
SG
O
U

Vision

To increase access of potential learners of all categories to higher education, research
and training, and ensure equity through delivery of high quality processes and
outcomes fostering inclusive educational empowerment for social advancement.

Mission

To be benchmarked as a model for conservation and dissemination of
knowledge and skill on blended and virtual mode in education, training and

research for normal, continuing, and adult learners.

Pathway

Access and Quality define Equity.

SG
O
U

Machine Learning for All
Course Code: SGB24CA102MD

Semester - II

Multi Disciplinary Course
For FYUG Programmes (Honours)

Self Learning Material

SREENARAYANAGURU OPEN UNIVERSITY
The State University for Education, Training and Research in Blended Format, Kerala

SG
O
U

Course Code: SGB24CA102MD
Semester - II

Multi Disciplinary Course
For FYUG Programmes (Honours)

MACHINE LEARNING FOR ALL

Academic Committee Scrutiny

Design Control

Cover Design

Co-ordination
Development of the Content

Review and Edit

Linguistics

Dr. Aji S.
Sreekanth M.S.
P. M. Ameera Mol
Dr.Vishnukumar S.
Shamly K.
Joseph Deril K.S.
Dr. Jeeva Jose
Dr. Bindu N.
Dr. Priya R.
Dr. Ajitha R.S.
Dr. Anil Kumar
N. Jayaraj

Shamin S., Greeshma P.P.,
Anjtha A.V., Sreerekha V.K.,
Dr. Kanitha Divakar, Aswathy V.S.,
Subi Priya Laxmi

Azeem Babu T.A.

Jobin J.

Director, MDDC :
Dr. I.G. Shibi
Asst. Director, MDDC :
Dr. Sajeevkumar G.
Coordinator, Development:
Dr. Anfal M.
Coordinator, Distribution:
Dr. Sanitha K.K.

Shamin S., Dr. Jennath H.S., Suramya
Swamidas P.C., Greeshma P.P.,
Sreerekha V.K., Lekshmi A.C.

Prof. Viji Balakrishnan

Sujith Mohan

January 2025

© Sreenarayanaguru Open University

Edition

Copyright

Scan this QR Code for reading the SLM
on a digital device.

SG
O
U

Dear Learner,

It is with great pleasure that I welcome you to the Four Year UG Programme offered by Sreenarayanaguru
Open University.

Established in September 2020, our university aims to provide high-quality higher education through open
and distance learning. Our guiding principle, ‘access and quality define equity’, shapes our approach to ed-
ucation. We are committed to maintaining the highest standards in our academic offerings.

Our university proudly bears the name of Sreenarayanaguru, a prominent Renaissance thinker of modern
India. His philosophy of social reform and educational empowerment serves as a constant reminder of our
dedication to excellence in all our academic pursuits.

The University is dedicated to offering forward-looking, skill-based learning experiences that prepare learn-
ers for the evolving demands of the modern world. As part of the FYUG programme, The Multi-dis-
ciplinary Course “Machine Learning for All” is an introductory course designed to make the basics of
machine learning accessible to learners from diverse backgrounds. It covers fundamental concepts, key
techniques, and simple practical applications, enabling you to develop a foundational understanding of how
machine learning works. The course aims to demystify complex ideas and equip you with essential skills to
navigate the world of data-driven decision-making. By exploring related disciplines, you gain a more com-
prehensive education, preparing you for diverse career opportunities and fostering well-rounded intellectual
growth throughout your academic journey.

Our teaching methodology combines three key elements: Self Learning Material, Classroom Counselling,
and Virtual modes. This blended approach aims to provide a rich and engaging learning experience, over-
coming the limitations often associated with distance education. We are confident that this programme will
enhance your understanding of statistical methods in business contexts, preparing you for various career
paths and further academic pursuits.

Our learner support services are always available to address any concerns you may have during your time
with us. We encourage you to reach out with any questions or feedback regarding the programme.

We wish you success in your academic journey with Sreenarayanaguru Open University.

Best regards,

Dr. Jagathy Raj V.P.
Vice Chancellor 			 01-01-2025

Message from
Vice Chancellor

SG
O
U

Contents

Block 01	 Introduction to Machine Learning					 1
Unit 1		 Machine Learning: Foundations and Concepts			 2
Unit 2		 Types of Machine Learning						 15
Unit 3		 Performance Evaluation Metrics					 26
Unit 4		 Cross Validation Techniques, Bias-Variance Tradeoff		 41

Block 02	 Supervised Learning			 				 50
Unit 1		 Basics of Neural Networks						 51
Unit 2		 Classification 								 61
Unit 3		 Regression								 72
Unit 4		 Overfitting, Underfitting and Regularization				 79

Block 03	 Unsupervised Learning and Reinforcement Learning 		 92
Unit 1		 Partition Clustering: K-means Clustering, K-Medoid		 93
Unit 2		 Hierarchical Clustering 						 106
Unit 3		 Dimensionality Reduction – Principal Component Analysis,
		 Singular Value Decomposition					 117
Unit 4		 Introduction to Reinforcement Learning, Markov Decision
		 Processes (MDPs)							 129

Block 04	 Advanced Topics and Applications of Machine Learning		 138
Unit 1		 NLP and Computer Vision						 139
Unit 2		 Transformers								 149
Unit 3		 Introduction to Generative AI						 169
Unit 4		 Introduction to Recommender System and Time Series Analysis	 183

	 	 Model Question Paper Sets						 193SG
O
U

Introduction to
Machine Learning

BLOCK 1

 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Machine Learning:
Foundations and Concepts

Learning Outcomes

Prerequisites

	♦ familiarize with the key concepts and terminology used in machine learning

	♦ explore the history and evolution of machine learning

	♦ recognize the impact of technological advancement in machine learning

	♦ identify the three types of machine learning

Machine Learning has rapidly become a cornerstone of modern technology, subtly
influencing many aspects of our daily lives. From filtering out spam emails to providing
personalized recommendations on streaming platforms, it’s at work behind the scenes,
improving efficiency and convenience. What makes Machine Learning fascinating is its
ability to learn from data, adapt over time, and perform tasks that traditionally required
human intelligence.

At the heart of Machine Learning is the concept of training models using vast amounts
of data. These models identify patterns and make predictions or decisions without being
explicitly programmed for every possible scenario. For example, a spam filter doesn’t
rely on rigid rules but instead learns from thousands of examples of spam and non-spam
emails to distinguish between the two more accurately over time.

This field is not confined to futuristic innovations; it’s deeply embedded in the tools
we use every day. It enables voice assistants to understand us, helps detect fraud in
financial transactions, and powers the algorithms behind facial recognition. In the
following exploration, we’ll dive into the foundations of Machine Learning, unpacking
how it works, its various types, and why it’s becoming indispensable in so many
industries.

UNIT 1

 At the end of this unit, the learner will be able to :

2 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion

Keywords

Learning, Training, Model, Parameters, Hyperparameters, Supervised Learning,
Unsupervised Learning, Reinforcement Learning.

1.1.1 Introduction to Machine Learning
Machine Learning is a branch of artificial intelligence (AI) that focuses on building

systems that can learn from data and improve their performance over time without
being explicitly programmed. Instead of relying on predefined rules, Machine Learning
algorithms use patterns and insights from historical data to make decisions, predictions
or recommendations.

In essence, it involves feeding large amounts of data into an algorithm, which then
identifies patterns or structures within the data. Once the system has learned from the
data, it can apply its understanding to new, unseen data to make accurate predictions or
classifications. This process of learning and adapting is what makes Machine Learning
particularly powerful and versatile across a variety of applications, including spam
filtering, speech recognition, recommendation systems, and even autonomous vehicles.

1.1.2 Importance of Machine Learning
Consider how you would write a recommendation system for an online store using

traditional programming techniques:

1.	 First, you would analyze customer behavior. You might notice that people
who buy certain items (like laptops) often purchase related accessories (like
laptop bags or mice). You would also observe patterns such as frequent
purchases of similar genres of books or certain brands of clothing.

2.	 You would then create a set of rules to recommend products. For example,
if a customer buys a laptop, the system might suggest laptop bags or other
electronic accessories. Similarly, if someone buys a fiction book, you might
recommend other popular fiction titles.

3.	 You would test this recommendation logic, iterating on the rules based on
customer feedback and performance, tweaking and expanding the rule set as
necessary.

Over time, this rule-based system could become cumbersome, with a complex and
growing list of hard-coded rules to maintain and update.

In contrast, a recommendation system based on Machine Learning automatically
analyzes customer data and identifies patterns, such as frequently co-purchased items
or customer preferences based on past behavior. The system learns these patterns from
the data and dynamically adjusts its recommendations, making it more scalable, easier
to maintain, and more personalized for each user.

