Python makes it easy to implement
OOP due to its simple and readable syntax. By organizing code into reusable and self-
contained objects, Python’s OOP approach helps developers write clear, efficient, and
maintainable programs. These concepts are especially useful in building complex
applications like games, web apps, or data processing systems by breaking them down
into smaller, manageable components. The core OOP concepts in Python (Fig 3.2.1)
are:

	♦ Class: A template that defines the structure and behavior of objects.

	♦ Object: An instance of a class with specific data and functionality.

	♦ Encapsulation: Bundling data and methods together and restricting direct
access.

	♦ Abstraction: Hiding unnecessary details and exposing only the essential
features.

	♦ Inheritance: Creating new classes from existing ones to promote code reuse.

	♦ Polymorphism: Allowing different objects to respond uniquely to the same
method call.

Fig 3.2.1 Core OOP Concepts in Python

3.2.3 Class
A class is a group of related items. The models or prototypes used to generate objects
are included in classes. It is a logical entity with a few methods and characteristics.
Consider the following scenario to better appreciate the need for generating classes.
Suppose you needed to keep track of the number of dogs that might have various
characteristics, such as breed or age. If a list is utilized, the dog's breed and age might

118 SGOU - SLM - BCA - Programming with Python

be the first and second elements, respectively. What if there were 100 different breeds
of dogs? How would you know which ingredient should go where? What if you wanted
to give these dogs additional traits? This is unorganized and just what classes need.

A class is a collection of objects. i.e., Classes are blueprints for creating objects. A class
defines a set of attributes and methods that the created objects (instances) can have.
Some key points on Python class:

	♦ The keyword class is used to create classes.

	♦ The variables that make up a class are known as attributes.

	♦ With the dot (.) operator, attributes can always be retrieved and are always
public. (For example: Myclass.Myattribute)

Class definition Syntax:

class ClassName:

 # Statement-1

 .

 .

 .

 # Statement-N

Example: Creating an empty Class in Python

class Dog:

 …….

Using the class keyword, we built a class with the name Dog in the example above.

3.2.4 Objects
The object is an entity that is connected to a state and activity. Any physical device, such
as a mouse, keyboard, chair, table, pen, etc., may be used. Arrays, dictionaries, strings,
floating-point numbers, and even integers are all examples of objects. Any single string
or integer, more specifically, is an object. A list is an object that may house other things,
the number 12 is an object, the text "Hello, world" is an object, and so on. You may not
even be aware of the fact that you have been using items.

An object is a real-world entity created from a class. It contains data (attributes) and
functions (methods) defined by the class. i.e., an object is an instance of a class. An
object includes:

	♦ State: An object's properties serve as a representation of it. Additionally, it
reflects an object's characteristics.

	♦ Behavior: The methods of an object serve as a representation of behavior. It

119 SGOU - SLM - BCA - Programming with Python

also shows how one object reacts to other objects.

	♦ Identity: It gives a thing a special name and makes it possible for one object
to communicate with another.

Let's look at the example of the class dog to better understand the state, behavior, and
identity. The identity may be regarded as the dog's name. Breed, age, and color of the
dog are examples of states or attributes. You may infer from the behavior whether the
dog is eating or sleeping.

Syntax: object_name = ClassName(arguments)

Example: Creating an object

d = Dog()

This will create an object with the class Dog, named “d”, as stated above. Let's first
grasp the fundamental terms that will be utilized while working with objects and classes
before delving further into them.

1. Using Self

	♦ An additional initial parameter in the method declaration is required for
class methods. When we call the method, we don't supply a value for this
parameter; Python does.

	♦ Even if we have a method that doesn't require any parameters, we still need
one.

	♦ This is comparable to this Java reference and this C++ pointer.

This is the primary purpose of the special self. When we invoke a method of this
object as myobject.method(arg1, arg2), Python automatically converts it to MyClass.
method(myobject, arg1, arg2).

2. __init__ method
The __ init__ method is similar to constructors in C++ and Java. As soon as a class
object is created, it is executed. Any initialization you want to perform on your object
can be done with the method.

Example: Creating a class and object with class and instance attributes

class Dog:

 attr1 = "mammal" 		 		 # class attribute

 def __init__(self, name): 			 # instance attribute

 self.name = name

 Rodger = Dog("Rodger") 		 # object instantiation

 Tommy = Dog("Tommy")

120 SGOU - SLM - BCA - Programming with Python

print("Rodger is a ", Rodger.__class__.attr1) # Accessing class attributes

print("Tommy is also a ", Tommy.__class__.attr1)

print("My name is ", Rodger.name)			 # Accessing instance attributes

print("My name is ", Tommy.name)

Output:

Rodger is a mammal

Tommy is also a mammal

My name is Rodger

My name is Tommy

Example: Creating Class and objects with methods
class Dog:

 attr1 = "mammal"			 # Class attribute

 def __init__(self, name):			 # Instance attribute

 self.name = name

 def speak(self):

 print("My name is", self.name)

Rodger = Dog("Rodger")	 # Object instantiation (outside the class definition)

Tommy = Dog("Tommy")

Rodger.speak()		 # Accessing class methods

Tommy.speak()

Output:

My name is Rodger

My name is Tommy

3.2.5 Inheritance
The ability of one class to derive or inherit properties from another class is known as
inheritance. The class from which the properties are being derived is referred to as the
base class or parent class, and the class that inherits those properties is referred to as
the derived class or child class.

Why Use It?

	♦ To reuse code.

	♦ To organize similar classes better.

121 SGOU - SLM - BCA - Programming with Python

	♦ To avoid writing duplicate functions.

The advantages of inheritance include:

	♦ It accurately depicts relationships in the real world.

	♦ It offers a code's reusability. We don't need to keep writing the same code.
Additionally, it enables us to expand a class's features without changing it.

	♦ Because of its transitive nature, if a class B inherits from a class A, then all
of class B's subclasses will also automatically inherit from class A.

Real-life example:
A Car and a Truck are both types of Vehicles. They can share common features like
start(), stop().

3.2.5.1 Types of Inheritance
Inheritance is a powerful feature in Python's object-oriented programming that allows a
class (called the child or subclass) to reuse the properties and behaviors of another class
(called the parent or superclass). This promotes code reuse, reduces redundancy, and
helps in building a clear and logical class hierarchy.

Python supports several types of inheritance, each serving a different purpose depending
on the relationship between classes. The main types (Fig 3.2.2) include:

	 a. Single Inheritance

	 b. Multiple Inheritance

	 c. Multilevel Inheritance

	 d. Hierarchical Inheritance

	 e. Hybrid Inheritance

Each type allows you to build more flexible and modular programs by organizing your
code using real-world relationships.

Fig 3.2.2 Types of Inheritance in Python

122 SGOU - SLM - BCA - Programming with Python

1. Single Inheritance
Single inheritance is the most basic type of inheritance in Python. It occurs when
a child class inherits from one parent class. This allows the child class to reuse the
attributes and methods of the parent class, reducing code duplication and promoting
reusability. Single inheritance is helpful when there is a clear and straightforward
relationship between two classes.

Example:

class Animal:

 def speak(self):

print("Animal speaks")

 class Dog(Animal):

 def bark(self):

 print("Dog barks")

d = Dog()

d.speak()

d.bark()

Output:

Animal speaks

Dog barks

2. Multilevel Inheritance
Multilevel inheritance in Python refers to a situation where a class is derived from
another class, which is itself derived from a third class. In other words, the inheritance
chain goes on for multiple levels. This type of inheritance helps build a hierarchical
relationship where each level can add new features or extend the existing ones from the
class it inherits. It allows better structure and deeper reuse of code across related classes.
i.e., A derived class can inherit properties from an immediate parent class, which in turn
can inherit properties from its parent class, thanks to multi-level inheritance.

Example :

class Animal:

 def speak(self):

print("Animal speaks")

class Dog(Animal):

 def bark(self):

123 SGOU - SLM - BCA - Programming with Python

print("Dog barks")

class Puppy(Dog):

 def weep(self):

print("Puppy weeps")

p = Puppy()

p.speak()

p.bark()

p.weep()

Output:

Animal speaks

Dog barks

Puppy weeps

3. Hierarchical Inheritance
Hierarchical inheritance occurs when multiple child classes inherit from a single
parent class. This means one base class is shared by many derived classes. Each child
class gets access to the attributes and methods of the same parent, allowing code reuse
across multiple subclasses. Hierarchical inheritance is useful when different types of
objects share common behavior but also have their own unique features.

Example:

class Animal:

 def speak(self):

print("Animal speaks")

class Dog(Animal):

 def bark(self):

print("Dog barks")

class Cat(Animal):

 def meow(self):

print("Cat meows")

d = Dog()

c = Cat()

d.speak()

124 SGOU - SLM - BCA - Programming with Python

d.bark()

c.speak()

c.meow()

Output:

Animal speaks

Dog barks

Animal speaks

Cat meows

4. Multiple Inheritance
Multiple inheritance is a type of inheritance in Python where a child class inherits
from more than one parent class. This means the child class can access the features
(attributes and methods) of all its parent classes. Multiple inheritance is powerful for
combining functionalities from different sources, but it can also introduce complexity,
especially when parent classes have methods with the same name.

Example:

Parent class 1

class Father:

 def skills(self):

print("Father: Gardening, Carpentry")

Parent class 2

class Mother:

 def skills(self):

print("Mother: Cooking, Painting")

Child class inherits from both Father and Mother

class Child(Father, Mother):

 def skills(self):

print("Child inherits skills from both parents:")

Father.skills(self) # Calling Father’s version

Mother.skills(self) # Calling Mother’s version

print("Child: Coding")

Create object of Child

125 SGOU - SLM - BCA - Programming with Python

c = Child()

c.skills()

Output:

Child inherits skills from both parents:

Father: Gardening, Carpentry

Mother: Cooking, Painting

Child: Coding

3.2.6 Polymorphism
Polymorphism is an important concept in object-oriented programming that means
“many forms.” In Python, polymorphism allows objects of different classes to be treated
as if they are of the same class, especially when they share a common interface or method
name. This makes the code more flexible and reusable, as the same function or method
can work with different types of objects. Polymorphism helps in designing systems
where components can be easily extended or replaced without changing existing code.

Why Use It?

	♦ To write flexible code.

	♦ So different objects can be used interchangeably even if they behave
differently.

Real-life example:

The word "run" means:

	♦ A human can run.

	♦ A computer program can run.

	♦ A car engine can run.

They all use the word “run” but act differently!

Example:

class Bird:

 def fly(self):

print("Birds can fly")

class Ostrich(Bird):

 def fly(self):

print("Ostrich cannot fly")

b = Bird()

126 SGOU - SLM - BCA - Programming with Python

o = Ostrich()

b.fly() # Bird's version

o.fly() # Ostrich's version

Output:

Birds can fly

Ostrich cannot fly

3.2.7 Encapsulation
One of the core ideas in object-oriented programming is encapsulation (OOP). It
explains the concept of data wrapping and the techniques that operate on data as a
single unit. This restricts direct access to variables and procedures and can avoid data
alteration by accident. A variable can only be altered by an object's method in order
to prevent inadvertent modification. These variables fall under the category of private
variables. A class, which encapsulates all the data that is contained in its member
functions, variables, etc., is an example of encapsulation.

Why Use It?

	♦ To protect data from being changed by accident.

	♦ To make code clean and secure.

	♦ To control how data is accessed.

Consider a real-life example, think of an ATM machine. You press buttons to
withdraw money, but you don’t need to know how it calculates or verifies inside, that's
encapsulation!

Example:

class Person:

 def __init__(self):

self.__age = 0 # Private variable

 def set_age(self, age):

self.__age = age

 def get_age(self):

 return self.__age

p = Person()

p.set_age(25)

print(p.get_age()) # Correct way to access private data

127 SGOU - SLM - BCA - Programming with Python

Output:

25

__age is private. We can’t access it directly, only through set_age() and get_age()
methods.

3.5.8 Abstraction
In real life, we often interact with systems without knowing how they work internally.
For example, when we drive a car, we use the steering wheel, brake, and accelerator
but we don’t need to know how the engine works. This idea is called abstraction,
and it's used in Python programming to make complex systems easier to use. It hides
unnecessary details and shows only the essential features, helping developers focus on
what an object does, not how it does it.

Abstraction is the process of hiding the internal implementation details and showing
only the required features of an object. In Python, abstraction is achieved using abstract
classes and abstract methods, provided by the abc (Abstract Base Class) module. The
main purpose of abstraction is:

	♦ To reduce complexity and make code easier to manage.

	♦ To hide internal implementation from the user.

	♦ To focus on what an object does, not how it works.

	♦ To provide a clear structure for creating reusable and extendable code.

	♦ To improve security by hiding sensitive logic.

Consider real-Life example, imagine using an ATM:

	♦ You insert your card, enter the PIN, and withdraw money.

	♦ You don’t need to know how the ATM checks your account or dispenses the
cash.

This is abstraction , you use the features without seeing the background process.

Example:

from abc import ABC, abstractmethod

class Vehicle(ABC):		 # Abstract class

 @abstractmethod

 def start_engine(self):

 pass

class Car(Vehicle):		 # Subclass

 def start_engine(self):

128 SGOU - SLM - BCA - Programming with Python

 print("Car engine started.")

my_car = Car()			 # Using the class

my_car.start_engine()

Output:

 Car engine started.

Vehicle hides the engine starting process. Car gives the actual detail. The user only
needs to call start_engine() without knowing how it works internally.

Recap

	♦ OOP is a programming style that organizes code using classes and objects to
model real-world entities.

	♦ Class is a blueprint for creating objects with shared structure and behavior.

	♦ Object is an instance of a class representing individual data and functionality.

	♦ self refers to the current object and is used to access variables and methods
within the class.

	♦ __init__() is the constructor method automatically called when an object is
created.

	♦ Class attributes are shared across all instances, while instance attributes are
unique to each object.

	♦ Encapsulation hides the internal state of objects using private variables and
methods.

	♦ Abstraction is the process of hiding the internal implementation details and
showing only the required features of an object.

	♦ Inheritance allows one class (child) to acquire attributes and methods from
another (parent).

	♦ Polymorphism enables the same method to behave differently across different
classes.

	♦ Single Inheritance means a class inherits from one parent class.

	♦ Multilevel Inheritance is when a class inherits from a child class that already
has a parent.

	♦ Hierarchical Inheritance means multiple classes inherit from a single base
class.