3 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suppose, suddenly there’s a big shift in what customers are interested in. Let’s say
eco-friendly products are trending. If you were using traditional programming, the
system would struggle to adapt to this change without you manually updating it. You’d
have to write new rules to capture and recommend these eco-friendly items, or else the
system would continue suggesting old, irrelevant products, missing the latest trends.

Another interesting use of Machine Learning is in customer sentiment analysis. Let’s
say we want to build a tool that can tell if a review is positive or negative. Traditional
methods would rely on creating rules to detect specific words that indicate sentiment,
like “good” or “bad.” But this approach wouldn’t do well with things like sarcasm
or tricky context, right? Machine Learning, however, can handle this. It learns from
tons of labeled reviews, picking up on subtle patterns, even understanding sarcasm and
slang. Over time, it improves, and the system becomes better at detecting how people
truly feel about a product or service.

Finally, think about how Machine Learning can help businesses uncover hidden
insights in large amounts of data. For example, a retail company could use Machine
Learning to look at purchasing behaviors and realize that winter clothes are suddenly
in higher demand in certain regions because of an early cold snap. This insight helps
the company make smarter decisions about stocking inventory and planning marketing
campaigns, ultimately giving them an edge in the market. Machine Learning’s ability
to find patterns in data and provide actionable insights is a game changer for businesses
looking to stay competitive and make better-informed decisions.

1.1.3 Learning and its components
Learning refers to the process by which a model improves its performance on a task

through experience, typically by analyzing data and making predictions or decisions. It
mimics the human learning process, adapting based on input data and feedback.

The learning process, whether in humans or machines, involves four key components:
data storage, abstraction, generalization, and evaluation, as shown in Fig 1.1.1 Data
storage refers to storing and retrieving large amounts of information. Humans use the
brain, while computers use devices like hard drives and memory. Abstraction involves
analyzing stored data to create general concepts or models, transforming data into a
simplified, meaningful form. Generalization extends this knowledge to new, similar
situations, focusing on identifying patterns relevant for future tasks. Finally, evaluation
measures the usefulness of the learned knowledge through feedback, which helps
improve the learning process.

		 Fig 1.1.1 Components of Learning process

4 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

1.1.4 History and Evolution of Machine Learning
Once upon a time, in the era following World War II, the world stood on the brink

of a new kind of revolution—not of industry, but of intelligence. This was the dawn of
machine learning, a concept that would grow and evolve through the decades, driven
by the visionaries of their time.

The Spark of an Idea (1940s-1950s) Our story begins in the 1940s with two
remarkable thinkers, Walter Pitts, a logician, and Warren McCulloch, a neuroscientist.
Together, they dreamed of creating machines that could mimic the human brain's
thought processes. Their collaboration led to the first mathematical model of a neural
network, laying the foundation for what was to come.

Fast forward to 1950, and we meet Alan Turing, a man whose name would become
synonymous with artificial intelligence. In his groundbreaking paper, Computing
Machinery and Intelligence, Turing posed a question that would echo through the ages:
"Can machines think?" He introduced the Turing Test, a way to measure a machine's
ability to exhibit intelligent behavior indistinguishable from a human.

Meanwhile, in a modest lab, Marvin Minsky and Dean Edmonds were crafting
SNARC, the first artificial neural network, using an impressive array of 3,000 vacuum
tubes. Their work, though rudimentary, was a giant leap towards creating machines that
could learn and adapt.

The Age of Curiosity (1960s) As the 1960s dawned, the world saw the birth of some
fascinating creations. Joseph Weizenbaum introduced Eliza, the first chatbot capable of
holding human-like conversations. Though simple by today’s standards, Eliza amazed
everyone by mimicking a psychotherapist, making people feel as if they were talking
to another human.

Not far away, at Stanford, James Adams built the Stanford Cart, a remote-controlled
vehicle that used video inputs to navigate its surroundings. This early exploration of
machine perception set the stage for future advancements in robotics.

The Period of Learning (1970s-1980s) The 1970s and 1980s were a time of
experimentation and discovery. Donald Michie introduced MENACE, a small,
matchbox-based machine that could learn to play tic-tac-toe perfectly. It was a simple
but powerful demonstration of machine learning in action.

Around the same time, Edward Feigenbaum and his team developed DENDRAL, an
expert system designed to assist organic chemists in identifying unknown molecules.
This was one of the first instances of machines providing valuable insights in specialized
fields.

The Game Masters (1990s) The 1990s were dominated by machines challenging
human expertise in games. Programs capable of playing backgammon and chess
reached levels that could rival top human players. The world watched in awe as these
machines not only competed but sometimes outperformed their human counterparts,
signaling a shift in what machines could achieve.

5 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

The Era of Intelligence (2000s and Beyond) The turn of the millennium brought a
wave of innovations that reshaped the landscape of machine learning. In 2011, IBM’s
Watson took on the all-time Jeopardy! champion and won, showcasing the immense
potential of machine learning in understanding and processing human language.

Today, the story of machine learning continues to unfold with personal assistants
like Siri and Alexa, autonomous vehicles, facial recognition technology, and even
AI-generated art and music. The advent of deep learning, generative adversarial
networks, and sophisticated models has democratized AI, making it accessible to people
and businesses worldwide.

As we stand on the shoulders of giants, the journey of machine learning is far from
over. Each chapter of this story brings us closer to a future where machines and humans
work together in harmony, solving problems once thought insurmountable. And so, the
story continues, with new heroes, new challenges, and endless possibilities.

1.1.5 Impact of Technological Advancements on Machine
Learning

Technological advancements have played a crucial role in transforming machine
learning from a theoretical concept into a practical tool used across industries.

1.	 Hardware Improvements: The development of powerful GPUs and
specialized hardware like Tensor Processing Units (TPUs) accelerated the
training of complex models. Parallel computing and distributed systems
enabled handling massive datasets efficiently.

2.	 Data Availability: The explosion of digital data from social media,
e-commerce, sensors, and IoT devices provided an abundance of information
for training machine learning models. Access to diverse and extensive datasets
has been a key driver of machine learning innovation.

3.	 Open-Source Software and Frameworks: The availability of open-source
libraries such as Scikit-Learn, TensorFlow, PyTorch, and Keras democratized
access to machine learning tools, allowing researchers and developers to
experiment and innovate more easily.

4.	 Cloud Computing: The emergence of cloud platforms offered scalable
and affordable computational resources, enabling widespread adoption of
machine learning solutions in businesses and research.

Apple’s advancements in voice recognition, predictive text, and
autocorrect, all integral to Siri, showcase its significant work in machine
learning. The latest iPhone also incorporates ML within its processor,
performing trillions of operations per second-bringing machine learning right
to your fingertips.

1.1.6 Types of Machine Learning
Machine learning can be broadly categorized into three primary types based on

6 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

the nature of the learning process: Supervised Learning, Unsupervised Learning, and
Reinforcement Learning. Each type serves different purposes and is suitable for various
kinds of tasks.

1.1.6.1 Overview of Supervised Learning

Imagine a world where you are an apprentice under a wise and knowledgeable master
who wants to teach you everything about recognizing fruits. Welcome to the world of
Supervised Learning!

The learning journey begins with meeting the master, who has a basket full of fruits,
each clearly labeled – apples, bananas, oranges, and more. Your task is to learn how to
identify each fruit just by looking at it. This marks the start of your supervised learning
adventure, where the labeled data (the fruits with names) will guide you.

In the training phase, your master shows you a fruit every day, telling you its name.
You carefully observe and try to remember each one. When you guess correctly, your
master nods approvingly; when you are wrong, he gently corrects you, helping you
refine your understanding. This process of training the model involves daily lessons,
allowing you to build your recognition skills over time.

As you progress, learning from mistakes becomes crucial. Initially, you might confuse
an apple with an orange. However, each time your master points out the mistake, you
adjust your understanding. You begin to notice the subtle differences, such as the shiny
red skin of an apple or the bumpy peel of an orange, gradually minimizing your errors
and enhancing your accuracy.

Finally, the moment of testing your skills arrives. One day, your master hands you
a mystery fruit with no label. This is the big test, where you must apply everything
you have learned. With confidence, you examine the fruit and proudly declare, “This
is an apple!” This step demonstrates your ability to make accurate predictions on new,
unseen data, showcasing the effectiveness of your learning journey.

This is how a Supervised learning works. It is like having a knowledgeable guide,
who provides clear instructions and feedback throughout your journey. Just as the
master labels each fruit and corrects your mistakes, supervised learning uses labeled
data to train the model, guiding it towards accurate predictions. This structured approach
ensures that the model can confidently recognize and classify new data, much like you
identify the mystery fruit with ease after a series of guided lessons.

1.1.6.2 Overview of Unsupervised Learning

Let us consider another example. Suppose you have been invited to a grand,
mysterious party where every guest is wearing a mask. You know nothing about
who they are or what they like. You have no labels to guide you. This is the world of
unsupervised learning, where the task is to uncover the hidden connections and patterns
among the guests.

As you mingle, you start noticing clusters forming. You observe that some guests
gravitate towards the buffet, chatting about gourmet recipes, while others gather around
the dance floor, exchanging moves and music preferences. Without anyone telling you,

7 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

you begin to group these guests based on their behavior and interests. This is clustering
in action, where the model groups data by finding natural similarities, just like how you
grouped the foodies and dancers.

Next, you decide to play detective, looking for patterns in the conversations.
You overhear that guests who enjoy the appetizers often head for the dessert table
later. Intrigued, you piece together these associations, like a market basket analysis,
discovering relationships between different preferences and behaviors.

As the night progresses, you spot something unusual – one guest seems to avoid all
groups and engages in peculiar behavior. This anomaly catches your attention, similar to
how unsupervised learning identifies outliers or unusual patterns in data, which can be
crucial for tasks like fraud detection.By the end of the party, you have gathered valuable
insights about the guests, their preferences, and hidden connections, all without any
prior labels or instructions.

This is the essence of unsupervised learning, i.e exploring the unknown to reveal
the hidden structures within data, making smarter decisions and creating innovative
solutions. It’s like navigating a masked party, uncovering hidden patterns and
relationships without any prior instructions. While supervised learning depends on clear
labels to make precise predictions, unsupervised learning ventures into the unknown,
uncovering patterns and structures within unlabeled data, revealing insights that might
otherwise go unnoticed.

1.1.6.3 Overview of Reinforcement Learning

Look at the same mysterious party. But this time, you are not just a guest. you are the
party planner trying to figure out how to make the night unforgettable. Each decision
you make, such as whether the guests should dance now or have another drink, either
earns you applause or causes confusion among the guests. The better your decisions, the
more applause you get, and the more you learn about what makes the party a success.

As you continue making choices, you observe how the guests respond. Maybe you
tried a slow song, and they all went to grab snacks—oops, that didn’t work! But next
time, you choose a faster song, and the dance floor fills up. Through trial and error, you
learn the best ways to keep the guests happy, maximizing the fun as the night progresses.

This is similar to how reinforcement learning works. The agent, like the party planner,
learns the best strategy to make decisions that lead to the highest reward—an enjoyable
party. It explores the environment, makes choices, receives feedback, and adjusts its
strategy to improve over time.

For example, teaching a robot to dance mirrors this process, where the robot tries
different moves, sees which ones get the best response, and improves over time. Just as
reinforcement learning trains agents in games, robotics, or trading, the party planner is
making decisions based on feedback to become the ultimate party host.

1.1.7 Key Concepts and Terminology
In the fascinating world of machine learning, it's crucial to understand the foundational

elements that make up the process. Let's explore the three key components:

8 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

1.	 Data, Features, and Labels
2.	 Training, Validation and Testing Datasets
3.	 Model, Algorithm and Parameters

1.1.7.1 Data, Features and Labels

Data is the lifeblood of any machine learning project. It’s the raw information that
machines use to learn patterns and make predictions. Data can come from various
sources like text, images, audio, or structured databases, depending on the problem at
hand.

Features are the individual measurable properties or characteristics of the data. In
simpler terms, features are the input variables that the machine learning model uses
to make predictions. For instance, in a dataset predicting house prices, features might
include the number of bedrooms, square footage, and location.

Labels are the output or target variable that the model is trying to predict. They
represent the answers the model aims to provide. Continuing with the house price
example, the label would be the actual price of the house.

1.1.7.2 Training, Validation and Testing Datasets

To build a robust machine learning model, the dataset is typically divided into three
parts:

a.	 Training Dataset: This is the portion of the data used to train the model.
It helps the model learn the relationship between features and labels. The
model adjusts its parameters based on this data to minimize errors.

b.	 Validation Dataset: Once the model is trained, the validation dataset is
used to fine-tune and evaluate the model’s performance during training. It
helps in tuning hyperparameters (like learning rate or the number of layers
in a neural network) and prevents the model from overfitting, ensuring it
generalizes well to unseen data.

c.	 Testing Dataset: Finally, after training and validation, the testing dataset is
used to assess the model’s performance. This dataset is not used during the
training phase and provides an unbiased evaluation of the model’s accuracy
and effectiveness.

1.1.7.3 Model, Algorithm and Parameters

In machine learning, the terms model, algorithm, and parameters often come up.
Let’s break down what each of these means:

Model is the result of training a machine learning algorithm on data. It’s essentially
a mathematical representation of the relationship between the input features and the
output labels. For example, a linear regression model might represent the relationship
between house prices and features like size and location as a simple line equation.

Algorithm is the set of rules or procedures that the model follows to learn from the
data. It’s the blueprint for how the model will train on the data and adjust its parameters

9 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

to minimize prediction errors. Common algorithms include decision trees, support
vector machines, and neural networks.

Parameters are the internal configuration values of the model that are learned from
the data during training. They are the elements the model tweaks to make accurate
predictions. For instance, in a linear regression model, the parameters would be the
coefficients of the features in the linear equation. Hyperparameters are the external
configurations set by the practitioner before training begins, such as the learning rate or
the number of hidden layers in a neural network. Hyperparameters are tuned to optimize
model performance.

Recap

What is Machine Learning?

	♦ Machine Learning is a branch of AI that learns from data.

	♦ It makes decisions without explicit programming.

	♦ Applications: Spam filtering, speech recognition, autonomous vehicles,
recommendation systems.

History and Evolution of Machine Learning

	♦ 1940s-50s: Neural network model by Pitts & McCulloch.

	♦ 1950: Turing’s Turing Test asks, "Can machines think?"

	♦ 1960s: Eliza chatbot, Stanford Cart (robotics).

	♦ 1970s-80s: MENACE and DENDRAL show early ML use.

	♦ 1990s: AI competes with humans in chess and backgammon.

	♦ 2000s: IBM Watson wins Jeopardy!, growth of AI assistants.
Impact of Technological Advancements on Machine Learning

	♦ Hardware (GPUs, TPUs) speeds up model training.

	♦ Data from social media, IoT boosts ML progress.

	♦ Open-source tools (TensorFlow, PyTorch) make ML accessible.

	♦ Cloud computing enables scalable ML for businesses and researchers.
 Types of Machine Learning

	♦ Machine Learning: Supervised, Unsupervised, Reinforcement Learning

	♦ Supervised Learning: Labeled data guides learning, used for prediction
tasks

10 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	♦ Unsupervised Learning: Identifying patterns without labels, used for
clustering and anomaly detection

	♦ Reinforcement Learning: Learning through trial and error, maximizing
rewards

Supervised Learning

	♦ Apprentice under a master with labeled fruits (data)

	♦ Learn through feedback and adjustments (training phase)

	♦ Gradual improvement through mistakes

	♦ Predict outcomes on new data (testing phase)

	♦ Structured learning with guidance
Unsupervised Learning

	♦ No labels, uncover hidden patterns

	♦ Clustering: Grouping similar behaviors (foodies, dancers at a party)

	♦ Market Basket Analysis: Finding relationships between items

	♦ Anomaly Detection: Identifying unusual patterns (fraud detection)

	♦ Discover insights from unlabeled data
Reinforcement Learning

	♦ Making decisions to maximize rewards

	♦ Trial and error process, learn from outcomes

	♦ Adjust strategy based on feedback

	♦ Used in games, robotics, trading

	♦ Example: Party planner improving decisions for a successful event
Key Concepts and Terminology

	♦ Data: Raw information used for learning

	♦ Features: Input variables, e.g., house attributes (bedrooms, size)

	♦ Labels: Target output, e.g., house price

	♦ Training Dataset: Used for model learning

	♦ Validation Dataset: Fine-tunes model performance

	♦ Testing Dataset: Unseen data used for evaluation

11 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Model, Algorithm, and Parameters