129 SGOU - SLM - BCA - Programming with Python

Objective Type Questions

1.	 What does OOP stand for?

2.	 Which keyword is used to define a class in Python?

3.	 What is an object in Python?

4.	 Which special method acts as a constructor in Python?

5.	 What does the self keyword represent in a class method?

6.	 What is inheritance in OOP?

7.	 What is polymorphism in Python?

8.	 Which module is used to define abstract classes in Python?

9.	 What is the purpose of abstraction in OOP?

10.	What is encapsulation?

11.	Which inheritance type allows a class to inherit from more than one parent?

12.	Which of the following is not an OOP concept: Inheritance, Encapsulation,
Compilation, Polymorphism?

	♦ Multiple Inheritance lets a class inherit from two or more parent classes.

	♦ Class methods operate on class-level data, while instance methods work
with instance-specific data.

	♦ OOP in Python makes code more reusable, organized, and easier to maintain.

1.	 Object-Oriented Programming

2.	 class

3.	 An instance of a class

4.	 __init__()

Answers to Objective Type Questions

130 SGOU - SLM - BCA - Programming with Python

5.	 The current instance of the class (object)

6.	 The process where one class can use the properties and methods of another
class

7.	 The ability to use the same method name in different classes with different
behavior

8.	 abc

9.	 To hide the internal details and show only necessary features

10.	Wrapping data and methods together in a single unit (class)

11.	Multiple Inheritance

12.	Compilation

Assignments

1.	 What is Object-Oriented Programming (OOP)? How does Python implement
OOP concepts? List and explain the major pillars of OOP with real-life
examples.

2.	 Differentiate between a class and an object. What is the purpose of the self
keyword in Python? How does it relate to this in other languages like Java
or C++?

3.	 Explain the role of the __init__() method in Python classes. What are instance
attributes and class attributes? How do you access them?

4.	 What is encapsulation? How can we implement private members in Python?

5.	 Define inheritance and explain the types of inheritance supported in Python.

6.	 What is polymorphism? How does Python support polymorphism through
method overriding?

7.	 Explain data abstraction with an example. How does it differ from
encapsulation?

131 SGOU - SLM - BCA - Programming with Python

References

1.	 Lutz, M. (2013). Learning Python (5th ed.). O'Reilly Media.

2.	 Downey, A. B. (2015). Think Python: How to think like a computer scientist
(2nd ed.). O’Reilly Media.

3.	 Goldwasser, M. H., & Letscher, D. (2007). Object-oriented programming in
Python. Prentice Hall.

Suggested Reading

1.	 Matthes, E. (2019). Python Crash Course: A Hands-On, Project-Based
Introduction to Programming (2nd ed.). No Starch Press.

2.	 Ramalho, L. (2015). Fluent Python: Clear, Concise, and Effective
Programming. O'Reilly Media.

3.	 Bader, D. (2017). Python Tricks: A Buffet of Awesome Python Features. Dan
Bader Press.

4.	 Real Python - Functions: https://realpython.com/tutorials/functions/

132 SGOU - SLM - BCA - Programming with Python

Exception Handling and
Regular Expressions

Learning Outcomes

Prerequisites

	♦ define exception and error in the context of Python.

	♦ list common types of errors in Python.

	♦ identify the purpose of exception handling in Python.

	♦ recall the syntax for using try and except blocks.

	♦ identify the keywords used in Python exception handling.

In your previous Python lessons, you have learned how to write programs using
variables, conditional statements, loops, and functions. These tools help you create
useful programs that take input, perform actions, and give output. However, sometimes
unexpected situations can occur while a program is running such as dividing by zero
or trying to open a file that doesn't exist. These situations cause errors that can stop
the program from working properly. When an error happens, the program usually ends
suddenly, which can be confusing or frustrating for users. To prevent this, Python
provides a way to handle errors more safely and clearly using something called
exception handling. Exception handling helps your program deal with errors without
crashing. This makes your code more reliable and easier to understand, especially when
working on real-world applications.

Suppose you are watching a video on Youtube, suddenly, internet connectivity is
disconnected or not working. In this case, you are not able to continue watching the
video on Youtube. This interruption is nothing but an exception. How to handle this
exception efficiently is important. For further progress we need to overcome this.
Exceptions are unexpected events or errors that occur during the execution of a program.
They can be caused by various factors, such as invalid input, resource unavailability, or
programming mistakes. Python provides a robust exception handling mechanism that
allows you to catch and handle these exceptions gracefully, preventing your program
from crashing.

UNIT 3

After completion of this unit, the learner will be able to:

133 SGOU - SLM - BCA - Programming with Python

Discussion

3.3.1 Introduction to Exception Handling Mechanism in Python
In programming, errors are common and often unavoidable, especially when working
with user input, files, or external systems. These errors can stop a program from running
and may lead to a poor user experience. To manage these situations effectively, Python
provides a feature called exception handling, which allows programmers to detect and
respond to errors in a safe and controlled way. Instead of letting the program crash, you
can use exception handling to show a helpful message or take corrective action.

Python uses specific keywords like try, except, else, and finally to handle exceptions.
With these tools, you can test a block of code for errors, catch and handle those errors,
and even perform clean-up actions no matter what happens. This helps make your code
more reliable, especially in real-world applications where unexpected problems are
likely to occur. By learning exception handling, you will be able to write programs that
are more robust, user-friendly, and professional.

3.3.2 Errors
Errors are problems in a program that cause it to stop running or behave unexpectedly.
In Python, errors can be broadly categorized into two types:

Keywords

Exception, Try, Catch, Except, Finally, Errors, Assert, Raise.

In this topic, you will learn the difference between errors and exceptions, understand
why exception handling is important, and explore how to use Python's try, except, and
other related statements. These skills will help you write programs that can detect and
respond to problems in a smart and controlled way, improving the quality and stability
of your code.

134 SGOU - SLM - BCA - Programming with Python

1. Syntax Errors
2. Exceptions (Runtime Errors)

3.3.2.1 Syntax Errors
As the name implies, this error results from incorrect syntax in the code. It results in
the program's termination. Syntax errors occur when the Python code is not written
correctly according to the rules of the language. These are detected before the program
runs (during the compilation or interpretation phase). Common causes are missing
colons, unmatched parentheses, incorrect indentation.

Example:
x=33
if x > 10

 print("x is greater than 10")

Output:

Error:SyntaxError:expected':'

3.3.2.2 Exceptions
Exceptions are errors that occur during the execution of a program. Unlike syntax errors,
exceptions occur when the code is syntactically correct but fails during execution due
to an unexpected condition. If not handled, exceptions can crash the program. Common
types of built-in exceptions are shown in Table 3.3.1.
Table 3.3.1 Common types of Built-in Exceptions

Exception Description

ZeroDivisionError Raised when a number is divided by zero
TypeError Raised when an operation is used on the wrong data type

ValueError Raised when a function receives an argument of the right type
but inappropriate value

IndexError Raised when a list index is out of range

KeyError Raised when a dictionary key is not found

FileNotFoundError Raised when trying to access a file that does not exist

ImportError Raised when Python cannot find a module or function to import

Example:

a = [1, 2, 3]

print(a[5])

Output:

Error:IndexError:list index out of range

135 SGOU - SLM - BCA - Programming with Python

3.3.3 Exception Handling
Python exception handling handles errors that occur during the execution of a program.
Exception handling allows the user to respond to the error, instead of crashing the
running program. It enables you to catch and manage errors, making your code more
robust and user-friendly. Exception handling in Python is done using the try, except,
else and finally blocks.

Syntax:
try:
 # Code that might raise an exception
except SomeException:
 # Code to handle the exception
else:
 # Code to run if no exception occurs
finally:
 # Code to run regardless of whether an exception occurs

The try block tests a block of code for errors. Python will “try” to execute the code
in this block. If an exception occurs, execution will immediately jump to the except
block. Then the except block enables us to handle the error or exception. If the code
inside the try block throws an error, Python jumps to the except block and executes it.
To handle specific exceptions, use a general exception code to catch all exceptions. The
else block is optional and if included, must follow all except blocks. The else block
runs only if no exceptions are raised in the try block. This is useful for code that should
execute if the try block succeeds. The finally block always runs, regardless of whether
an exception occurred or not. It is typically used for cleanup operations (closing files,
releasing resources).

Example:

try:

 n = 0

 res = 100 / n

except ZeroDivisionError:

 print("You can't divide by zero!")

except ValueError:

 print("Enter a valid number!")

 else:

 print("Result is", res)

 finally:

 print("Execution complete.")

136 SGOU - SLM - BCA - Programming with Python

Output:

You can't divide by zero!

Execution complete.

The try block asks for user input and tries to divide 100 by the input number. The
except blocks handle ZeroDivisionError and ValueError. The else block runs if
no exception occurs, displaying the result. The finally block runs regardless of the
outcome, indicating the completion of execution.

3.3.3.1 The try and except statement
The try-except statement is used to handle exceptions (errors) that occur during
program execution. Instead of letting the program crash when an error occurs, you can
catch the error and decide what to do. The most simple way of handling exceptions in
Python is by using the try and except block.

Run the code under the try statement.

When an exception is raised, execute the code under the except statement.

Syntax:

try:

	 # code that may cause exception

except:

	 # code to run when exception occurs

Here, we have placed the code that might generate an exception inside the try block.
Every try block is followed by an except block. When an exception occurs, it is caught
by the except block. The except block cannot be used without the try block.

Example:
try:
	 print(x)
except:
	 print ("An exception occurred")

Output:
An exception occurred

In the above example, the try block will generate an exception, because x is not defined.
Let's go through an another example,

Example:

try:

 numerator = 10

137 SGOU - SLM - BCA - Programming with Python

 denominator = 0

 result = numerator/denominator

 print(result)

except:

 print("Error: Denominator cannot be 0.")

Output:

Error: Denominator cannot be 0.

In the above example, program code is to divide a number by 0. Here, this code generates
an exception. To handle the exception, we have put the code, result = numerator/
denominator inside the try block. Now when an exception occurs, the rest of the code
inside the try block is skipped. The except block catches the exception and statements
inside the except block are executed. If none of the statements in the try block generates
an exception, the except block is skipped.

3.3.3.2 Catching Specific Exception
For each try block, there can be zero or more except blocks. Multiple except blocks
allow us to handle each exception differently. The argument type of each except block
indicates the type of exception that can be handled by it. You can use the try and except
statements to identify specific exceptions. You can have zero or more except blocks for
a try statement. With multiple except blocks, you can handle each exception differently
based on its type. The argument type of every except block shows the exception type
that it can handle.
Syntax:
try:
 # statement(s)
except IndexError:
 # statement(s)
except ValueError:
	 # statement(s)

Example:

try:

 even_numbers = [2,4,6,8]

 print(even_numbers[5])

except ZeroDivisionError:

 print("Denominator cannot be 0.")

except IndexError:

138 SGOU - SLM - BCA - Programming with Python

 print("Index Out of Bound.")

Output:

Index Out of Bound

In this example, we have created a list named even_numbers. Since the list index starts
from 0, the last element of the list is at index 3. Notice the statement,

print(even_numbers[5])

Here, we are trying to access a value to the index 5. Hence, IndexError exception occurs.
When the IndexError exception occurs in the try block,

The ZeroDivisionError exception is skipped.

The set of code inside the IndexError exception is executed.

3.3.3.3 The try and else clause
We have learned about try and except, and now we will be learning about the else
statement. When the try statement does not raise an exception, code enters into the else
block. It is the remedy or a fallback option when you expect a part of your script will
produce an exception. It is generally used in a brief setup or verification section where
you don't want certain errors to hide.

If the code block within the try block runs without errors, we can run a certain code
block in a few situations. We use the else clause in such cases with the try and except
statements. The code in the else block is executed only when no exception occurs in the
try block. In some situations, we might want to run a certain block of code if the code
block inside try runs without any errors. For these cases, you can use the optional else
keyword with the try statement.

Syntax:

try:
 # Code that can raise an exception

except ExceptionType:

Code to handle exception

else:

Code to execute when no exception occurs

Example:

try:

 print("Hello")

except:

 print("Something went wrong")

139 SGOU - SLM - BCA - Programming with Python

else:

 print("Nothing went wrong")

Output:

Hello

Nothing went wrong

3.3.3.4 Finally keyword
The finally keyword is available in Python, and it is always used after the try and except
blocks. The final block is always executed after the try block has terminated normally
or after the try block has terminated for some other reason. In Python, we use the finally
keyword with try and except when we have code that is executed regardless of whether
try raises an exception. The code within finally runs after try and except blocks. It is
useful for tasks like resource cleanup.

Syntax:

try:

 # Some Code....

except:

optional block

 # Handling of exception (if required)

else:

execute if no exception

finally:

 # Some code(always executed)
Example:

try:

 k = 5/0 # raises divide by zero exception.

 print(k)

 # handles zero division exception

except ZeroDivisionError:

 print("Can't divide by zero")

finally:

this block is always executed

 # regardless of exception generation

 print('This is always executed')

140 SGOU - SLM - BCA - Programming with Python

Output:

Can't divide by zero

This is always executed

3.3.3.5 Raise an Exception
We use the raise statement when we forcefully want a specific exception to occur. It
helps us raise an exception manually and explicitly signal an error condition. The sole
argument in the raise statement shows the exception we want to raise, which can be an
exception instance or exception class.

Syntax:
raise ExceptionType ("Optional error message")

In the given syntax, raise is the keyword to raise an exception. ExceptionType mentions
the type of exception to raise. Optional error message provides additional information
regarding the exception.

Example:

age = int(input("Enter your age: "))

if age < 0:

raise ValueError("Age cannot be negative")

print("Your age is:", age)

Output:

Enter your age: -3

ERROR!

 Traceback (most recent call last):

 File "<main.py>", line 4, in <module>

 ValueError: Age cannot be negative

Enter your age: 5

Your age is: 5

3.3.3.6 Assert statement
The assert statement is used to test if a condition is True. If it's not, Python raises an
AssertionError. It's mainly used for debugging and testing.

Syntax:
assert condition, "Optional error message"

	♦ If the condition is True → nothing happens.

141 SGOU - SLM - BCA - Programming with Python

	♦ If the condition is False → raises AssertionError.

In the given syntax, the keyword assert performs an assertion check. The condition
specifies the expression to be tested if it’s true or not. Optional error message is displayed
if the condition is false.

Examples: Output:

x = 10

assert x > 0, "x must be positive"

print("x is positive")

x is positive

x = -3

assert x > 0, "x must be positive"

print("x is positive")

ERROR!