	♦ Model: Mathematical representation of input-output relationship

	♦ Algorithm: Rules/procedures to train the model

	♦ Parameters: Internal values learned during training

	♦ Hyperparameters: Settings adjusted before training

Objective Type Questions

1.	 What is the main purpose of Machine Learning?

2.	 Which subset of AI allows systems to learn from data without explicit
programming?

3.	 What type of learning involves labeled data for training?

4.	 What is the type of learning where the algorithm discovers hidden patterns
in data without labels?

5.	 Which learning method involves learning from rewards and penalties
through trial and error?

6.	 Which hardware advancement has greatly improved Machine Learning
algorithms?

7.	 What term refers to the availability of vast amounts of data used for Machine
Learning?

8.	 Which type of Machine Learning is typically used for classification tasks?

9.	 Which type of Machine Learning is used for clustering and dimensionality
reduction?

10.	What is the process of improving a model based on feedback and new data
called?

11.	Which technique is often used for autonomous vehicles in Machine Learning?

12.	What is the term for the ability of a system to improve its performance over
time in Machine Learning?

13.	Which type of learning is used for tasks such as image recognition and
speech processing?

14.	What is the raw information used by machine learning systems to learn
patterns?

12 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Answers to Objective Type Questions
1.	 Learning

2.	 Machine Learning

3.	 Supervised

4.	 Unsupervised

5.	 Reinforcement

6.	 GPUs

7.	 Big Data

8.	 Supervised

9.	 Unsupervised

10.	Training

11.	Reinforcement Learning

12.	Adaptation

13.	Supervised

14.	Data

15.	Features

16.	Labels

15.	What are the individual measurable properties or characteristics of the data
called?

16.	What is the output or target variable that a model aims to predict?

17.	What dataset is used to train a machine learning model?

18.	What dataset is used to fine-tune and evaluate a model’s performance during
training?

19.	What dataset is used to evaluate the model’s performance after training?

20.	What is the mathematical representation of the relationship between input
features and output labels called?

21.	What is the set of rules or procedures that a machine learning model follows
to learn from data?

22.	What are the internal configuration values of a model learned during training
called?

13 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Assignments
1.	 Explain the core concept of Machine Learning and discuss how it differs

from traditional programming approaches.

2.	 Describe the reasons for the growing importance of Machine Learning in
various industries.

3.	 Outline the major milestones in the history of Machine Learning from the
1940s to the present.

4.	 Discuss how advancements in hardware, data availability, open-source
software, and cloud computing have influenced the evolution of Machine
Learning.

17.	Training

18.	Validation

19.	Testing

20.	Model

21.	Algorithm

22.	Parameters

Suggested Reading

1.	 Ramakrishnan, R., & Gehrke, J. (2002). Database management systems
(3rd ed.). McGraw-Hill.

2.	 Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database system
concepts (6th ed.). McGraw-Hill.

Reference

1.	 Murphy, K. P. (2012). Machine learning: A probabilistic perspective.
MIT Press.

2.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

3.	 Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras,
and TensorFlow. O'Reilly Media.

14 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Types of Machine Learning

Learning Outcomes

Prerequisites

	♦ familiarize with the fundamental concepts of machine learning

	♦ understand the principles and processes of supervised learning

	♦ explore the key differences between classification and regression

	♦ recall the advantages and limitations of supervised learning

You are about to start a journey into the world of machine learning. In your
previous lesson, you explored the introduction, history, and evolution of machine
learning, discovering how it has transformed over time from a theoretical concept to a
groundbreaking technology driving innovation today.

You learned about the early days when machine learning was rooted in statistics
and how technological advancements have made it a key enabler of modern artificial
intelligence. You also uncovered how pioneers laid the foundation of machine learning
by introducing algorithms capable of solving problems that once seemed impossible.

Now, let’s take this understanding a step further. Consider this: how do these
algorithms "learn"? What makes a machine capable of distinguishing between spam
and legitimate emails or predicting house prices with remarkable accuracy? This is
where supervised learning, one of the core types of machine learning, comes into play.
To truly appreciate its power, imagine teaching a child by providing examples—like
showing them what a cat and a dog look like until they can confidently identify either
in the real world. Similarly, machines are trained using labeled data to make accurate
predictions.

In this chapter, you will explore supervised learning, learning how machines use
labeled data to predict outcomes. You will also examine its key types, classification
and regression, and learn about their real-world applications. As you move forward,
consider this as the next logical step in your journey from understanding the "what" and
"why" of machine learning to grasping the "how."

UNIT 2

At the end of this unit, the learner will be able to :

15 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Let’s continue exploring how machines learn, guided by structured data, to perform
incredible tasks in ways that mimic human decision-making!

Keywords

Unsupervised, Semi-supervised learning, Classification, Regression,Clustering,
Association

Discussion

1.2.1 Types of Machine learning
Machine learning is a branch of artificial intelligence that focuses on building systems

capable of learning from data and improving over time without explicit programming. It
is typically classified into three main types: supervised learning, unsupervised learning,
and reinforcement learning, as shown in Fig 1.2.1. In supervised learning, the model is
trained on labeled data, where both the inputs and corresponding outputs are known.
Unsupervised learning, on the other hand, deals with unlabeled data and aims to uncover
hidden patterns or groupings within the data. Reinforcement learning involves an agent
learning through trial and error by receiving rewards or penalties based on its actions.
Each type of machine learning offers unique advantages, allowing it to be applied to a
wide range of real-world challenges.

Fig 1.2.1 Types of Machine learning

16 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

1.2.2 Supervised Learning
Supervised learning is one of the most commonly used techniques in machine

learning, where a model is trained on a labeled dataset. A labeled dataset consists of
both input data and the corresponding output (or label). The goal of supervised learning
is for the model to learn a mapping between the inputs and outputs so that it can predict
the correct output for new, unseen data. In simple terms, it’s like teaching a child by
showing them examples of correct answers and guiding them to find the right ones on
their own as shown in Fig 1.2.2.

Fig 1.2.2 Supervised learning
Imagine you are building an email filter to detect spam messages. To teach your

machine, you provide it with a dataset of emails, where each email is labeled as either
spam or not. The algorithm analyzes various features of these emails, such as the
sender’s address, the presence of certain keywords, or even the length of the email.
Based on these labeled examples, the machine learns the distinguishing characteristics
of spam versus non-spam emails.

Later, when the model is presented with a new email (one that it has never seen
before), it uses its learned knowledge to predict whether the email is spam or not. This
process, where the algorithm learns from labeled data to make predictions, is what
makes it "supervised" learning.

1.2.2.1 Types of Supervised Learning

Supervised learning is divided into two main types based on the nature of the
prediction task: Classification and Regression.

17 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

1. Classification

Fig 1.2.3 Classification
Classification involves predicting discrete labels or categories. In this case, the output

variable is a class or category. For example, we classify emails as either spam or not or
determine whether a patient has a high risk or low risk of heart disease. The task here is
to assign an input to one of the predefined categories shown in Fig 1.2.3.

2. Regression
Regression is about predicting continuous output values. In regression, the model

predicts a real number, such as the price of a house or the temperature of a city. For
instance, we could predict the sale price of a house based on features such as its area in
square feet, number of bedrooms, and location. Unlike classification, which outputs a
category, regression produces a numerical value as shown in Fig 1.2.4.

Fig 1.2.4 Regression

18 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Supervised learning offers key advantages, including high accuracy due to labeled
data, interpretability through models like decision trees, and the ability to fine-tune pre-
trained models, saving time and resources. Despite the advantages, supervised learning
has some downsides, like needing good labeled data, which can be expensive and time-
consuming to create. It also struggles with new or different data not seen during training.

A New Example: Predicting House Prices
Let’s take another example to illustrate supervised learning: predicting the

price of a house. You have a dataset of houses with labeled features such as the
size of the house, the number of bedrooms, the neighborhood, and the price. By
using this labeled data, a regression algorithm can learn the relationship between
these features and the house price. Once trained, the model can predict the price
of a new house by simply feeding it the house’s features, even if it has never seen
this particular house before.

1.2.3 Unsupervised Learning
Let’s say you have a bowl of mixed candies, and they’re all different colors and

shapes. You don’t know their names or flavors, but you decide to sort them into groups,
maybe all the red candies in one pile, all the round ones in another. That’s unsupervised
learning: grouping similar things without knowing exactly what they are. It’s like a
curious detective piecing things together without a guide, finding hidden relationships
in the data!

In unsupervised learning, the algorithm is not provided with correct responses or
labeled outputs. Instead, it identifies similarities within the input data and groups similar
inputs together. This process is often referred to as density estimation in statistical terms
as shown in Fig 1.2.5.

Fig 1.2.5 Unsupervised learning

1.2.3.1 Primary tasks of Unsupervised Learning model

Unsupervised learning models serve three primary tasks: clustering, association, and
dimensionality reduction.

1. Clustering
Clustering is an unsupervised learning technique that groups data points with similar

characteristics together. The goal is to divide a dataset into clusters so that data points
within the same cluster are more alike compared to those in other clusters. Clustering

19 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

algorithms identify natural patterns or groupings in the data, even when the analyst
doesn’t know what to expect in advance.