Traceback (most recent call last):

File "<main.py>", line 2, in <module>

AssertionError: x must be positive

Recap

	♦ In Python, errors are problems in the code that can either be syntax errors or
runtime errors.

	♦ Exception handling allows programs to deal with unexpected errors during
execution.

	♦ An exception is an event that disrupts the normal flow of a program.

	♦ The try block contains code that might cause an exception.

	♦ The except block defines how to respond to specific exceptions.

	♦ The else block runs if no exceptions occur in the try block.

	♦ The finally block runs code that should execute whether an exception occurs
or not.

	♦ The raise keyword is used to trigger exceptions manually.

	♦ The assert statement checks a condition and raises an error if the condition
is false.

	♦ Exception handling makes programs more robust and prevents unexpected
crashes.

142 SGOU - SLM - BCA - Programming with Python

Objective Type Questions

1.	 _________ handling helps manage unexpected errors during program
execution.

2.	 Code that might raise an error is written inside the _________ block.

3.	 The _________ block is used to catch and handle exceptions.

4.	 To ensure code runs no matter what, we use the _________ block.

5.	 The _________ keyword is used to manually trigger an exception.

6.	 What do you call an event that disrupts normal program flow?

7.	 Which keyword is used to define an exception handling block?

8.	 Which block is executed if no exception occurs?

9.	 Which block runs whether an exception occurs or not?

10.	What keyword is used to manually raise an exception?

11.	What statement is used for debugging by testing conditions?

12.	What error is raised when an assert fails?

13.	What type of error occurs due to mistakes in program syntax?

14.	What type of error occurs when the program is running?

Answers to Objective Type Questions

1.	 Exception

2.	 try

3.	 except

4.	 finally

5.	 raise

6.	 Exception

7.	 try

143 SGOU - SLM - BCA - Programming with Python

Assignments

1.	 Explain the concept of Exception Handling in Python. How does Python
handle different types of errors using try, except, else, and finally blocks?
Illustrate with examples how each block is used in practice to manage
different scenarios of exception handling.

2.	 Compare and contrast the raise and assert keywords in Python. How do they
differ in their use, and in which scenarios would you prefer to use each?
Provide examples demonstrating their usage in exception handling.

3.	 Illustrate the importance of exception handling in ensuring the reliability of
Python programs. Discuss the role of the finally block in Python programming
and provide suitable examples.

4.	 Discuss the various types of errors that occur in Python. How can exception
handling techniques such as try and except be used to manage runtime errors
effectively? Provide examples for each type of error.

8.	 else

9.	 finally

10.	raise

11.	assert

12.	AssertionError

13.	SyntaxError

14.	RuntimeError

References

1.	 Eric Matthes (2019), “Python Crash Course: A Hands-On, Project-Based
Introduction to Programming” (2nd ed.), published by No Starch Press.

2.	 Ramalho, L. (2015), “Fluent Python: Clear, Concise, and Effective
Programming” (1st edition), published by O'Reilly Media.

3.	 Mark Lutz (2013), "Learning Python: A comprehensive guide for beginners
to learn Python, including detailed coverage of exception handling" (5th
Edition), published by O'Reilly Media.

144 SGOU - SLM - BCA - Programming with Python

Suggested Reading

1.	 Bader, D. (2017). Python Tricks: A Buffet of Awesome Python Features. Dan
Bader Press.

2.	 Real Python - Functions: https://realpython.com/tutorials/functions/

3.	 Python Course - Exception Handling :https://docs.python.org/3/tutorial/
errors.html

145 SGOU - SLM - BCA - Programming with Python

Regular Expressions

Learning Outcomes

Prerequisites

	♦ recognise the role of regular expressions in Python

	♦ list the functionality of Python's re module and its core functions

	♦ identify and interpret special sequences in Python regular expressions

	♦ recall the importance of Regular Expressions in text manipulation

Before moving into the internal details of regular expressions (regex) in Python, it's
essential to have a foundational understanding of Python's syntax and string operations.
Familiarity with basic programming concepts such as variables, loops, and conditionals
will facilitate the learning process. Knowledge of Python's built-in string methods like
.find(), .replace(), and .split() is beneficial, as these methods often serve as precursors
to more advanced regex functionalities. For instance, before using regex to validate an
email address, one might first use string methods to check for the presence of an "@"
symbol. This progression from basic string operations to regex ensures a smoother
transition and deeper comprehension.

UNIT 4

After completion of this unit, the learner will be able to:

146 SGOU - SLM - BCA - Programming with Python

Keywords

Regex, Module, Meta characters, Special sequences, Functions.

Discussion
3.4.1 Introduction to Regular expressions in Python
Regular expressions (regex) are a powerful tool for pattern matching and text
manipulation in Python. They allow developers to define search patterns using a sequence
of characters, enabling complex string operations such as validation, searching, and
extraction. Python's built-in re module provides a comprehensive suite of functions to
work with regular expressions, making it an essential component for tasks involving
text processing.

In Python, regular expressions are utilized to match specific patterns within strings.
The re module offers various functions like re.match(), re.search(), and re.findall() to
perform these operations. By using special characters and syntax, regular expressions
can identify patterns such as email addresses, phone numbers, or dates within text.
Understanding and leveraging regular expressions can significantly enhance a
developer's ability to handle and manipulate textual data efficiently.

3.4.1.1 Definition
In Python, a Regular Expression (RegEx) is a sequence of characters that forms a search
pattern. This pattern can be used to check if a string contains a specified search pattern,
allowing for complex string matching and manipulation. Python's built-in re module
provides support for working with regular expressions, offering a range of functions to
perform pattern matching operations.​

A re module in Python supports the use of RegEx, which performs the primary function
of offering a search, where it takes a regular expression and a string. It returns the
first match, and in case of no match, it returns None. Regular expression in Python is
a powerful tool for matching text based on predefined patterns. Many programming
languages support regular expression for its several uses, which are listed below:

Furthermore, grasping the significance of regex in real-world applications can enhance
motivation and contextual understanding. Regular expressions are invaluable tools
for tasks such as data validation, text parsing, and information extraction. For exam-
ple, consider a scenario where a company needs to extract all phone numbers from a
large dataset. Using regex patterns like \d{3}-\d{3}-\d{4}, one can efficiently identify
and extract phone numbers formatted as "123-456-7890" from the text. Recognizing
the practical applications of regex underscores its importance and encourages a more
engaged learning experience.

147 SGOU - SLM - BCA - Programming with Python

	♦ Identify patterns in a string/ file.

	♦ Search for a substring in a string.

	♦ Replace a section of a string with another string.

	♦ Validate email format.

	♦ Split a string into substrings.

Example:

import re

text = "The rain in Spain stays mainly in the plain."

pattern = r"Spain"

match = re.search(pattern, text)

if match:

 print("Match found:", match.group())

else:

 print("No match found.")

Output:

Match found: Spain

3.4.1.2 Importance of Regular Expressions
Regular expressions (regex) are a powerful tool in Python for efficiently searching,
validating, and manipulating text. By defining specific patterns, regex allows developers
to perform complex string operations with concise syntax. For instance, validating an
email address format can be achieved using a single regex pattern, rather than multiple
lines of code. This capability is particularly beneficial in data processing tasks, where
large volumes of text need to be parsed or cleaned. The Python re module provides a
suite of functions that facilitate these operations, making regex an indispensable tool
for tasks such as input validation, data extraction, and text parsing.

Moreover, regex enhances code readability and maintainability by abstracting complex
string matching logic into reusable patterns. This abstraction reduces the need for
verbose and error-prone code, leading to more efficient development processes. For
example, extracting all email addresses from a document can be accomplished with
a straightforward regex pattern, eliminating the need for intricate string manipulation
techniques. As a result, regex not only streamlines text processing tasks but also
contributes to cleaner and more maintainable codebases. Its versatility and efficiency
make it a fundamental skill for Python developers working with text data.

3.4.2 Regex Module in Python
In Python, a built-in module called ‘re’ is used to work with regular expressions in Python.

148 SGOU - SLM - BCA - Programming with Python

The ‘re’ module allows us to search, match, and work with text using specific patterns.
We can import the Python regular expression module using the import statement. Here
are the main ideas and features of the ‘re’ module. The strength and versatility of the
're' module make it a must-have tool to process text and match patterns. Once you gain
a fair understanding of functions and principles, you can master text manipulation tasks
efficiently.

3.4.2.1 Import the Module
Start by importing the ‘re’ module to use the RegEx function. To import the re module,
include the following line at the beginning of your Python script:

Syntax:
		 import re

3.4.2.2 Metacharacters
In Python's re module, special characters (also known as metacharacters) are symbols
that have a specific meaning within regular expressions. These characters enable the
creation of complex search patterns for matching, searching, and manipulating strings.
Here's an overview of commonly used special characters: as shown in Table 3.4.1.

Table 3.4.1: Overview of commonly used metacharacters

Metacharacters Description Example Pattern Matches

. - Dot Matches any character except a
newline (\n)

a.c "abc", "axc", "a c"

^ - Caret Matches the start of the string ^Hello "Hello world" (but not
"Say Hello")

$ - Dollar Matches the end of the string world$ "Hello world" (but not
"worldwide")

* - Star Matches 0 or more repetitions of the
preceding pattern

a*b "b", "ab", "aaab"

+ - Plus Matches 1 or more repetitions of the
preceding pattern

a+b “ab”, “aaab”

? - Question Mark Matches 0 or 1 repetition of the
preceding pattern

a?b "b", "ab"

{} - Braces It shows the total number of
occurrences of patterns preceding
regex to match.

a{2,4} "aaab”,” baaaac”, “gaad"

[] - Square Brackets Denotes a character class; matches
any one of the enclosed characters

[aeiou] "a", "e", "i", "o", "u"

() - Group Groups patterns together; creates
capturing groups

(abc)+ "abc", "abcabc"

\ - Backslash Escapes a special character to match
it literally

\. "."

149 SGOU - SLM - BCA - Programming with Python

3.4.2.3 Special Sequences
In Python's re module, special sequences are predefined patterns that simplify common
matching tasks, enhancing the expressiveness and efficiency of regular expressions.
These sequences are denoted by a backslash (\) followed by a character and are widely
used for pattern matching involving character types, positions, and assertions. Detailed
description of special sequences are depicted in the table 3.4.2.2 listed below.

Table 3.4.2: Special Sequences used in Python

Sequence Description Example
Pattern

Matches

\d Matches any decimal digit; equivalent to
[0-9]

\d{3} "123", "456"

\D Matches any character that is not a decimal
digit; equivalent to [^0-9]

\D+ "abc", "XYZ"

\w Matches any alphanumeric character
(letters and digits) and underscore;
equivalent to [a-zA-Z0-9_]

\w{5} "hello", "Python"

\W Matches any character that is not alpha-
numeric or underscore; equivalent to
[^a-zA-Z0-9_]

\W+ "!", "@", " "

\s Matches any whitespace character (spaces,
tabs, newlines); equivalent to [\t\n\r\f\v]

\s+ " ", "\t", "\n"

\S Matches any character that is not a white-
space character; equivalent to [^ \t\n\r\f\v]

\S{3} "abc", "123"

\b Matches a word boundary; the position
between a word and a non-word character

\bword\b "word" in "wordplay"
but not in "sword"

\B Matches a non-word boundary; the posi-
tion between two word characters or two
non-word characters

\Bend "bend" in "bendable"
but not in "end"

\A Matches the start of the string \AHello "Hello" at the
beginning of a string

\Z Matches the end of the string world\Z "world" at the end of
a string

3.4.2.4 Python RegEx Functions
Python's re module provides a suite of functions to perform operations using regular
expressions. These functions enable tasks such as searching, matching, splitting, and
replacing strings based on patterns. Here's an overview of the most commonly used
functions shown in Table 3.4.2.3.

150 SGOU - SLM - BCA - Programming with Python

Table 3.4.3: Python RegEx Functions

Function Description Example Usage

re.match(pattern,
string)

Determines if the regular expression
pattern matches at the beginning of
the string. Returns a match object if
found; otherwise, returns None.

re.match(r'^\d{3}', '123abc')
returns a match object for
'123'.

re.search(pattern,
string)

Scans through the string looking for
the first location where the regular
expression pattern matches. Returns
a match object if found; otherwise,
returns None.

re.search(r'abc', 'xyzabc')
returns a match object for
'abc'.

re.findall(pattern,
string)

Returns a list of all non-overlapping
matches of the pattern in the string.

re.findall(r'\d+', 'abc 123 def
456') returns ['123', '456'].

re.split(pattern,
string)

Splits the string by the occurrences
of the pattern. Returns a list of
substrings.

re.split(r'\s+', 'Hello World')
returns ['Hello', 'World'].

re.sub(pattern, repl,
string)

Replaces occurrences of the pattern
in the string with a replacement
string. Returns the modified string.

re.sub(r'abc', 'XYZ', 'abc
def abc') returns 'XYZ def
XYZ'.

re.escape(string)
This function escapes all special
characters in a string and treats
them as literals.

re.escape(hello)

re.compile()

This function compiles regular
expressions into pattern objects
for repeated use. It is useful for
improving performance when the
pattern is repeated.

re.compile(r'\d{3}')

re.subn(pattern,
repl, string)

Similar to re.sub(), but also returns
the number of substitutions made.

re.subn(r'abc', 'XYZ', 'abc
def abc') returns ('XYZ def
XYZ', 2).

151 SGOU - SLM - BCA - Programming with Python

Recap

	♦ A regular expression (regex) in Python is a sequence of characters used to
define a pattern for searching, matching, and manipulating strings.

	♦ Regex is important in Python for tasks like validating data, searching through
text, replacing substrings, and extracting useful information.

	♦ The re module in Python provides functions and tools for working with
regular expressions. It includes methods like match(), search(), and sub().

	♦ Common functions in the re module include re.match() for matching patterns
at the start of a string, re.search() for finding a match anywhere in the string,
and re.findall() for extracting all matches.

	♦ Special characters in Python regex include . (matches any character), ^
(anchors match to the beginning of the string), and $ (anchors match to the
end of the string).

	♦ Metacharacters such as \d (digit), \w (word character), and \s (whitespace)
are used in Python regex to match specific types of characters.

Objective Type Questions

1.	 A regular expression in Python is defined using the ________ module.

2.	 The ________ character in a regex pattern matches any single character
except a newline.

3.	 The function used to search for a pattern anywhere in a string in Python is
________.

4.	 To match a digit in a regex pattern in Python, the metacharacter ________
is used.

5.	 The ________ character in Python regex is used to match the end of a string.

6.	 What module in Python provides support for regular expressions?

7.	 Which function in Python is used to replace a pattern with a string?

8.	 What metacharacter matches any whitespace character in a regex?

9.	 Which metacharacter is used for grouping parts of a regex pattern?

10.	Which quantifier matches one or more occurrences of the preceding element
in Python regex?

152 SGOU - SLM - BCA - Programming with Python

Answers to Objective Type Questions

1.	 re

2.	 dot (.)

3.	 re.search()

4.	 \d

5.	 $

6.	 re

7.	 re.sub()

8.	 \s

9.	 ()

10.	+

Assignments

1.	 Define regular expressions. Explain their importance in Python programming.
Give an example.

2.	 List and explain different functions provided by Python's re module.

3.	 What are special characters and metacharacters in regular expressions?
Identify and describe each character.

References

1.	 Jeffrey Friedl (2006), "Mastering Regular Expressions" (3rd Edition),
published by O'Reilly Media.

2.	 David Beazley and Brian K. Jones (2013), "Python Cookbook" (3rd Edition),
published by O'Reilly Media.

3.	 Arun Saha (2015), "Python Regular Expressions" (1st Edition), published
by Packt Publishing.

153 SGOU - SLM - BCA - Programming with Python

Suggested Reading

1.	 Python RegEx- https://www.w3schools.com/python/python_regex.asp

2.	 GeeksforGeeks–PythonRegex-https://www.geeksforgeeks.org/python-
regular-expression-re-module/

3.	 RealPython–RegularExpressions with Python-https://realpython.com/
regex-python/

154 SGOU - SLM - BCA - Programming with Python

Database
Programming,

Familiarizing NumPy,
Matplotlib and Pandas

BLOCK 4

Database Programming

Learning Outcomes

Prerequisites

	♦ describe the purpose of Database

	♦ identify the purpose of SQL in database management.

	♦ explain how Python connects to a MySQL database.

	♦ make aware of Create, Retrieve, Update, and Delete (CRUD) statements

Consider a simple student management system where user inputs such as student names
and grades need to be stored for future reference. Without a database, each time the
application runs, it would lose all previously entered data. By integrating Python with
a database like MySQL or SQLite, developers can ensure that data is saved and can be
accessed or modified as needed. Python's libraries, such as mysql.connector or sqlite3,
provide straightforward interfaces to connect to these databases, execute SQL queries,
and manage data efficiently. This approach not only preserves data across sessions but
also allows for complex operations like data filtering, sorting, and aggregation, which
are crucial for dynamic applications.

Python, as a high-level programming language, offers extensive support for diverse
databases. With Python, we can establish connections and execute queries for a specific
database without the need to manually write raw queries in the terminal or shell of that
particular database. The only requirement is to have the desired database installed on
our system.

UNIT 1

After completing this unit, the learner will be able to:

Key Concepts

Database, MySQL, Create, Retrieve, Update, Delete

156 SGOU - SLM - BCA - Programming with Python

Discussion
4.1.1 Introduction
This unit begins with database programming basics. We have written and executed many
programs in the previous classes. For example, calculator application. While running
the program, we have given the numbers to add. After that, the programs will show the
output. When we run the program again, we need to input the data(numbers to add)
again. What happened to the data we entered earlier? The data was saved temporarily
during the execution of the program. We have to use a database or file to save the
data for future use. Database software will save the data permanently. Python supports
file handling. The file is the place to store data or information. We can create, update,
delete, search and do other file handling operations in Python. Using a file handling
method in any programming language has many limitations and issues. The alternate
way to save the data is using database programs. The popular database programs are
MySQL, Oracle, Microsoft Database software that is used to save and manipulate the
data. A database management system (DBMS) is a comprehensive database application
to work with the database. DBMS allows the users to store, retrieve, update and manage
the data in an organized and optimized manner. The language used to store, retrieve,
update and manage the data is called Structured Query Language (SQL), Microsoft
Access, etc.

MySQL is an open-source relational database management system. In this course, we
will discuss MySQL. Some of the applications that use MySQL are Twitter, LinkedIn,
Facebook, YouTube, etc. For example, in the Facebook sign up process, we will fill the
following form and click on signup.

 Fig. 4.1.1 Sample Signup form

157 SGOU - SLM - BCA - Programming with Python

The application will verify the data entered and save the data to the database. See Fig
4.1.1 for Signup form.The verification part is done by the scripting or programming
language and the saving data to the database is done by the SQL. In conclusion, to
develop an application, we need a programming language or a scripting language and
database program to save the data.

Upon clicking on Sign Up, the Facebook application will send the user data to Facebook’s
server on which the database resides.

A database is a collection of data organized as tables, records, and fields. For example,
the University database has a student table, Course table, Examination table, etc. The
student table consists of student records. The following table has four fields and 2
records.

Student ID Student name City Phone number
SNOU123 KKG Kollam 97642789
SNOU222 Shan Trivandrum 89902233

Install MySQL on your computer.

4.1.2 Example of database programming in Python
Program to create a database. Type the following code in Python IDLE, save and run.

The first step is to import the mysql.connector. This connector is a self-contained Python
driver for communicating Python with MySQL servers. Second step is to connect
Python with MySQL.

MyFirstDB_Connection is the name of the connection. It could be any name. The host
is the place the server is located. In our case, MySQL is installed on the same computer
we are working with. Hence the host is the localhost or IP address of the local host.
During the Facebook sign-up process the connection will be made to Facebook’s server
on which their database is created and the host will be the name of the Facebook’s
domain or IP address. By default, the username is root. We can create users in MySQL
and use it. Password is the password set for the user root. MySQL cursor interacts
with the MySQL server to execute operations such as SQL statements. The name of the
database created in the above example is MyFirstDB and the name of the cursor is my
cursor. It could be any name. The cursor permits row-by-row processing of the result

158 SGOU - SLM - BCA - Programming with Python

sets. It is used to fetch the results returned from a query.

The following program will display all databases created.

import mysql.connector

Connect to MySQL server

MyFirstDB_Connection = mysql.connector.connect(host="localhost", user="root",

password="Kxxxxxl" # Replace with your actual password)

Create a cursor object to execute SQL queries

myc = MyFirstDB_Connection.cursor()

Execute a query to list all databases

myc.execute("SHOW DATABASES")

Loop through and print each database name

for k in myc:

 print(k)

This program will connect with MySQL, execute the SQL command to show databases,
and display the database names retrieved and stored in the cursor one by one using a for
loop. k is a variable name. it could be any name.

The following is a program to create a table in the database. Remember, the name of the
database we created is MyFirstDB.

Import mysql.connector

MyFirstDB_Connection=mysql.connector.connect(host="localhost",user="root",
password= "Kxxxxxl", database = " MyFirstDB")

myc = MyFirstDB_Connection.cursor()

myc.execute("CREATE TABLE Student(StudentID VARCHAR(100), Student_Name
VARCHAR(255), \ City VARCHAR(100), Phone_No VARCHAR(10))")

Note: \ is used to write the SQL statement in multiline. Varchar(100) represents a
variable character data type that can store a maximum of 100 characters. (The name
John contains 4 characters)

There are different types of data in MySQL. For example, INTEGER will be used to
store the number of students

Refer MySQL manual https://dev.mysql.com/doc/refman/8.0/en/data-types.html

The following program displays the tables created in the MyFirstDB database.

Import mysql.connector

159 SGOU - SLM - BCA - Programming with Python

MyFirstDB_Connection=mysql.connector.connect(host= "localhost",user= "root",
password= "Kxxxxxl",database = "MyFirstDB")

myc = MyFirstDB_Connection.cursor()

myc.execute("SHOW TABLES")

for t in myc:

print(t)

The following program inserts data into the tables.

Import mysql.connector

MyFirstDB_Connection=mysql.connector.connect(host= "localhost",user= "root",
password= "Kxxxxxl",database = "MyFirstDB")

Insert_Student = (INSERT INTO student(StudentID, Student_Name,City,Phone_NO)\
values (%s,%s,%s)")

Student_Data = ("sgou1","Diya","Kollam","9283458929")

myc = MyFirstDB_Connection.cursor()

myc.execute(Insert_Student,Student_Data)

MyFirstDB_Connection.commit()

The following program retrieves the data from the table and displays it.

Import mysql.connector

MyFirstDB_Connection=mysql.connector.connect(host= "localhost",user= "root",
password= "Kxxxxxl",database = "MyFirstDB")

myc = MyFirstDB_Connection.cursor()

myc.execute("SELECT * FROM Student")

Result = myc.fetchall()

for k in Result:

print(k)

The following program reads the student data from the input device and inserts it into
the table.

Import mysql.connector

SID = input("Enter student ID : ")

Sname = input("Enter student name : ")

city = input("Enter city name : ")

160 SGOU - SLM - BCA - Programming with Python

phone = input("Enter phone number : ")

MyFirstDB_Connection=mysql.connector.connect(host= "localhost",user= "root",
password= "Kxxxxxl",database = "MyFirstDB")

Insert_Student = (INSERT INTO student(StudentID, Student_Name,City,Phone_NO)\
values (%s,%s,%s)")

Student_Data = (SID,Sname,city,phone)

myc = MyFirstDB_Connection.cursor()

myc.execute(Insert_Student,Student_Data)

MyFirstDB_Connection.commit()

In this program, I have used four variable names to input the data.

Student_Data = (SID,Sname,city,phone)

Note that the variable names in the list are not in quotes(‘ ’)

We click on the sign-up button after entering the data in the Facebook registration
process. The data we entered in the registration form will be saved to the table.

Activity: Create a login table and insert data into that.

username password

Krishna 56Urte

Joy J9otrw2!

 Note: username must be the primary key. The values will not be repeated.

CREATE TABLE login(username VARCHAR(100) PRIMARY KEY, password
VARCHAR(255))

The following is a sample code for the Login module.

Import mysql.connector

User_Name = input("Enter user name : ")

pass = input("Enter password : ")

MyFirstDB_Connection=mysql.connector.connect(host= "localhost",user= "root",
password= "Kxxxxxl",database = "MyFirstDB")

myc.execute("SELECT * FROM login where username=%s and password=%s",
(User_Name,pass))

Result = myc.fetchone()

if Result:

161 SGOU - SLM - BCA - Programming with Python

print("Login successful")

else:

	 print("Invalid user name or password")

The user will be prompted to enter the username and password. Pass the username(I
used the variable name User_Name) and password(Pass is the variable name) to the
SQL query as shown in the code. User_Name and Pass are two variable names and
username and password are the fields in the login table.

Activity: Insert the username Krishna two times and observe the result.

We can use the DELETE query to delete a record and UPDATE to make changes to the
existing records.

DELETE FROM student WHERE city = ‘Kollam’

UPDATE student SET city = ‘ Kottayam’ WHERE Student_ID = ‘SNOU123’

Note: Refer to the MySQL Manual to learn more about SQL.

Python supports various databases like MySQL, SQLite, Sybase, Oracle, etc. Python
also supports the NoSQL database MongoDB. NoSQL ("not only SQL") is a non-
tabular database and stores data differently than relational tables such as MySQL,
SQLite, Sybase, Oracle

162 SGOU - SLM - BCA - Programming with Python

Recap

	♦ Data entered during program execution is stored temporarily and lost after
the program ends.

	♦ To retain data permanently, we use files or databases.

	♦ File handling in Python allows data storage but has limitations for complex
data management.

	♦ Databases like MySQL provide efficient ways to store, retrieve, and manage
structured data.

	♦ MySQL is a widely used open-source relational database management
system.

	♦ Python connects to MySQL using the mysql.connector module.

	♦ We can create databases and tables in MySQL using SQL commands
executed through Python.

	♦ Data can be inserted into tables using the INSERT INTO statement.

	♦ Data retrieval is done using the SELECT statement, and results can be
processed in Python.

	♦ We can update or delete records using UPDATE and DELETE statements,
respectively.

Objective Type Questions

1.	 ______ is an interface for connecting to a MYSQL database server from
Python

2.	 Collection of data organized as tables, records, and fields is called

3.	 ______ is used to write the SQL statement in multiline.

4.	 Which query is used to delete records of a database.

5.	 UPDATE command is used to

6.	 How to establish connection with MySQL in Python

7.	 Which of the following are valid Cursor methods used to execute SQL
statements and retrieve query results?

8.	 commit() method should be executed to

163 SGOU - SLM - BCA - Programming with Python

Answers to Objective Type Questions

1.	 MYSQLdb

2.	 Database

3.	 \

4.	 DELETE

5.	 Make changes to the existing records.

6.	 Import mysql.connector

7.	 cursor.run()

8.	 Finalize transactions

9.	 Database

10.	mysql.connector

9.	 What is used to store data permanently in programming?

10.	Which Python module is used to connect with MySQL?

11.	What is the default username in MySQL?

12.	Which SQL statement is used to create a table?

13.	Which SQL command displays all the databases?

14.	Which SQL keyword is used to add records to a table?

15.	What is the name of the variable used to execute SQL queries in Python?

16.	What type of database is MySQL?

17.	Which function is used to retrieve all data from the table?

18.	What is the default host name when MySQL is installed on the same system?

19.	What is the SQL command to delete records?

20.	What is the primary key in the login table?

21.	Which type of database is MongoDB?

164 SGOU - SLM - BCA - Programming with Python

11.	root

12.	CREATE

13.	SHOW

14.	INSERT

15.	cursor

16.	Relational

17.	fetchall

18.	localhost

19.	DELETE

20.	username

21.	NoSQL

Assignments

1.	 How to install database in python

2.	 Create Employee database with following field employee id, employee
name, designation, address, date of birth, basic pay

Suggested Reading

1.	 Matthes, E. (2019). Python Crash Course: A Hands-On, Project-Based
Introduction to Programming (2nd ed.). No Starch Press.

2.	 Ramalho, L. (2015). Fluent Python: Clear, Concise, and Effective
Programming. O'Reilly Media.

3.	 Bader, D. (2017). Python Tricks: A Buffet of Awesome Python Features. Dan
Bader Press.

4.	 Real Python - Functions: https://realpython.com/tutorials/functions/

165 SGOU - SLM - BCA - Programming with Python

Familiarising NumPy

Learning Outcomes

Prerequisites

	♦ familiarise the importance of NumPy in data science and numerical
computing.

	♦ learn how to create and manipulate 1D, 2D, and 3D arrays using NumPy.

	♦ identify the indexing and slicing techniques to access and modify array
elements.