Suppose you have a box full of toys in the shapes of triangles, squares, and circles, but
no one tells you their names or categories. Using unsupervised learning, the algorithm
looks at the toys and identifies patterns based on their features, like the number of edges
or their curves. It groups all the pointy ones (triangles), all the ones with four equal
sides (squares), and all the round ones (circles) together. Even though it doesn’t know
the shapes’ names, it successfully classifies them into clusters based on similarities.
This is how unsupervised learning works by finding patterns and grouping data without
prior labels or instructions as shown in Fig 1.2.6.

Fig 1.2.6 Clustering
2. Association

Association is another important task in unsupervised learning. Simply put, association
rule learning is a machine learning technique used to find and utilize relationships or
"associations" between items in large datasets. Its goal is to identify item combinations
that occur together more often than expected by chance.

A classic example is market basket analysis, which analyzes product combinations
frequently purchased together in transactions. For instance, if a customer buys bread,
they are likely to buy butter, leading to an association rule like "bread → butter." Retailers
and e-commerce platforms use this approach to recommend products, improving the
shopping experience and boosting sales as shown in Fig 1.2.7.

Fig 1.2.7 Association

20 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

3. Dimensionality Reduction
Dimensionality reduction is a technique in machine learning that reduces the number

of input variables in a dataset. This process simplifies models, enhances performance,
and aids in visualizing complex data.

Why is Dimensionality Reduction Important?

	♦ Improved Model Performance: By eliminating irrelevant or redundant
features, dimensionality reduction helps prevent overfitting, leading to better
generalization on new data.

	♦ Enhanced Computational Efficiency: Reducing the number of features
decreases the computational load, speeding up model training and inference.

	♦ Data Visualization: Lower-dimensional data is easier to visualize,
facilitating better understanding and interpretation.

1.2.4 Reinforcement Learning
Reinforcement Learning (RL) is a type of machine learning where an agent (a

program or system) learns how to act in an environment by performing actions and
observing their outcomes. It works on a feedback-based approach:

1.	 Positive feedback (reward): Given for good actions.
2.	 Negative feedback (penalty): Given for bad actions.

A typical RL system consists of several key components (as shown in Fig 1.2.8):

1.	 Agent: The learner or decision maker that performs actions.
2.	 Environment: The external system with which the agent interacts.
3.	 State: A representation of the current situation of the agent within the

environment.
4.	 Action: A set of all possible moves the agent can make.
5.	 Reward: Feedback from the environment in response to the agent's action,

guiding future decisions.
6.	 Policy: A strategy that the agent employs to determine its actions based on

the current state.

Fig 1.2.8 Reinforced Learning

21 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Unlike supervised learning, where labeled data is provided for learning, RL does
not use any labeled data. Instead, the agent learns by interacting with its environment
and gaining experience. This makes RL unique as the agent improves itself over time
through trial and error.

1.2.4.1 Key Features of Reinforcement Learning
1.	 Learning through Experience: The agent learns from the environment

without human intervention or pre-programming.
2.	 Exploration and Exploitation: The agent explores different actions to

discover what works best and exploits that knowledge to improve its
performance.

3.	 Sequential Decision-Making: RL is used in tasks where decisions must be
made in a sequence, such as game-playing or controlling robots.

4.	 Adaptability: RL agents adjust their strategies in response to changes in the
environment, learning from new experiences to improve performance over
time.

5.	 Delayed Rewards: The outcomes of actions may not be immediate, requiring
agents to learn to associate actions with long-term rewards, which can be
challenging due to the temporal gap between action and feedback.

6.	 Trial-and-Error Learning: RL agents learn optimal behaviors by exploring
various actions and observing the resulting outcomes, refining their strategies
based on this experiential feedback.

Example: A Robotic Dog
Imagine teaching a robotic dog to walk. Initially, the robot doesn’t know how to

move its legs. When it moves correctly, it gets a reward. If it falls or moves incorrectly,
it gets a penalty. Over time, the robot learns how to coordinate its legs to walk properly
by balancing rewards and penalties.

In 2016, DeepMind's AlphaGo, a machine learning system, defeated
Lee Sedol, one of the world’s top Go players. Go, a complex strategy board
game, was previously thought to be too intricate for computers due to its vast
number of possible moves. AlphaGo's victory marked a significant milestone
in AI, showcasing the potential of deep learning and reinforcement learning in
mastering complex tasks.

Recap
Types of Machine Learning- Supervised Learning, Unsupervised Learning, Semi-

supervised Learning, Reinforcement Learning:

Supervised Learning

	♦ Uses labeled datasets for prediction.

22 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	♦ Example: Predicting spam emails using features like sender, keywords,
email length.

	♦ Predicts unseen data based on learned patterns.
Types of Supervised Learning:

1.	 Classification:

●	 Predicts discrete labels or categories.

●	 Example: Spam vs. non-spam, high-risk vs. low-risk heart disease.
2.	 Regression:

●	 Predicts continuous values.

●	 Example: House price prediction using features like size,
location, etc.

Unsupervised Learning:

	♦ Groups similar data without labels by identifying patterns.
	♦ Primary tasks:

a.	 Clustering: Groups data points with similar characteristics.

b.	 Association: Identifies relationships between items in datasets.

c.	 Dimensionality reduction: Reduces the number of input variables
in a dataset.

Reinforcement Learning (RL):

	♦ Agents learn by interacting with the environment using rewards and penalties.
	♦ Does not use labeled data, relies on trial and error.
	♦ Key Features:

●	 Learning through experience without human intervention.

●	 Balances exploration of actions and exploitation of learned knowledge.

●	 Sequential decision-making for tasks requiring step-by-step actions.

Objective Type Questions

1.	 What is the main goal of supervised learning?

2.	 What type of dataset is used in supervised learning?

3.	 Name the two main types of supervised learning.

4.	 In classification tasks, what kind of output does the model predict?

23 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Answers to Objective Type Questions
1.	 To predict outputs for new data by learning from past data.
2.	 A dataset with both inputs and their correct outputs (labeled data).
3.	 Classification and Regression.
4.	 Categories or classes (e.g., spam or not spam).
5.	 Predicting house prices.
6.	 Supervised learning uses labeled data; unsupervised learning works with

unlabeled data.
7.	 Data where each input has a correct output (label).
8.	 It learns with guidance from labeled examples.
9.	 It provides high accuracy.
10.	It depends on expensive and time-consuming labeled data.
11.	Unsupervised
12.	Clustering
13.	Association

5.	 Give an example of a real-world problem solved using regression.

6.	 How does supervised learning differ from unsupervised learning?

7.	 What is a labeled dataset?

8.	 Why is supervised learning referred to as "supervised"?

9.	 Mention one advantage of supervised learning.

10.	What is the key disadvantage of supervised learning when it comes to labeled
data?

11.	What type of learning groups similar data without labels?

12.	What task in unsupervised learning groups data points with similar
characteristics?

13.	What unsupervised learning task identifies relationships between items in
datasets?

14.	What type of learning involves rewards and penalties?

15.	What is the feedback given for good actions in reinforcement learning called?

16.	What is the feedback given for bad actions in reinforcement learning called?

17.	What is the process through which an agent learns from its environment in
reinforcement learning?

18.	What decision-making method does reinforcement learning use?

19.	Which learning type does not require labeled data?

24 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

14.	Reinforcement
15.	Reward
16.	Penalty
17.	Experience
18.	Sequential
19.	Reinforcement

Assignments
1.	 What is supervised learning, and how does it differ from unsupervised

learning? Using the email spam filter example, explain the process of
supervised learning and how labeled data is used.

2.	 Distinguish between classification and regression in supervised learning.
Provide one example each of a classification problem and a regression
problem, explaining why they belong to their respective categories.

3.	 Discuss the process of clustering in unsupervised learning. How does it help
in grouping data, and what are its applications in various industries?

Suggested Reading

1.	 Alpaydin, E. (2020). Introduction to machine learning (4th ed.). MIT Press

2.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press.

Reference

1.	 Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow (2nd ed.). O'Reilly Media.

2.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press.

3.	 Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT
Press.

25 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Performance Evaluation
Metrics

Learning Outcomes

Prerequisites

	♦ identify the elements of a confusion matrix

	♦ to familiarize the concept of accuracy, precision, recall, and specificity

	♦ explain the significance of precision and recall in various applications

	♦ describe the ROC curve and its components

Imagine you are a teacher grading an exam. You want to know not just how many
students passed but also how many gave correct and incorrect answers. Simply counting
the number of correct answers does not tell you if students struggled with specific
questions. Similarly, when evaluating a machine learning model, just knowing how
often it predicts correctly is not enough. We need to analyze the types of errors it makes
to understand its strengths and weaknesses. This is where performance evaluation
metrics help, providing deeper insights beyond simple accuracy.