	♦ perform array operations such as reshaping, sorting, searching, and inserting
elements.

	♦ utilize NumPy functions for efficient data processing and analysis.

Imagine a small business owner who reviews monthly sales to decide the best time to
offer discounts. Or consider a fitness app that tracks how many steps a user walks each
day and then calculates the weekly average. These examples show how data is collected,
processed, and analyzed to make informed decisions. To understand how such tasks are
done using Python, learners need to be prepared with certain foundational skills.

Before diving into Python tools for data science, learners should have a basic
understanding of programming concepts. This includes working with variables,
common data types like lists and tuples, and using control structures such as loops and
functions. They should also know how to install and import Python libraries using tools
like pip.

In addition to programming, a grasp of basic mathematics and statistics is essential.
Concepts such as mean, median, variance, and basic algebra are frequently applied in
data analysis. Having a clear understanding of how Python handles collections of data
like lists and dictionaries will also make it easier to learn how arrays work in libraries
such as NumPy.Together, these skills provide a strong starting point for exploring the
powerful tools Python offers for data science.

UNIT 2

After completing this unit, the learner will be able to:

166 SGOU - SLM - BCA - Programming with Python

Discussion
Before starting the tools or libraries such as NumPy, pandas, etc., let us discuss the basics
of data science. Data science is the science of analyzing raw data to derive insight from
raw data that will aid decision-making. Data science uses mathematics, statistics, and
Machine learning techniques to derive insight from raw data. As we all know, the data
is collected and saved somewhere while using applications. For example, the data is
collected and saved when we browse through the website or e-commerce applications.
This raw data will be analyzed to support business decision-making such as introducing
new products, giving discounts, hiring decisions, etc. NumPy is crucial for harnessing
Python's full potential in numerical computing, as its robust array-based operations,
vectorized functions, and broadcasting capabilities make it an indispensable asset for
scientific computing, data analysis, and machine learning applications.

4.2.1 What do we do with the data?
	♦ Collect data

	♦ Process the data and clean to remove data errors.

	♦ Summarise the data. For example, find the average, median, variance, etc.

	♦ Visualise the data. For example, plot a graph to identify the relationships and
trends.

Derive insight from data.

Fig 4.2.1 Data Analysis Lifecycle

Keywords

Data Collection, Data Analysis, Python libraries, Insight Extraction, Types of Arrays,
Array operations.

167 SGOU - SLM - BCA - Programming with Python

4.2.2 What is the significance of Python programming in Data
science?

	♦ Python provides various tools and libraries which are essential for data
science. Using library functions will make the programming task easier.
Otherwise, we have to write the programs from scratch. Python provides
functions to read data from local files, databases, and even the cloud. Python
has a robust user community to update the libraries according to the new
requirements. NumPy is one of the Python libraries for scientific computing.
Pandas library provides libraries for data wrangling and manipulation. The
following units focus on

	♦ Familiarising NumPy

	♦ Introduction to matplotlib

	♦ Introduction to pandas

4.2.3 Python NumPy
” NumPy is the fundamental package for scientific computing in Python. It is a Python
library that provides a multidimensional array object, various derived objects (such
as masked arrays and matrices), and an assortment of routines for fast operations on
arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O,
discrete Fourier transforms basic linear algebra, basic statistical operations, random
simulation and much more.” NumPy is a robust Python library that facilitates efficient
numerical computing through its support for multi-dimensional arrays, matrices, and an
extensive array of mathematical functions.

NumPy is used for working with arrays. Arrays are a collection of data similar to a list
but with more features and advantages. Lists are slow to process compared to arrays.
NumPy library is used in data science, linear algebra, matrices, and Fourier transform.
It provides library functions to work with ndarray (N-dimensional array).

To Install NumPy the following command is used: pip install numpy

4.2.4 Pip install numpy
To import the numpy to our applications using the import keyword

import numpy

Usually, we can import using an alias.

import numpy as kk

where kk is the alias name

4.2.5 Creating an array
The array can be created by using different mechanisms. Such as Conversion from list
and tuple structures, using Intrinsic NumPy.

Activity 1: Creating an array using NumPy.

168 SGOU - SLM - BCA - Programming with Python

The following is an example of creating an array using Lists.

Input:

import numpy as kk

MyFirstArray = kk.array([11,22,32,42,2])

print(MyFirstArray)

Output:

[11 22 32 42 2]

Activity 2: Create an array using intrinsic function – arange()

Input:

import numpy as kk

MyFirstArray = kk.arange(5)

print(MyFirstArray)

Output:

[0 1 2 3 4]

Activity 3: Creating a two-dimensional array using the list.

Input:

import numpy as kk

MyArray = kk.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(MyArray)

print("Dimension=", MyArray.ndim) # NumPy Arrays have a "ndim" property. It
returns the number of dimensions in the array.

Output:

[[1 2 3]

 [4 5 6]

 [7 8 9]]

Dimension= 2

Activity 4: Creating a three-dimensional array using the list.

Input:

import numpy as kk

169 SGOU - SLM - BCA - Programming with Python

MyArray = kk.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

print(MyArray)

print(“Dimension=”, MyArray.ndim) # NumPy Arrays have a "ndim" property. It
returns the number of dimensions in the array.

Output:

[[[1 2 3]

 [4 5 6]]

[[7 8 9]

 [10 11 12]]]

Dimension= 3

Exercise 1: Create a 1-dimensional array of 5 elements and initialize it with the values
10, 20, 30, 40, and 50.

Exercise 2: Create a 2-dimensional array of size 3x4 and initialize it with the values
1-12.

Exercise 3: Create a 3-dimensional array using Lists.

4.2.6 Indexing an array
One dimensional array

Indexing and arrays can be done using the standard Python x[obj] syntax, where x is the
array and obj the selection.

The following are the indexing available depending on obj:

	♦ basic indexing

	♦ field access

	♦ advanced indexing

mark = np.array([20, 25, 12, 30]) will create a one dimensional array with 4 elements.

mark(0) mark(1) mark(2) mark(3)

20 25 12 30

\mark(-4)

Negative Indexing

mark(-3) mark(-2) mark(-1)

Input:
import numpy as kk

170 SGOU - SLM - BCA - Programming with Python

mark = kk.array([20,25,12,30])

print(mark[1])

print(mark[-4])

The result of the above code will be 25. As shown in the table mark(1) is 25 the index
starts from zero to n-1. mark(-4) will display 20.

Two-dimensional array index

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])

print(arr[1,3])

Output:

9

Three-dimensional array index

ar_3d = [[[1, 2, 3, 4],

 [5, 6, 7, 8],

 [9, 10, 11, 12]],

 [[13, 14, 15, 16],

 [17, 18, 19, 20],

 [21, 22, 23, 24]]]

print(ar_3d[1][1][1]) #18

print(ar_3d[1][0][0]) #13

4.2.7 Reshaping an array
Reshaping allows modifying the structure of an array by adding, removing, or adjusting
dimensions, effectively changing the arrangement of its elements.

import numpy as kk

m= kk.arange(10)

print(m)

171 SGOU - SLM - BCA - Programming with Python

y= m.reshape(2,5)

print("After Reshaping")

print(y)

Output:

[0 1 2 3 4 5 6 7 8 9]

After Reshaping

[[0 1 2 3 4]

 [5 6 7 8 9]]

Reshaping an array to a 3-dimensional array

import numpy as kk

mark= kk.arange(12)

mark= mark.reshape(2,3,2)

print(mark)

mark = [0,1,2,3,4,5,6,7,8,9,10,11]

This will create a one-dimensional array with 12 elements first and reshape it to a 3D
array with X value 2, Y value 3, and Z value 2. (2x3x2 = 12)

X value 2 means the index will be 0 to 1. Similarly, Y value 3 means, the index will be
0 to 2.

The output will be

[[[0 1]

[2 3]

[4 5]]

[[6 7]

[8 9]

[10 11]]]

Exercise 4:

Fill the table if x =3, y =2 and z= 2

Exercise 5: Predict the output of the following code.

 a) import numpy as kk

m= kk.arange(12)

172 SGOU - SLM - BCA - Programming with Python

print(m)

y= m.reshape(2,3,2)

print(y[1,0,0])

 b) import numpy as kk

mark= kk.arrange(10)

y= mark.reshape(3,2,2)

print(mark[1,0,0])

4.2.8 Slicing arrays

Slicing in Python means taking items from one index to another index.

import numpy as kk

mark= kk.arange(12)

print(mark[1:5])

The output of the above code is [1 2 3 4]. Remember the index starting from zero. In
this example, the start index is 1 and the end index is 4 (5-1). Since the increment is not
mentioned, the default value 1 is taken.

import numpy as kk

mark= kk.arrange(12)

print(mark[1:10:3])

The increment value is 3 in the above code. The result will be [1 4 7].

Exercise 6: find the output of the following code.

import numpy as kk

mark= kk.array([20,30,40,7,3,4,5,6])

print(mark[1:5:2])

4.2.9 Searching from an array
import numpy as kk

mark= kk.array([20,30,40,7,3,4,5,6])

x=kk.where(mark==40)

print(x)

The result will be (array([2], dtype=int64),). The index of element 40 of the mark array
is 2.

173 SGOU - SLM - BCA - Programming with Python

4.2.10 Sorting an array
import numpy as kk

mark= kk.array([20,30,40,7,3,4,5,6])

x=kk.sort(mark)

print(x)

[3 4 5 6 7 20 30 40] is the result of the above code. The mark array is sorted and
stored in another array named x.

4.2.11 Insert an element into an array
import numpy as kk

mark= kk.array([20,30,40,7,3,4,5,6])

mark=kk.insert(mark,2,89)

print(mark)

The new array will be [20 30 89 40 7 3 4 5 6]. Inserted 89 as a 3rd element

Recap

	♦ Python is widely used in data science due to its simplicity and the availability
of powerful libraries.

	♦ Real-world data is collected through websites, applications, and devices, and
then stored for analysis.

	♦ Data science involves steps like data collection, cleaning, summarizing,
visualizing, and insight generation.

	♦ NumPy is a core Python library used for scientific and numerical computing.

	♦ NumPy provides an efficient way to work with multi-dimensional arrays
using the ndarray object.

	♦ Arrays in NumPy are more powerful and faster than Python lists for
numerical tasks.

	♦ You can create arrays using functions like array (), arange (), or by converting
lists and tuples.

	♦ Indexing allows you to access specific elements in 1D, 2D, or 3D arrays
using positive or negative indices.

	♦ Slicing helps you retrieve a range of values from an array using the format
[start: stop: step].

174 SGOU - SLM - BCA - Programming with Python

	♦ Reshaping changes the structure of an array (e.g., from 1D to 2D or 3D)
using reshape ().

	♦ You can search for specific values in an array using numpy. where ().

	♦ Arrays can be sorted in ascending order using numpy. sort ().

	♦ The insert () function allows you to add elements at a specific index in the
array.

	♦ Learning NumPy sets the foundation for using other Python libraries like
pandas, matplotlib, and scikit-learn in data science.

Objective Type Questions

1.	 What does NumPy stand for?

2.	 Which command is used to install NumPy?

3.	 What is the default data structure used in NumPy?

4.	 NumPy arrays are:

5.	 What will np. arange (4) return?

6.	 Which function is used to reshape a NumPy array?

7.	 What does ndim represent in a NumPy array?

8.	 What does np.where(array==value) return?

9.	 Which function is used to sort a NumPy array?

10.	How do you create a 1D array with values [1,2,3,4,5] in NumPy?

11.	Which method is used to insert an element into a NumPy array?

12.	What does print(arr[1:4]) do in slicing?

13.	What function would you use to create an array from 0 to 9?

14.	What function returns the average of an array?

15.	Predict the result:

a = np.array([[1,2],[3,4]])

b = np.array([[5,6],[7,8]])

print(a + b)

175 SGOU - SLM - BCA - Programming with Python

Answers to Objective Type Questions

1.	 Numerical Python

2.	 pip install numpy

3.	 ndarray

4.	 Faster than lists.

5.	 [0 1 2 3]

6.	 reshape ()

7.	 Number of dimensions

8.	 The index/indices where the value is found.

9.	 sort ()

10.	np.array([1,2,3,4,5])

11.	np.insert()

12.	Prints elements from index 1 to 3.

13.	np.arange(10)

14.	np.mean(arr)

15.	[[6 8], [10 12]]

Assignments

1.	 Write the significance of data science?

2.	 Write a program to create an 1D, 2D and 3D array using NumPy

3.	 Write a program to search, sort and insert elements in an array.

4.	 Write a note on Searching, Sorting, and Modifying Arrays in NumPy

176 SGOU - SLM - BCA - Programming with Python

References

1.	 Robert Johansson, 2nd Edition (2019), “Numerical Python: A Practical
Techniques Approach for Industry”.

2.	 Joel Grus, 2nd Edition (2019), “Data Science from Scratch: First Principles
with Python”.

3.	 Real Python - Functions: https://realpython.com/tutorials/functions/

Suggested Reading

1.	 Matthes, E. (2019). “Python Crash Course: A Hands-On, Project-Based
Introduction to Programming” (2nd ed.). No Starch Press.

2.	 Ramalho, L. (2015). “Fluent Python: Clear, Concise, and Effective
Programming”. O'Reilly Media.

3.	 Bader, D. (2017). “Python Tricks: A Buffet of Awesome Python Features”.
Dan Bader Press.

177 SGOU - SLM - BCA - Programming with Python

Introduction to Matplotlib

Learning Outcomes

Prerequisites

	♦ identify the data analysis life cycle.

	♦ familiarise the procedure for how to install and use Matplotlib in Python.

	♦ visualise different types of graphs like line charts, bar charts, and pie charts.

	♦ attain the ability to customize the appearance of graphs to make them more
clearer.

	♦ create visually appealing and informative presentations using graphs.

Matplotlib is a widely used plotting library in Python that provides a flexible and
comprehensive set of tools for data visualizations.. If you are curious about questions like
"Which month had the highest sales?" or "Which product was most popular?", then you
will enjoy using Matplotlib to find answers. It is essential to develop a solid foundation
in Python programming. This includes understanding variables, loops, conditional
statements, functions, and working with lists or arrays. This basic knowledge will help
you to write code for graphs and charts. You should also know how to work with data in
Python. Learn how to store data in lists or arrays. Libraries like NumPy or Pandas make
this easier. These tools help you clean and organize data. For example, a shop owner
can use a list to store daily sales and then turn it into a graph.