In everyday life, we often assess decisions based on different factors. For example, if
a doctor diagnoses patients, missing a real illness (false negative) is more serious than
wrongly identifying a healthy person as sick (false positive). The same applies to AI
models used in fraud detection, spam filtering, or medical diagnosis.

The confusion matrix helps us measure other important factors like precision (how
accurate positive predictions are) and recall (how well the model finds all positive
cases). This helps improve the model, ensuring that it works better for real-world tasks
where errors can have serious consequences. By understanding these metrics, we can
make better decisions about improving machine learning models and ensuring they
work effectively in real-world applications.

UNIT 3

Upon the completion of the unit, the learner will be able to :

26 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion
1.3.1 Confusion Matrix

In machine learning, it is important to know how well a model is making predictions.
Simple accuracy, which shows how many predictions were correct, doesnot always
tell the whole story, especially when there are different types of errors. This is where a
confusion matrix helps. It provides a detailed overview of the model's performance by
showing both correct and incorrect predictions, broken down into specific categories.
This allows us to understand how the model handles each class and what kinds of errors
it tends to make.

A confusion matrix is a table used to measure how well a machine learning model is
performing in classification tasks. It compares the model's predictions with the actual
results and breaks them down into four categories: true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN). True positives happen when the
model correctly predicts a positive result, while true negatives are when it correctly
predicts a negative result. False positives occur when the model wrongly predicts
a positive outcome, and false negatives happen when it misses a positive case. The
confusion matrix helps identify these errors, allowing us to analyze where the model
succeeds and where it needs improvement.

Imagine a model predicting whether an email is spam (unwanted) or not. If it checks
50 emails, correctly identifying 40 spam emails and 45 non-spam emails, the confusion
matrix will also show the mistakes, like marking 5 good emails as spam (false positives)
or missing spam emails (false negatives). This information helps calculate important
measures like accuracy, precision, and recall, which are used to make the model better
at detecting spam without marking too many valid emails as spam. In another example,
a medical diagnosis problem, the matrix can show how many patients with a disease
were correctly identified (true positives) versus those who were incorrectly predicted
as healthy (false negatives). The confusion matrix highlights both correct and incorrect
predictions, broken down by each class, making it easier to understand the specific
types of errors made by the model. In machine learning, particularly in classification
tasks, a confusion matrix (also known as an error matrix) is a tool used to evaluate the
performance of a classification model. It is a table that compares the predicted values to
the actual values in a test dataset, providing a detailed summary of how well the model
performs. This matrix enables visualization of classification results and helps identify
patterns of errors, such as one class being consistently mislabeled as another.

This matrix is the foundation for various performance metrics, such as accuracy,
precision, recall, and F1 score. By analyzing these metrics, the confusion matrix

Keywords

True Negative (TN), False Positive (FP), False Negative (FN), Decision Boundary,
Classification Model, Performance Metrics, Imbalanced Data

27 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

provides valuable insights into both the strengths and weaknesses of a classification
model, allowing data scientists to improve and fine-tune their algorithms.

Table 1.3.1: Confusion Matrix

Class 1
Predicted

Class 2
Predicted

Class 1 Actural TP FN

Class 2 Actual FP TN

In Table 1.3.1, Class 1 represents the Positive class and Class 2 represents the
Negative class. Below are the key terms used in classification evaluation:

	y Positive (P): An observation that belongs to the positive class (e.g., the item is
an apple).

	y Negative (N): An observation that does not belong to the positive class (e.g., the
item is not an apple).

	y True Positive (TP): The observation is positive and correctly predicted as
positive.

	y False Negative (FN): The observation is positive but incorrectly predicted as
negative.

	y True Negative (TN): The observation is negative and correctly predicted as
negative.

	y False Positive (FP): The observation is negative but incorrectly predicted as
positive

1.3.2 Classification Rate/Accuracy:
Accuracy, also known as the classification rate, is a metric used to evaluate a

classification model's overall performance. It is defined as the ratio of correctly
predicted instances to the total number of instances. Accuracy indicates how often the
model makes correct predictions across all classes.

The formula for accuracy is:

28 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	y TP (True Positive): The model correctly predicts a positive instance.

	y TN (True Negative): The model correctly predicts a negative instance.

	y FP (False Positive): The model incorrectly predicts a positive class for a
negative instance.

	y FN (False Negative): The model incorrectly predicts a negative class for a
positive instance.

Example Calculation: Suppose a model is tested on 100 instances, where:

	y 40 instances are true positives,

	y 45 are true negatives,

	y 5 are false positives, and

	y 10 are false negatives.
The accuracy can be calculated as:

This means that the model correctly classified 85% of the observations.

Limitations of Accuracy

While accuracy is a straightforward and widely-used metric, it may not always provide
a reliable assessment of model performance, particularly in imbalanced datasets. In
such cases, where one class (e.g., "negative") significantly outnumbers the other (e.g.,
"positive"), a model may achieve high accuracy by predicting only the majority class.
For example, if 95% of instances belong to the negative class, a model that always
predicts "negative" would have an accuracy of 95% despite failing to correctly identify
any positive cases.

Use Cases for Accuracy

Accuracy is useful when:

●	 The dataset is balanced, with similar proportions of positive
and negative instances.

●	 Both types of errors (false positives and false negatives) carry
similar consequences.

However, in scenarios where the cost of errors differs (e.g., medical diagnosis or
fraud detection), other metrics like precision, recall, or the F1 score may provide a more
meaningful evaluation of the model's performance.

29 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Accuracy is a useful metric for evaluating classification models but should be
interpreted carefully, especially when dealing with imbalanced data. Complementary
metrics are often necessary to obtain a comprehensive understanding of the model's
strengths and weaknesses.

1.3.3 Precision
Precision (Positive Predictive Value) evaluates the accuracy of the positive predictions

made by a model. It answers the question: Of all the instances predicted to be positive,
how many were actually positive? Precision is particularly useful in scenarios where
false positives can have serious consequences, such as in fraud detection or medical
diagnosis.

The formula for calculating precision is:

	y TP (True Positive) refers to cases where the model correctly predicted the
positive class.

	y FP (False Positive) refers to cases where the model incorrectly predicted the
positive class for a negative observation.

Example Calculation: Suppose a model predicted 45 cases as positive, out of which
40 were actually positive and 5 were false positives. Precision is calculated as:

This means that 89% of the predicted positive cases were correct.

Significance of Precision

Precision is crucial in situations where false positives can lead to costly or harmful
outcomes. For example:

	y In fraud detection, incorrectly flagging legitimate transactions as fraudulent
(false positives) can inconvenience customers and damage trust.

	y In medical diagnosis, incorrectly diagnosing a healthy patient as having a
disease may lead to unnecessary treatments and emotional distress.

By focusing on precision, such systems aim to minimize false positives, improving
the reliability of their predictions for critical applications. However, it is often necessary
to balance precision with recall, especially when both false positives and false negatives
carry risks.

30 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

1.3.4 Recall
Recall, also referred to as Sensitivity or True Positive Rate (TPR), is a metric that

measures how effectively a classification model identifies all actual positive cases.
It answers the question: Out of all the positive instances, how many were correctly
predicted as positive?

The formula for recall is:

●	 TP (True Positive): The number of positive cases correctly
identified by the model.

●	 FN (False Negative): The number of positive cases that were
incorrectly classified as negative by the model.

Example Calculation: Suppose a model is tested on a dataset where 50 instances
are actual positives. Out of these, the model correctly identifies 40 as positive (TP = 40)
but incorrectly classifies 10 as negative (FN = 10).

The recall can be calculated as:

This means that the model correctly identified 80% of the actual positive cases.

Importance of Recall

Recall is particularly important in scenarios where false negatives carry severe
consequences. Missing actual positive cases can lead to significant risks or losses in
such cases. Examples include:

1.	 Medical Diagnosis: In disease detection, failing to diagnose a patient who
has a serious illness (false negative) can be life-threatening. Therefore,
high recall ensures that most or all patients with the condition are correctly
identified for further testing or treatment.

2.	 Fraud Detection: In financial systems, failing to detect fraudulent
transactions may result in substantial monetary losses. A high recall is critical
to identify as many fraud cases as possible.

3.	 Security Systems: In threat detection (e.g., malware or intrusion detection),
missing an actual threat could compromise system security. Therefore,
maximizing recall is crucial in such situations.

31 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Limitations

Maximizing recall often comes at the expense of other performance metrics,
particularly precision. When a model prioritizes identifying all positive cases, it may
increase the number of false positives (i.e., predicting positive when the instance is
actually negative). This can lead to inefficiencies in cases where false alarms are costly,
such as excessive medical testing or frequent transaction alerts in fraud detection
systems.