Good knowledge of data storage will help you to organize and prepare your data before
making any graph.. Visualisation often involves showing data in terms of parts of a
whole, increases and decreases, or comparing quantities. For example, when you make
a pie chart of monthly expenses, you need to understand how each expense is a part of
the total. You do not need to know very advanced math, but basic math skills will make
understanding charts easier.

Data visualisation is not only about creating pictures. It is about finding hidden patterns
in numbers. For example, by looking at a line chart of monthly temperatures, you can
understand how seasons change over the year. If you are curious to explore and explain
such facts, you will enjoy studying Matplotlib and data visualisation.

UNIT 3

After the successful completion of this unit, the learner will be able to:

178 SGOU - SLM - BCA - Programming with Python

Discussion
Data science is the study of huge amounts of data. It is the art and science of turning
data into knowledge and action. For example, a textile manufacturer can use its sales
data to plan its future business model. There may be millions of data about sales, raw
materials, customer complaints, salary, etc. Data science can support people to recognize
their environments, study existing issues, and reveal previously hidden opportunities. If
the data is in numbers, it is difficult to analyze and interpret data. Visualising the data
using a graphical representation allows a quick interpretation and analysis of data.

4.3.1 What do we do with the data?
1.	 Collect the data systematically from reliable sources.

2.	 Clean the data by removing errors, duplicates, and handling missing values.

3.	 Organise the data into a structured format (tables, databases, etc.).

4.	 Analyse the data to discover patterns, trends, or relationships.

5.	 Visualise the data using graphs, charts, or other visual tools.

6.	 Interpret the results to draw meaningful conclusions.

7.	 Store the data securely for future use or reference.

8.	 Share or report the findings with stakeholders or publish results if needed.

Decision-makers rely on data analytics to extract the required information from data
at the right time, in the right place, to make the right decision. This information can
tell many different narratives, depending on how the data is analysed. For example, in
business, a data scientist may discover market trends that enable a business organization
to take decisions to improve the business.

4.3.2 Data Analysis Lifecycle

	♦ Collect the data – Example: Collect the sales data from 2021 to 2022

	♦ Preparing the data - Transform the data into an appropriate format.

	♦ Choosing a model - Choosing an analysis technique that will answer the
question with the available data.

	♦ Analysing the data – Check whether the model and the analyzed data are
reliable.

	♦ Presenting the results - For example, a graph that represents the yearly

Key Concepts

Data analysis, Data Visualisation, Matplotlib, Plotting, Pyplot, Graph Customization

179 SGOU - SLM - BCA - Programming with Python

sales.

	♦ Making decisions - The final step in the data analysis lifecycle is take the
accurate decisions.

4.3.3 Data Visualization
There are many tools and libraries available to visualize the data. Matplotlib in Python is
a tool used to present and visualize the data. Data visualization is used to understand the
data and study the effect of data by making graphs or charts. This will facilitate deriving
insight from data to make decisions. Python offers multiple graphing libraries. The
following are some of the popular matplot libraries.

	♦ matplotlib: To create 2D graphs and plots
	♦ pandas’ visualization
	♦ seaborn: Provides a high-level interface to draw informative statistical

graphics.

The following is an example of matplotlib visualization.

Fig: 4.3.1 Data visualization to shows the consumption of orange juice and apple juice
in different months.

Matplotlib is a library to visualize the data to know the trends. It is a plotting library
that can be used to create a range of plots from simple line plots to complicated 2D/3D
plots. The data alone is not meaningful information, the data must be analyzed and then
presented in a form that can be interpreted. This is useful to the decision-makers to take
the right action.

180 SGOU - SLM - BCA - Programming with Python

The data should be analyzed, studied, and used to produce insights that can guide
decision-making, such as the decision to start a new manufacturing unit, introducing
new products etc.

Matplotlib provides an easy visual approach to present our findings using graphs/plots.
The following are examples of the visualizations that can be plotted using Matplotlib

	♦ Bar Graph

	♦ Histogram

	♦ Line Chart

	♦ Pie Chart

	♦ Scatter Plot

	♦ Area plot

Fig 4.3.2 Different types of graphs

4.3.3 Installing Matplotlib
To install Matplotlib follow these steps:

pip install matplotlib.

Once Matplotlib is installed, import it in your applications by adding the following
command:
import matplotlib
The version string is stored under __version__ attribute.

Fig 4.3.3 Sample output screen

For plotting using matplotlib, import its pyplot module using the following command:

import matplotlib.pyplot as plt

181 SGOU - SLM - BCA - Programming with Python

 #plt is an alias or alternative name for the matplotlib.

 #pyplot. Pyplot is the popular matplotlib submodule.

The plot () function of the pyplot module is used to create a chart.

The show () is used to display the figure created using the plot () function.

4.3.4 Graph customization
Pyplot library gives us some functions, which can be used to customize charts such as
adding titles or legends. Some of the options are given below:

Table 4:3:1 Graph customization

Options Explanation Syntax
Title Display the title of the plot Plt.title(“Mark”)
Grid Show the grid lines on the plot Plt.grid()
Legend Place a legend on the axis Legend()
Savefig Used to save the figure savefig()
Xlabel Set the label for X-axis Xlabel()
Ylabel Set the label for Y-axis Ylabel()
Xticks Get or set the current tick locations and labels of

the X-axis.
plt.xticks()

Yticks Get or set the current tick locations and labels of
the Y-axis.

plt.yticks()

Other attributes for customization of chart

1. Marker
In Matplotlib, markers are used to visually highlight each data point with shapes like
circles, squares, and triangles.

2. Color
Table 4.3.2 Some of the character color code

Character code	 Color name
‘b’ Blue
‘g’ Green
‘r’ Red
‘k’ Black
‘w’ White
‘y’ Yellow

3. Line width and Line style
The following are line style

	♦ solid

182 SGOU - SLM - BCA - Programming with Python

	♦ dashed
	♦ dotted
	♦ dashdot
	♦ none

	♦ The following are examples of line color options

Example: plt.plot(xpoints, ypoints , linestyle = 'dotted', color = 'r')

 plt.plot(xpoints, ypoints , linestyle = 'dotted', color = 'g)

	♦ We can also use Hexadecimal color codes as follows

 Example: plt.plot(xpoints, ypoints , linestyle = 'dotted', color = '#4000ff')

	♦ Using the linewidth option, we can change the line width.

Example: plt.plot(xpoints, ypoints , linestyle = 'dotted', linewidth = '20.5', color =
'#4000ff')

	♦ Use the title option to insert a title.

 Example, plt.title("My Title")

	♦ Use the grid option to display the grid

 Example: plt.grid()

Example:

The following code will make a graph.

import matplotlib.pyplot as plt

plt.plot([1, 2, 3, 4], [1, 2, 3, 4])

plt.ylabel('Y Label') #label to y -axis

plt.xlabel('X Label') #label to x-axis

plt.show()

 Fig: 4.3.4 Line chart

183 SGOU - SLM - BCA - Programming with Python

	♦ The same program may also be written as
import matplotlib.pyplot as plt
import numpy as np
xpoints = np.array([1, 4])
ypoints = np.array([1, 4])
plt.ylabel('Y Label')
plt.xlabel('X Label')
plt.plot(xpoints, ypoints)
plt.show()

 Fig 4.3.5 Data visualisation in line chart
To make the dotted line, change the code as follows
plt.plot(xpoints, ypoints , linestyle = 'dotted').

 Fig: 4.3.6 Sample line chart with different line style

184 SGOU - SLM - BCA - Programming with Python

To display graph with grid lines

 Fig 4.3.7 Visualisation with grid lines

4.3.5 Scatter graph

With Pyplot, use the scatter () function to draw a scatter plot.

Example

import matplotlib.pyplot as plt

import numpy as np

xpoints = np.array([1,31,5,62,1,3, 4])

ypoints = np.array([11,32,52,6,1,3, 4])

plt.ylabel('Y Label')

plt.xlabel('X Label')

plt.title(' My Graph')

plt.grid()

plt.scatter(xpoints, ypoints , color = '#4000ff')

plt.show()

185 SGOU - SLM - BCA - Programming with Python

 Fig 4.3.8 Scatter chart data visualisation

4.3.6 Bar Charts
Plt.bar() will generate a barb chart.

Example,

import matplotlib.pyplot as plt

import numpy as np

xpoints = np.array([1,31,5,62,1,3, 4])

ypoints = np.array([11,32,52,6,1,3, 4])

plt.ylabel('Y Label')

plt.xlabel('X Label')

plt.title(' My Graph')

plt.grid()

plt.bar(xpoints, ypoints , color = '#4000ff')

plt.show()

Fig: 4.3.9 Data visualisation for bar graph

186 SGOU - SLM - BCA - Programming with Python

If you want the bars to be displayed horizontally instead of vertically, use
the barh() function:

Example:

import matplotlib.pyplot as plt

import numpy as np

x = np.array(["An", "Bc", "Cs", "DD"])

y = np.array([38, 41, 12, 40])

plt.barh(x, y)

plt.show()

 Fig 4.3.10 Horizontal bar graph data visualisation

4.3.7 Pie Chart
A pie chart is a circular statistical graphic image. It is used to represent a single series
of data. The area of the chart represents the total percentage, with each slice showing
a portion of the whole. The area of the chart represents the total percentage, with each
slice showing a portion of the whole. Pie charts can be generated using plt.pie(). (plt
is variable name)

Example

import matplotlib.pyplot as plt

import numpy as np

xpoints = np.array([10,31,5,62])

lab = ["Books", "Journals", "Magazines", "Daily"]

plt.title('My Pie Chart')

plt.pie(xpoints, labels =lab)

187 SGOU - SLM - BCA - Programming with Python

plt.show()

 Fig 4.3.11 Data visualization in pie chart

Add Percentage Values (autopct)

import matplotlib.pyplot as plt

import numpy as np

xpoints = np.array([10,31,5,62])

lab = ["Books", "Journals", "Magazines", "Daily"]

plt.title('My Pie Chart')

plt.pie(xpoints, labels =lab, autopct='%1.1f%%')

plt.show()

Fig 4.3.12 Data visualization in pie chart using percentage values

Exploding a Slice (explode)

import matplotlib.pyplot as plt

188 SGOU - SLM - BCA - Programming with Python

import numpy as np

xpoints = np.array([10,31,5,62])

exp = (0.2, 0, 0, 0) # Only "Books" slice exploded outward

lab = ["Books", "Journals", "Magazines", "Daily"]

plt.title('My Pie Chart')

plt.pie(xpoints, labels =lab, autopct='%1.1f%%',explode=exp)

plt.show()

Fig 4.3.13 Data visualization in pie chart using explode

Exercise 1: Plot a scatter plot for x = [5, 7, 8, 7, 2, 17, 2, 9, 4, 11] y = [99, 86, 87, 88,
100, 86, 103, 87, 94, 78]

Exercise 2: Create a bar chart for categories ['A1', 'B1', 'C1', 'D1'] with values [5, 7, 3,
8].

Exercise3: Plot a pie chart for the favorite fruits among people:
Apples (30), Bananas (20), Cherries (25), Grapes (25). Use different colors and label
each section.

189 SGOU - SLM - BCA - Programming with Python

Recap

	♦ Data science is the study of huge amounts of data to turn it into useful
knowledge.

	♦ Data visualisation makes it easier to understand numbers and patterns.

	♦ Data analysis helps decision-makers find the right information at the right
time.

	♦ The data analysis lifecycle includes collecting, preparing, modeling,
analyzing, presenting, and decision-making.

	♦ Popular Python libraries for visualization are matplotlib, seaborn, and
pandas.

	♦ Data visualisation tools like Matplotlib help in creating graphs and charts.

	♦ Matplotlib can create bar charts, histograms, line charts, pie charts, scatter
plots, area plots etc.

	♦ To install Matplotlib, use the command: pip install matplotlib.

	♦ Import Matplotlib in Python using import matplotlib.pyplot as plt.

	♦ The plot() function is used to create simple charts.

	♦ The show() function is used to display the charts.

	♦ Graphs can be customized by adding titles, labels, legends, grids, and colors.

	♦ Markers are symbols used to highlight points in graphs, like circles or
squares.

	♦ Colors can be added by using character codes like 'r' for red or 'b' for blue.

	♦ Line styles such as dotted, dashed, or solid can change the look of line charts.

	♦ Scatter plots are created using the scatter() function to show relationships
between two variables.

	♦ Bar charts represent data with rectangular bars and can be made vertical or
horizontal.

	♦ Pie charts show the percentage share of different categories in a whole.

	♦ Customizations like exploding slices, adding percentages, colors, and titles
make pie charts more meaningful.

	♦ In a pie chart, each slice represents a portion of the total data.

	♦ The autopct parameter in pie charts is used to display percentage values on
slices.

190 SGOU - SLM - BCA - Programming with Python

Objective Type Questions

1.	 What is the study of large volumes of data called?

2.	 What is used to remove errors and duplicates in data?

3.	 Which library is widely used for plotting in Python?

4.	 Which function is used to display a plot?

5.	 Which function is used to create a basic plot in matplotlib?

6.	 What do you add to a graph to display its main heading?

7.	 What feature adds background lines to a graph?

8.	 Which function is used to save a plot in a file?

9.	 What is the command to label the x-axis?

10.	Which graph is used to display parts of a whole?

11.	What is the Python command to add legends to a graph?

12.	What keyword is used to set line styles like dotted or dashed?

13.	What type of graph uses rectangular bars to represent data?

14.	What function is used to create a scatter plot?

15.	Which submodule of matplotlib is most commonly used for plotting?

16.	What is used to explode a slice in a pie chart?

17.	What command is used to display percentage values in pie charts?

18.	Which graph is used to show trends over time?

19.	Which library provides a high-level interface for statistical graphs?

20.	What type of visualization shows the relationship between two variables
using points?

	♦ The explode parameter in pie charts is used to separate one or more slices
for emphasis.

	♦ Customizing graphs helps make the information clearer and more attractive.

	♦ Good visualisation turns complex data into simple, easy-to-understand
stories.

191 SGOU - SLM - BCA - Programming with Python

Assignments

1.	 Define data visualization. Why is it important in data science? Explain with
a suitable example.

2.	 Write a Python program using Matplotlib to plot a line chart with custom
labels, grid, title, and color.

Answers to Objective Type Questions

1.	 Data Science

2.	 Cleaning

3.	 Matplotlib

4.	 show()

5.	 plot()

6.	 Title

7.	 Grid

8.	 savefig()

9.	 xlabel()

10.	Pie chart

11.	Legend ()

12.	linestyle

13.	Barchart

14.	Scatter ()

15.	 pyplot

16.	explode

17.	autopct

18.	Linechart

19.	 Seaborn

20.	 Scatterplot

192 SGOU - SLM - BCA - Programming with Python

Suggested Reading

1.	 Matthes, E. (2019). Python Crash Course: A Hands-On, Project-Based
Introduction to Programming (2nd ed.). No Starch Press.