To balance precision and recall, the F1 score is commonly used. It provides a single
metric that considers both precision and recall, making it useful when both false
positives and false negatives are important.

Recall is a critical metric for evaluating how well a model identifies positive cases,
especially in high-stakes applications. While improving recall reduces the risk of
missing positive instances, it may increase false positives. Therefore, recall should be
evaluated alongside other metrics to ensure a well-rounded understanding of model
performance.

1.3.5 F1 score
The F1 score is a performance metric that combines precision and recall into a single

value. It is the harmonic mean of precision and recall, giving a balanced measure of
a model's accuracy on both metrics. The F1 score is particularly valuable in scenarios
where there is an imbalance between positive and negative classes or when both false
positives and false negatives carry significant consequences.

The formula for calculating the F1 score is:

	♦ Precision is the proportion of correctly predicted positive cases out of all
predicted positives.

	♦ Recall is the proportion of correctly predicted positive cases out of all actual
positives.

Example Calculation: Suppose a model has the following performance metrics.

	 Precision = 0.89 (or 89%) and Recall = 0.80 (or 80%)

	 The F1 score is calculated as follows:

This indicates that the model achieves an 84% balance between precision and recall,
providing a more comprehensive view of its performance than either metric alone.

32 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Significance of the F1 Score
1.	 Balanced Evaluation: The F1 score emphasizes the need to balance both

precision and recall. In cases where high precision leads to a drop in recall
or vice versa, the F1 score ensures that neither metric is ignored.

2.	 Imbalanced Data: In datasets where one class significantly outnumbers the
other, accuracy can be misleading. For example, in a fraud detection system
where only 1% of transactions are fraudulent, a model that predicts all
transactions as non-fraudulent will achieve a high accuracy but zero recall.
The F1 score helps evaluate the model's performance more realistically by
accounting for both errors.

3.	 Use in Critical Applications: The F1 score is crucial in applications where
both false positives and false negatives have serious consequences. In
medical diagnosis, false negatives can miss critical conditions, while false
positives may cause unnecessary tests or treatments. Also in fraud detection,
missing actual fraud cases (false negatives) leads to financial losses, while
false positives inconvenience customers.

Limitations of the F1 Score

While the F1 score provides a useful balance between precision and recall, it may
not fully capture model performance in all scenarios. In cases where the cost of false
positives and false negatives differs significantly, other metrics such as Precision-Recall
curves or cost-sensitive measures may be more appropriate.

Additionally, since the F1 score is an average, it does not provide detailed insights
into whether precision or recall is driving performance. Therefore, it is essential to
analyze precision and recall separately alongside the F1 score.

The F1 score is a critical metric for evaluating models in situations where both
precision and recall are important. By taking the harmonic mean of these two metrics,
it provides a balanced measure of performance, particularly in imbalanced datasets. It
is commonly used in applications like healthcare, security, and fraud detection, where
both types of errors can have significant consequences.

1.3.6 Specificity
Specificity is a performance metric that evaluates how well a model correctly

identifies negative cases. It is also known as the true negative rate (TNR) and measures
the proportion of actual negative instances that are accurately classified by the model.
Specificity answers the question: Out of all the negative instances, how many were
correctly predicted as negative?

The formula for specificity is:

33 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	y TN (True Negative): The number of negative instances that the model correctly
classified as negative.

	y FP (False Positive): The number of negative instances that the model incorrectly
classified as positive.

Example Calculation: Suppose a model is tested on 50 actual negative instances.
Out of these, the model correctly predicts 45 instances as negative (TN = 45), while 5
instances are incorrectly classified as positive (FP = 5).

The specificity can be calculated as:

This means that the model correctly identified 90% of the actual negative cases.

Importance of Specificity

Specificity is crucial in scenarios where false positives need to be minimized. In such
cases, mistakenly classifying negative instances as positive can lead to unnecessary
actions, inefficiencies, or security risks. High specificity ensures that the system
produces fewer false alarms, reducing disruptions and resource wastage.

Applications of Specificity
1.	 Security Systems: In intrusion detection or malware scanning, false alarms

can overwhelm administrators with unnecessary alerts. High specificity
ensures that only genuine threats trigger alerts, improving system efficiency.

2.	 Medical Testing: In medical screening, a false positive result may lead to
unnecessary stress, further diagnostic tests, and treatments. For example, in
cancer screening, a test with high specificity reduces the chances of healthy
patients being misdiagnosed and subjected to invasive procedures.

3.	 Spam Detection: A high-specificity email filter reduces the number of
legitimate emails incorrectly marked as spam. This minimizes the risk of
important messages being missed by users.

Specificity vs. Sensitivity

Specificity and Sensitivity (recall) are complementary metrics. While sensitivity
focuses on correctly identifying positive cases, specificity measures how well the model
avoids false positives. In real-world applications, there is often a trade-off between the
two metrics.

High sensitivity may increase false positives, also lowering specificity and high
specificity may increase false negatives, lowering sensitivity.

Choosing the right balance depends on the application's priorities. For example, in
fraud detection, you may prioritize sensitivity to catch all possible fraud cases, even at
the expense of specificity. In contrast, for security systems, you may prioritize specificity
to minimize false alarms.

34 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Limitations of Specificity

While specificity is valuable in certain applications, relying on it alone can be
misleading in imbalanced datasets. For instance, if the majority of instances are
negative, a model that predicts every instance as negative would have high specificity
but poor performance overall. Therefore, specificity should be evaluated alongside
other metrics like sensitivity, precision, and the F1 score to obtain a complete view of
model performance.

Specificity is an important metric for evaluating a model's ability to correctly
identify negative cases. It is especially useful in applications where false positives must
be minimized, such as security, medical diagnostics, and spam filtering. However, it
should be analyzed together with other metrics to ensure a balanced assessment of the
model's performance.

1.3.7 ROC Curve
The Receiver Operating Characteristic (ROC) curve is a graphical tool used to

evaluate the performance of a classification model across different decision thresholds.
It plots the True Positive Rate (TPR) against the False Positive Rate (FPR), allowing a
visual assessment of the trade-off between sensitivity (recall) and specificity. This helps
in understanding how well a model distinguishes between positive and negative classes
in binary classification problems.

Key Metrics for the ROC Curve

1.	 True Positive Rate (TPR) (also known as Recall or Sensitivity): TPR
indicates how effectively the model identifies positive cases. It measures
the proportion of actual positive instances that were correctly predicted as
positive.

	 Formula:

where:

	y TP (True Positive): The number of correctly predicted positive cases.

	y FN (False Negative): The number of positive cases incorrectly classified as
negative.

2.	 False Positive Rate (FPR): FPR evaluates the proportion of actual negative
cases that were incorrectly classified as positive. It helps in understanding
how prone the model is to false alarms.

	 Formula:

35 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

where:

	y FP (False Positive): The number of negative cases incorrectly predicted as
positive.

	y TN (True Negative): The number of correctly predicted negative cases.

1.3.7.1 How the ROC Curve Works

The ROC curve is generated by adjusting the decision threshold used by the classifier.
This threshold determines when the model classifies an instance as positive or negative
based on the predicted probability.

	y Lowering the threshold results in more instances being classified as positive,
increasing the True Positive Rate (TPR) but also raising the False Positive Rate
(FPR).

	y Raising the threshold results in fewer instances being classified as positive,
reducing both TPR and FPR.

By plotting TPR against FPR at various thresholds, the ROC curve provides a
visualization of how well the model performs across different sensitivity-specificity
balances.

Example: Consider a classification task where the goal is to predict whether a person
has a disease (positive class) based on a test result. The model outputs a probability
score for each person.

	y If the threshold is set to 0.5, the model may classify a person as diseased only if
the predicted probability is greater than or equal to 0.5.

	y If the threshold is lowered to 0.3, more people will be classified as diseased,
increasing the TPR but also raising the number of false positives.

	y Conversely, increasing the threshold to 0.7 will reduce the number of positive
predictions, lowering both TPR and FPR.

The ROC curve plots these results, showing how the model's performance changes
with different threshold values.

Fig 1.3.1: Example for ROC curve

36 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Here is the ROC curve (as shown in fig 1.3.1) for the disease prediction model. The
curve shows how different classification thresholds affect the True Positive Rate (TPR)
and False Positive Rate (FPR).

	y Lowering the threshold (e.g., 0.3) increases TPR but also raises FPR (more false
positives).

	y Raising the threshold (e.g., 0.7) reduces TPR and FPR (fewer false positives but
more false negatives).

Interpreting the ROC Curve

1.	 Ideal Model:

	y The ROC curve rises sharply to the top-left corner, indicating a TPR of 1 and
an FPR of 0.

	y This means the model perfectly distinguishes between positive and negative
cases.