2.	 Bader, D. (2017). Python Tricks: A Buffet of Awesome Python Features. Dan
Bader Press.

3.	 Ramalho, L. (2015). Fluent Python: Clear, Concise, and Effective
Programming. O'Reilly Media.

4.	 Real Python - Functions: https://realpython.com/tutorials/functions/

References

1.	 Robert Johansson, 2nd Edition (2019), “Numerical Python: A Practical
Technique Approach for Industry”.

2.	 Joel Grus, 2nd Edition (2019), “Data Science from Scratch: First Principles
with Python”.

3.	 Create a pie chart using Matplotlib to show the distribution of marks in 4
subjects. Include labels, percentage values, and explode the largest slice.

4.	 Write a program to display a scatter plot for student height vs weight with
proper axis labels and title.

5.	 Explain the use of the following Matplotlib functions with syntax and output:
plot(), xlabel(), ylabel(), title(), show()

193 SGOU - SLM - BCA - Programming with Python

Introduction to Pandas

Learning Outcomes

Prerequisites

	♦ identify the main data structures used in Pandas.

	♦ recognise the difference between a Pandas Series and DataFrame.

	♦ recall the Pandas functions used to import, export, and manipulate real-
world datasets.

	♦ identify the correct syntax for creating a DataFrame from a dictionary.

	♦ name the function used to handle missing values in Pandas.

	♦ list advantages and limitations of using Pandas with large datasets.

Studying Pandas is crucial for students interested in data science. In this chapter,
explore the powerful capabilities of Pandas, a library in Python designed for efficient
data analysis and manipulation. Pandas makes working with structured data and
providing versatile data structures like Series and DataFrame. These structures allow us
to handle, clean, and analyze data efficiently. In this chapter also discussed Panel Data,
the three-dimensional structure used to analyze multi-dimensional data, which was
particularly useful in business and longitudinal studies. Pandas is a powerful tool for
organizing, cleaning, and analyzing large datasets. In real-world scenarios, data is often
unstructured, so it is difficult to analyze the data. Pandas provides functions that make
it easy to clean and transform data into usable formats. For example, a business needs
to clean up customer data by removing duplicates or filling in missing information.
Pandas allows this task to be done more efficiently.

Before diving into Pandas, students should have a basic understanding of Python
programming. It is important to understand the basics of Python data structures, such as
lists, dictionaries, and tuples. Basic skills like calculating averages, percentages, and
working with simple algebra will make it easier to interpret and manipulate data. Raw
data often contains errors such as missing values, duplicates, or inconsistent formatting.
Data cleaning is an essential step in the data analysis process. Clean data ensures that the

UNIT 4

After completing this unit, you will be able to:

194 SGOU - SLM - BCA - Programming with Python

Discussion
Pandas is a powerful, high-level data manipulation tool extensively used in data
analysis It is designed to simplify the process of working with structured data. It offers
a wide range of built-in functions for importing, exporting, and processing datasets. It
also provides a convenient and unified interface for performing both data analysis and
visualization tasks. One of the key strengths of Pandas is its well-defined data structures,
which include Series (a one-dimensional labeled array), DataFrame (a two-dimensional
table with labeled rows and columns), and Panel (a three-dimensional structure, though
now deprecated in recent versions). In pandas, these data structures help to make the
data analysis more organized, efficient, and effective, especially when dealing with
large or complex datasets.

4.4.1 Panel panda
In Pandas, a Panel was used to store and work with three-dimensional data.The three
axes had special names that helped to understand the data analysis easier. This was
especially helpful when working with panel data, often used in business analysis. Panel

Key words

Data integrity, Data cleaning, Duplication, Missing data, Visualization, Cross-sectional
Data, Time Series Analysis, Data Standardization

analysis or model built is accurate and reliable. If there are missing values, duplicates,
or incorrect entries in the dataset, it can lead to faulty conclusions. For example, if a
sales report has repeated entries for the same transaction, it could overestimate the total
sales and lead to incorrect business decisions. So, data cleaning is necessary to ensure
that the data used for analysis is accurate, consistent, and useful.

Consider a scenario where a retail company wants to analyse the sales data. The dataset
includes columns like product name, quantity sold, sales price, and region. The data
might have missing values, duplicates, or errors in certain entries. Using Pandas,

	♦ Import the dataset from a CSV file.

	♦ Clean the data by removing duplicates or filling in missing values.

	♦ Group the data by region or product category to analyse trends.

	♦ Generate visualizations to show the sales trends over time.

This hands-on approach to solving real-world problems makes learning Pandas highly
relevant and practical. It allows students to develop the skill in data science, business
analysis, and other fields of decision-making.

195 SGOU - SLM - BCA - Programming with Python

(pandas) is the old 3D data structure in pandas. Panel data is the dataset style of the
same subjects tracked across time.
4.4.1.1 Panel data
Panel data is a dataset that contains observations of multiple entities (such as individuals,
companies, or countries) measured over multiple time periods. Panel data is sometimes
referred to as longitudinal data. Panel data contains observations about different cross-
sections. The name pandas originated from Panel data and Python Data Analysis.
Pandas let us analyze big data and generate conclusions based on various theories.
Using pandas, we can find the correlation, average, minimum, maximum and more. The
following are examples of panel data.

	♦ Unemployment across different states

	♦ Stock prices by the firm

	♦ GDP across multiple countries

	♦ Income dynamic studies

	♦ International current account balances

Table 4.4.1 How Panel data is different from other data types

Type of Data What It Means Example

Cross-
sectional

Data collected once from many
subjects

Income of 100 people in
2025

Time series Data collected ove rmany time
points from one subject

Stock price of Apple from
2020–2025

Panel data Data collected over time from
many subjects

Incomes of 100 people from
2020–2025

4.4.2 Advantages of pandas
1. Easy data handling
Pandas provides a simple and built-in interface that makes it easy to handle, clean, and
transform data. This simplicity makes it accessible to both beginners and advanced
users, ensuring that users of all skill levels can effectively work with data.

2. Powerful data analysis tools
It offers comprehensive tools for data manipulation, such as filtering, grouping, merging,
and aggregation. These tools make complex data analysis tasks easier.

3. Support for various file formats
Pandas can read from and write to numerous data formats, including CSV, Excel, SQL
databases, JSON, and HDF5. This allows a seamless amount of data import and export.

4. Labelled data structures
Pandas uses Series and DataFrame objects, which support labelled axes (rows and
columns), improving data organization and access.

196 SGOU - SLM - BCA - Programming with Python

5. Handling missing data
It provides efficient methods for detecting, filling, or removing missing or null values
in datasets.

6. High performance
Pandas is built on top of NumPy, ensuring high performance for operations on large
datasets.

7. Time series support
Pandas has strong support for time-series data. It can easily handle date and time
indexing. It also allows users to resample data and analyse it over different time intervals.

8. Compatibility with other libraries
Pandas works well with a variety of other Python libraries, such as NumPy, SciPy,
scikit-learn,TensorFlow etc.

4.4.3 Installation
To Install pandas using the following command:

pip install pandas

Once Pandas is installed, import it in your applications by adding the import keyword:

import pandas

import pandas as pd #pd is alias to the pandas library

4.4.4 Data Structures in Pandas
In Pandas, a data structure refers to a specialized format for organizing, storing,
and managing data efficiently. These structures are designed to facilitate easy data
manipulation, analysis, and visualization. The two primary data structures provided by
Pandas are Series and DataFrame.

1. Series
A Series is a one-dimensional array-like object that can hold data of any type (integers,
strings, floats, etc.).

Example:
import pandas as pd

s = pd.Series([10, 20, 30, 40]) # Creating a Series from a list

print(s)

Example with custom index:

import pandas as pd

data = [100, 200, 300]

i = ['a', 'b', 'c']

197 SGOU - SLM - BCA - Programming with Python

s = pd.Series(data, index=i)

print(s)

2. DataFrame
DataFrame is a two-dimensional labeled data structure with columns that can contain
different data types.

Example:
import pandas as pd

data = {

 'Name': ['Ann', 'Bobb', 'Chat'],

 'Age': [25, 30, 35],

 'City': ['New York', 'Los Angeles', 'Chicago']

}

df = pd.DataFrame(data) # Creating a DataFrame from a dictionary

print(df)

3. Read CSV Files
A simple way to store big data sets is to use CSV files (comma separated files).
CSV files contain plain text and is a well known format that can be read by everyone
including Pandas. The read_csv() method of pandas library is used to read data from
CSV files.
import pandas as pd

df = pd.read_csv('data1.csv') #create a sample csv file

198 SGOU - SLM - BCA - Programming with Python

print(df.to_string()) #use to_string() to print the entire DataFrame.

 Fig 4.4.1 Sample of a CSV file with complete data

import pandas as pd

df = pd.read_csv('data.csv')

print(df) #If you have a large DataFrame with many rows, Pandas will only return the
first 5 rows, and the last 5 rows:

Fig 4.4.2 Sample of a CSV file with specific rows and columns

4.4.5 Data Cleaning
While collecting data there are chances to have invalid data or missing data. For example,
the age of a student may be entered as a string instead of numbers. The data cleaning
process will eliminate such errors. Wrong data will provide incorrect or incomplete
output. The wrong or bad data could be

199 SGOU - SLM - BCA - Programming with Python

	♦ Empty cells

	♦ Invalid data format

	♦ Duplicate values

	♦ Wrong data

4.4.5.1 Advantages of data cleaning
Data cleaning is a crucial process in data management that ensures datasets are accurate,
reliable, and ready for analysis. The following figure illustrates five major benefits of
data cleaning:

 Fig 4.4.3 Key benefits of data cleaning

1.	 Error-Free Data: Cleaning helps to remove incorrect, duplicate, or corrupted
data.

2.	 Data Quality: Cleaned data ensuring the data is meaningful, valid, and useful.
It enhances the overall quality of data,

3.	 Accuracy and Efficiency: Well-prepared data improves the accuracy of
results and increases the efficiency of data processing tasks.

4.	 Complete Data: Data cleaning helps in filling missing values and removing
incomplete entries, it ensures the dataset is comprehensive.

5.	 Maintains Data Consistency: Consistent data formats and standardized
entries across datasets are achieved through cleaning the data.

4.4.5.2 Data Cleaning life cycle

200 SGOU - SLM - BCA - Programming with Python

Fig 4.4.4 Data Cleaning cycle

The data cleaning cycle outlines the structured steps for data analysis. Each step in the
cycle plays a crucial role in ensuring data integrity:

1.	 Import Data: Raw data is collected from various sources and loaded into the
system for processing.

2.	 Merge Datasets: Data from multiple sources are combined to form a unified
dataset.

3.	 Rebuild Missing Data: Techniques such as imputation or referencing other
sources are used to fill in missing values.

4.	 Standardize: Data values are reformatted to a common structure ensuring
uniformity.

5.	 Normalize: Redundant or inconsistent data is adjusted for scale and format.

6.	 De-Duplicate: Duplicate records are identified and removed to avoid
redundancy and enhance accuracy.

7.	 Verify and Enrich: The data is validated for accuracy and may be enhanced
with additional relevant information.

8.	 Export Data: The cleaned data is exported for further analysis, reporting, or
storage.

4.4.5.3 Pandas Data Cleaning
1. Drop rows with missing values
In Pandas, drop rows with missing values using the dropna () function.

201 SGOU - SLM - BCA - Programming with Python

Syntax:
Table 4.4.2 Dataframe dropna() properties

Example:

import pandas as pd

d = {

 'A1': [1, 2, 3, None, 5],

 'B1': [None, 2, 3, 4, 5],

 'C1': [1, 2, None, None, 5]

}

df = pd.DataFrame(d)

print("Original Data:\n",df)

print()

df_cleaned = df.dropna() # use dropna() to remove rows with any missing values

print("Cleaned Data:\n",df_cleaned)

Properties Explanations

axis Determines if you want to drop rows (axis=0) or columns (axis=1).
Default: 0 (rows)

how 	♦ Decides whether to drop based on presence of any
or all missing values in the row/column.
•'any': Drop if any value is missing.
• 'all': Drop only if all values are missing.

thresh Minimum number of non-NA values required to keep the row/
column. Overrides how if set. Example: thresh=3 → keep only
rows/columns with at least 3 non-null entries.

subset A list of column labels to consider when checking for missing
values. Other columns are ignored.

 inplace If True, modifies the original DataFrame in place. If False,
returns a new DataFrame.

202 SGOU - SLM - BCA - Programming with Python

Output:

Original Data:

 A1 B1 	 C1

0 1.0 NaN 1.0

1 2.0 2.0 2.0

2 3.0 3.0 NaN

3 NaN 4.0 NaN

4 5.0 5.0 5.0

Cleaned Data:

 A1 B1 C1

1 2.0 2.0 2.0

4 5.0 5.0 5.0

1. Fill Missing Values

To fill the missing values in Pandas, we use the fillna() function.

Example:

import pandas as pd

d = {

 'A1': [1, 2, 3, None, 5],

 'B1': [None, 2, 3, 4, 5],

 'C1': [1, 2, None, None, 5]

}

df = pd.DataFrame(d)

print("Original Data:\n", df)

df.fillna(0, inplace=True) # filling NaN values with 0

print("\nData after filling NaN with 0:\n", df)

Output:
Original Data:

203 SGOU - SLM - BCA - Programming with Python

 A1 B1 C1

0 1.0 NaN 1.0

1 2.0 2.0 2.0

2 3.0 3.0 NaN

3 NaN 4.0 NaN

4 5.0 5.0 5.0

Data after filling NaN with 0:

 A1 B1 C1

0 1.0 0.0 1.0

1 2.0 2.0 2.0

2 3.0 3.0 0.0

3 0.0 4.0 0.0

4 5.0 5.0 5.0

Instead of filling with 0, use aggregate functions to fill missing values.

Example:

import pandas as pd

d = {

 'A1': [1, 2, 3, None, 5],

 'B1': [None, 2, 3, 4, 5],

 'C1': [1, 2, None, None, 5]

}

df = pd.DataFrame(d)

print("Original Data:\n", df)

df.fillna(df.mean(), inplace=True) # filling NaN values with the mean of each column

print("\nData after filling NaN with mean:\n", df)

Output:

204 SGOU - SLM - BCA - Programming with Python

Fig 4.4.5 Sample of output screen

The following program is an example of data cleaning and visualization by making a
plot

import pandas as pd

import matplotlib.pyplot as plt

dataframe = pd.read_csv('data1.csv') #create a sample of csv file

dataframe.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

print(dataframe.to_string())

dataframe.plot()

plt.show()

4.4.6 Converting data type
Pandas has many built-in functions for converting the data types. The following are
example functions used in pandas to convert data

to_datetime

	 Convert argument to datetime.

to_timedelta

	 Convert argument to timedelta.

to_numeric

	 Convert argument to a numeric type.

numpy.ndarray.astype

205 SGOU - SLM - BCA - Programming with Python

	 Cast a numpy array to a specified type.

The following program converts date to numeric format.

import pandas as pd

dataframe = pd.read_csv('weather.csv')

dataframe ['Date'] = pd.to_numeric(dataframe ['Date'])

print(dataframe.to_string())

Output

 Fig 4.4.6 Sample of output screen

4.4.7 Printing duplicate values
The following code will check and print duplicate values from the 'data.csv' file. Returns
True for every row that is a duplicate, otherwise False

import pandas as pd

import matplotlib.pyplot as plt

dataframe = pd.read_csv('data.csv') #create a sample csv file

print(dataframe.duplicated())

Output:

 Fig 4.4.7 Duplicate values

206 SGOU - SLM - BCA - Programming with Python

The following code will remove duplicate values

import pandas as pd

import matplotlib.pyplot as plt

dataframe = pd.read_csv('data1.csv')

print(dataframe.duplicated())

print(dataframe.drop_duplicates()) # Duplicate values removed from the data set.

Recap

	♦ Pandas is a popular Python library used for working with structured data.

	♦ It is very helpful for data analysis and data science projects.

	♦ Pandas makes it easy to read, write, and process data.

	♦ It supports many file formats like CSV, Excel, SQL, and JSON.

	♦ The main data types in pandas are Series, DataFrame, and Panel.

	♦ A Series is a one-dimensional data structure like a single column.

	♦ A DataFrame is a two-dimensional structure like a table with rows and
columns.

	♦ Panel is a three-dimensional structure, but it is no longer used in newer
versions of pandas.

	♦ Panel data means data collected over time from many people or groups.

	♦ Examples of panel data include stock prices of companies and GDP of
countries over years.

	♦ To read CSV files using the read_csv() function.

	♦ To see the full data, use to_string() to print all rows.

	♦ Sometimes data may have missed or incorrect values.

	♦ To remove rows with missing values using dropna().

	♦ To fill missing values using fillna() with a number or a function like mean.

	♦ To check for duplicate rows, we use the duplicated () function.

	♦ To remove duplicates, use drop_duplicates().

	♦ To change data types using functions like to_numeric() and to_datetime().

	♦ To draw graphs and charts using plot () and the matplotlib library.

207 SGOU - SLM - BCA - Programming with Python

	♦ Cleaning data is important to get correct results during analysis.

	♦ Clean data has no missing values, no wrong formats, and no duplicate rows.

	♦ Data cleaning makes data more accurate, complete, and easy to use.

	♦ Pandas is also fast and works well with other Python libraries like NumPy
and scikit-learn.

	♦ Pandas is a very useful tool for both students and professionals working with
data.

Objective Type Questions

1.	 Pandas stands for

2.	 Important library used for analyzing data

3.	 What are the two main data structures in Pandas?

4.	 What is a Series in Pandas?

5.	 What is a DataFrame in Pandas?

6.	 What was the three-dimensional data structure in Pandas called?

7.	 What command installs Pandas in Python?

8.	 Which Pandas method is used to display the first few rows of a DataFrame?

9.	 Which Pandas method shows the last few rows?

10.	Which function finds the maximum value in a DataFrame column?

11.	Which function finds the minimum value in a DataFrame column?

12.	How do you check for missing data in Pandas?

13.	Which method is used to remove missing values?

14.	Which method fills missing values in Pandas?

15.	What does drop_duplicates() do?

16.	What type of data does Panel data represent?

17.	What is cross-sectional data?

18.	What is time series data?

19.	What does the subset parameter in dropna() specify?

208 SGOU - SLM - BCA - Programming with Python

Answers to Objective Type Questions

1.	 Panel Data

2.	 Panda

3.	 Series and DataFrame.

4.	 A one-dimensional labeled array.

5.	 A two-dimensional labeled data structure with rows and columns.

6.	 Panel.

7.	 pip install pandas.

8.	 head().

9.	 tail().

10.	max().

11.	min().

12.	isnull().

13.	dropna().

14.	fillna().

15.	Removes duplicate rows.

16.	Data collected over time from multiple subjects.

17.	Data collected once from many subjects.

18.	Data collected over time from a single subject.

19.	Specific columns to check for missing values.

20.	Sets the minimum number of non-NA values to keep a row.

21.	Represents them as NaN (Not a Number).

22.	read_excel().

20.	What is the use of the thresh parameter in dropna()?

21.	How does Pandas handle empty cells by default?

22.	Which function reads Excel files in Pandas?

209 SGOU - SLM - BCA - Programming with Python

Assignments

1.	 What are the advantages of using Pandas for data handling compared to
traditional spreadsheet software like Excel? List five points with examples.

2.	 Discuss the key steps involved in the Data cleaning life cycle.

3.	 Define and explain the properties of the dropna() function in Pandas.

4.	 Differentiate between drop_duplicates() and duplicated() methods in Pandas.
Write an example showing how they can be combined for data cleaning.

5.	 Create a Pandas DataFrame that simulates unemployment rates across five
different states over three years. Perform the following:

	♦ Introduce missing values manually.

	♦ Clean the data by filling missing values with the column mean.

References

1.	 VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for
Working with Data. O'Reilly Media.

2.	 McKinney, W. (2017). Python for Data Analysis: Data Wrangling with
Pandas, NumPy, and IPython (2nd ed.). O'Reilly Media.

3.	 Chen, D. (2020). Pandas for Everyone: Python Data Analysis. Addison-
Wesley Professional.

Suggested Reading

1.	 McKinney, W. (2018). Python for Data Analysis: Data Wrangling with
Pandas, NumPy, and IPython (2nd ed.). O'Reilly Media.

2.	 The Pandas Development Team. (n.d.). Pandas documentation. Retrieved
from https://pandas.pydata.org/docs/

3.	 Molin, S. (2019). Hands-On Data Analysis with Pandas: Efficiently perform
data collection, wrangling, analysis, and visualization using Python. Packt
Publishing.

4.	 Harrison, M. (2021). Effective Pandas: Patterns for Data Manipulation.
MetaSnake.

210 SGOU - SLM - BCA - Programming with Python

 SREENARAYANAGURU OPEN UNIVERSITY

QP CODE: ……… Reg. No :

 Name : ……............

Model Question Paper- set-I

End Semester Examination

BACHELOR OF COMPUTER APPLICATIONS

B21CA07DC: PROGRAMMING WITH PYTHON

(CBCS - UG)

2024-25 - Admission Onwards

Time: 3 Hours Max Marks: 70

Section A

Answer any 10 questions. Each carries one mark (10×1= 10)

1.	 Which keyword is used to define a variable in Python?

2.	 What is the result of the expression 5 // 2 in Python?

3.	 Write any two escape sequences used in print().

4.	 Write any four built in methods of List.

5.	 What do you call the process of hiding internal details and showing only
functionality?

6.	 Which keyword is used to handle exceptions in Python?

7.	 ______ is an interface for connecting to a MYSQL database server from
Python.

8.	 Which method is used to insert an element into a NumPy array?

9.	 What control statement can be used to create empty blocks?

10.	Which symbols are used to define dictionary comprehensions?

11.	Which mode is used to write to a file and overwrite existing content?

12.	Which block is executed if no exception occurs?

211 SGOU - SLM - BCA - Programming with Python

13.	What is the purpose of a compiler?

14.	Write down any two logical operators in Python.

15.	How to store multiple values using a single variable name?

Section B

Answer any 5 questions. Each carries two marks (5×2=10)

16.	What is the difference between a list and a tuple in Python?

17.	What is a set in python? Write any four built in methods of set.

18.	Explain the use of the seek() and tell() functions in file handling.

19.	Predict the result:

a = np.array([[1,2],[3,4]])

b = np.array([[5,6],[7,8]])

print(a + b)

20.	Differentiate Local and Global variables.

21.	Write a Python program to create a file, write some content into it?

22.	What are Anonymous Functions?

23.	What is the difference between a module and a package in Python? Give one
example of each.

24.	Write about the concept of encapsulation.

25.	Write the SQL command to display all the tables in a selected database using
Python.

Section C
Answer any 5 questions. Each carries four marks (5 x 4 = 20)

26.	Write the advantages of Functions.

27.	Write about Numeric data types.

28.	What is polymorphism in Python? Explain with a suitable example
showing both method overloading and method overriding.

212 SGOU - SLM - BCA - Programming with Python

29.	Compare bar chart and pie chart with examples of when to use each.

30.	Explain the different types of comprehensions in python.

31.	Define inheritance and explain the types of inheritance supported in Python.

32.	What is an arithmetic operator? Write about the different arithmetic operators
in Python.

33.	Explain any two built-in methods of Dictionary in Python with examples.

34.	Write the syntax and example for if else and elif ladder.

35.	Explain the different loop control statements.

Section D
Answer any 2 questions. Each carries fifteen mark (2 x 15 = 30)

36.	Explain in detail about creating, calling and passing arguments to functions.

37.	Write a detailed note on data cleaning in Pandas.

38.	Explain exception handling in Python, including the difference between
errors and exceptions, the use of try-except blocks, else and finally blocks,
raising exceptions, and common built-in exception types with examples.

39.	What is Object-Oriented Programming (OOP)? Explain how Python imple-
ments OOP concepts with suitable examples.

213 SGOU - SLM - BCA - Programming with Python

 SREENARAYANAGURU OPEN UNIVERSITY

QP CODE: ……… Reg. No :

 Name : ……............

Model Question Paper- set-II

End Semester Examination

BACHELOR OF COMPUTER APPLICATIONS

B21CA07DC: PROGRAMMING WITH PYTHON

(CBCS - UG)

2024-25 - Admission Onwards

Time: 3 Hours Max Marks: 70

Section A
Answer any 10 questions. Each carries one mark (10×1= 10)

1.	 Who developed the Python programming language?

2.	 Which Python numeric type includes real and imaginary parts?

3.	 What is the condition in bitwise OR to return 1?

4.	 What is the use of ‘in’ operator check in Python?

5.	 What does NumPy stand for?

6.	 Which keyword is used to define a function in Python?

7.	 What does OOP stand for?

8.	 What operator will be used to check if 15 is not equal to 10.

9.	 What is a module in Python?

10.	Which function is used to save a plot in a file?

11.	Which operator is used to check membership in a sequence in Python?

12.	The process of correcting or removing inaccurate, incomplete, or irrelevant
data in Python is called ……………………..

214 SGOU - SLM - BCA - Programming with Python

13.	Which function in Python is used to replace a pattern with a string?

14.	Which block is executed if no exception occurs?

15.	What is the tuple method to count the repeated values?

Section B
Answer any 5 questions. Each carries two marks (5×2=10)

16.	What is the purpose of the range() function in loops? Write a simple example
using range().

17.	How to create a file using the write() method?

18.	 What is data visualization?

19.	Mention any two common code review methods.

20.	Write any four variables naming rules in python.

21.	What is array indexing in NumPy? Give an example.

22.	Write any two set built in methods.

23.	 What is a package in Python? How is it different from a module?

24.	List the different file access modes.

25.	Define regular expressions.

Section C

Answer any 5 questions. Each carries four marks (5 x 4 = 20)

26.	Explain the role of configuration management and deployment tools in
software deployment.

27.	Explain about the below listed operators in python with examples.

a)	 Logical Operators

b)	 Bitwise Operators

c)	 Membership Operators

d)	 Identity Operators

28.	Explain about numeric and Sequence Data Types.

215 SGOU - SLM - BCA - Programming with Python

29.	Explain the stages of the Data Analysis Life Cycle in detail.

30.	Explain any five important Matplotlib functions with their syntax and
examples.

31.	What is list comprehension in Python? Write a program to create a list of
even numbers between 1 and 20 using list comprehension. Also explain how
it differs from a traditional loop.

32.	What is data abstraction? How does it differ from encapsulation?

33.	Explain list indexing and slicing with examples.

34.	Compare scatter graph and bar chart with suitable use cases.

35.	What is data cleaning, and what are its benefits?

Section D
Answer any 2 questions. Each carries fifteen mark (2 x 15 = 30)

36.	 Explain the working of the following decision-making statements in Python
with examples:

  i. if statement

 ii. if-else statement

 iii. elif statement

37.	Explain the different data types in Python with examples.

38.	Define inheritance and explain the types.

39.	What are the data structures provided by the Pandas library in Python?
Explain their advantages and show how to implement them with suitable
examples.

216 SGOU - SLM - BCA - Programming with Python

kÀ-Æ-I-e-m-i-m-e-m-K-o-X-w

þ-þ

h-n-Z-y-b-mÂ k-z-X-{-´-c-m-I-W-w

h-n-i-z-]-u-c-c-m-b-n a-m-d-W-w

{-K-l-{-]-k-m-Z-a-m-b-v-- h-n-f-§-W-w

K-p-c-p-{-]-I-m-i-t-a \-b-n-¡-t-W

I-q-c-n-c-p-«-nÂ \-n-¶-p R-§-s-f

k-q-c-y-h-o-Y-n-b-nÂ s-X-f-n-¡-W-w

k-v-t-\-l-Z-o-]-v-X-n-b-m-b-v---- h-n-f-§-W-w

\-o-X-n-s-s-h-P-b-´-n]-m-d-W-w

i-m-k-v-{-X-h-y-m-]-v-X-n-s-b-¶-p-t-a-I-W-w

P-m-X-n-t-`-Z-a-m-s-I a-m-d-W-w

t-_-m-[-c-i-v-a-n-b-nÂ X-n-f-§-p-h-m³

Ú-m-\-t-I-{-µ-t-a P-z-e-n-¡-t-W

I-p-c-o-¸-p-g- {-i-o-I-p-a-mÀ

SREENARAYANAGURU OPEN UNIVERSITY