2.	 Random Model: The ROC curve follows the diagonal line from (0, 0) to (1, 1),
indicating that the model is no better than random guessing.

3.	 Realistic Models:

	y Most models have a curve that lies between the diagonal and the top-left corner.

	y A higher curve indicates better performance, as it demonstrates higher TPR for
a given FPR.

Area Under the Curve (AUC)

The Area Under the Curve (AUC) is a numerical metric that quantifies the
performance of the ROC curve. It measures the likelihood that the model will rank a
randomly chosen positive instance higher than a randomly chosen negative instance.

	y AUC = 1.0: The model is a perfect classifier.

	y AUC = 0.5: The model performs no better than random guessing.

	y AUC < 0.5: The model's predictions are worse than random, indicating unreliable
performance.

The AUC is particularly useful for comparing different models, as a higher AUC
indicates better discriminatory ability.

Advantages of ROC Curve

1.	 Threshold-Independent Evaluation: The ROC curve assesses performance
across all possible threshold values, providing a complete view of the model's
behavior.

37 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.	 Effective for Imbalanced Data: Unlike accuracy, which can be misleading
in imbalanced datasets, the ROC curve focuses on the balance between true
and false positives, offering a more reliable evaluation.

3.	 Model Comparison: The AUC metric allows easy comparison between
multiple models or different versions of the same model.

1.3.7.2 Example Application

In medical diagnosis, it is crucial to balance the trade-off between detecting all
cases of a disease (high recall) and minimizing false alarms (low false positives). The
ROC curve helps visualize this trade-off, enabling doctors to select an appropriate
threshold that fits their needs. A high AUC score indicates that the model is effective at
distinguishing between healthy and diseased patients.

The ROC curve is a powerful evaluation tool for classification models, particularly in
binary classification tasks. It provides a comprehensive overview of model performance
by illustrating the relationship between True Positive Rate and False Positive Rate at
various thresholds. The AUC derived from the ROC curve offers a concise metric for
comparing models, making it especially useful in scenarios involving imbalanced data
or varying threshold requirements.

Recap

	♦ A confusion matrix shows correct and incorrect predictions.It compares
actual values with predicted values.

	♦ Key terms include TP, TN, FP, and FN.

	♦ Accuracy measures how often predictions are correct.

	♦ Accuracy may not be reliable with imbalanced data.

	♦ Precision shows how many predicted positives are correct.It is important
when false positives cause problems, like in fraud detection.

	♦ Recall measures how many actual positives are correctly identified.It is
crucial when false negatives are risky, like in disease detection.

	♦ The F1 score balances precision and recall.It is useful for imbalanced
datasets.

	♦ Specificity measures how well negatives are correctly identified.It helps
when false positives need to be reduced, like in security systems.

	♦ The ROC curve shows how TPR and FPR change with thresholds.

	♦ The AUC helps compare models, with higher values showing better
performance.

38 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Objective Type Questions
1.	 What is the primary purpose of a confusion matrix in machine learning?

2.	 What does the term "True Positive" (TP) represent in a confusion matrix?

3.	 What does "False Negative" (FN) indicate in a classification model
evaluation?

4.	 Which metric is defined as the ratio of correctly predicted instances to the
total number of instances?

5.	 What is a key limitation of accuracy in imbalanced datasets?

6.	 Which metric evaluates the proportion of correctly predicted positive cases
out of all predicted positive cases?

7.	 In which scenarios is precision particularly important?

8.	 What is another term used for recall in machine learning?

9.	 How is recall calculated in terms of true positives and false negatives?

10.	What does the F1 score of a harmonic mean?

11.	What is the formula for the F1 score?

12.	What does the AUC (Area Under the Curve) represent in the context of an
ROC curve?

13.	How is the True Positive Rate (TPR) defined in an ROC curve?

Answers to Objective Type Questions
1.	 Evaluation
2.	 Correct
3.	 Misclassified
4.	 Accuracy
5.	 Misleading
6.	 Precision
7.	 Critical scenarios
8.	 Sensitivity
9.	 TP/(TP+FN)
10.	Precision-Recall
11.	2×((Precision×Recall)/(Precision+Recall))
12.	Performance
13.	Sensitivity

39 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Assignments

1.	 Explain the importance and structure of a confusion matrix in evaluating the
performance of classification models. Provide relevant examples to support
your explanation.

2.	 Discuss the limitations of accuracy as a performance metric in imbalanced
datasets. How do complementary metrics like precision, recall, and F1 score
address these limitations?

3.	 Define and explain the concepts of precision, recall, and their trade-offs.
Use real-world scenarios, such as medical diagnosis or fraud detection, to
illustrate their significance.

4.	 Describe the ROC curve and its significance in evaluating classification
models. Explain how the Area Under the Curve (AUC) helps in comparing
model performance.

5.	 Explain the roles of sensitivity (recall) and specificity in model evaluation.
Discuss how these metrics apply to various applications, such as medical
testing, security systems, and spam detection.

Suggested Reading

1.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer

2.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press

3.	 Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: Data mining, inference, and prediction (2nd ed.). Springer.

4.	 Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT
Press.

Reference

1.	 Krzanowski, W. J., & Hand, D. J. (2009). ROC curves for continuous data.
CRC Press.

2.	 Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT
Press.

40 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Cross Validation Techniques,
Bias-Variance Tradeoff

Learning Outcomes

Prerequisites

	♦ define cross-validation and its purpose in model evaluation

	♦ list different types of cross-validation techniques

	♦ recall the steps involved in implementing k-fold cross-validation

	♦ identify the components of bias and variance in a model's error

	♦ familiarize the concept of the bias-variance tradeoff in simple terms

Imagine you are preparing for an important exam. Instead of relying on one study
session or a single practice test, you take multiple practice tests, each focusing on
different topics. By analyzing your performance across these tests, you get a clear picture
of what you know well and where you need improvement. This approach ensures you
are better prepared for the actual exam. Similarly, in machine learning, cross-validation
divides the dataset into parts, using each part to test the model’s performance. This
helps in evaluating the model’s reliability on unseen data, ensuring it performs well in
real-world scenarios.

Think of baking a cake. If you follow an overly simple recipe (e.g., just mixing
flour and water), the result might be too basic and unsatisfactory—this represents high
bias. On the other hand, if you use a very complex recipe with many intricate steps and
exotic ingredients, it might end up over-complicated and inconsistent—this represents
high variance. The goal is to find a balance: a recipe that is simple enough to be
repeatable but detailed enough to deliver good results. Similarly, in machine learning,
the bias-variance tradeoff is about finding the right balance between simplicity (bias)
and complexity (variance) to create a model that generalizes well to new data.

UNIT 4

At the conclusion of this unit, the learner will be able to :

Keywords

K-Fold, Model Evaluation, Overfitting, Underfitting, Bias

41 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion
In machine learning, we often create models to make predictions or decisions based

on data. However, it is important to ensure that our models work well not just on the
data they are trained on but also on new, unseen data. This is where Cross Validation
Techniques and the Bias-Variance Tradeoff come into play. Cross-validation helps
us test and improve a model’s performance, while the bias-variance tradeoff helps us
balance between a model being too simple or too complex.

1.4.1 What is Cross Validation?
Cross-validation is a method used to evaluate the performance of a machine learning

model. Instead of testing the model on the same data it was trained on, we divide the
data into parts to test the model on different sets as shown in Fig 1.4.1. This helps
ensure the model performs well on unseen data.

Without cross-validation, we might end up with a model that looks good on the
training data but fails on new data. This is like preparing for an exam using only one
practice test and assuming you will ace the real test.

The term "cross-validation" wascoined by Seymour Geisserin1975.

Cross-Validation, k-Fold Cross-Validation, Model Evaluation, Bias-Variance
Tradeoff, Overfitting, Underfitting

to test the model on different sets as shown in Fig 1.4.1. This helps ensure the model
performs well on unseen data.

Without cross-validation, we might end up with a model that looks good on the
training data but fails on new data. This is like preparing for an exam using only one
practice test and assuming you will ace the real test.

Fig 1.4.1 Cross Validation

1.4.1.1 How Do We Perform It?
1.	 Divide the Data: Split the dataset into several parts or folds. For example, in

5-fold cross-validation, the data is divided into 5 equal parts.

42 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.	 Train and Test: Train the model on 4 folds and test it on the remaining fold.
Repeat this process 5 times, each time using a different fold for testing.

3.	 Evaluate the Model: Average the test results to get a reliable performance
measure.

The below Figure 1.4.2 depicts the 5-fold cross-validation.

Fig 1.4.2 5-Fold Cross-Validation

Example: Imagine you have a list of 100 math problems. To prepare for a test, you
divide the problems into 5 groups of 20. You practice using 80 problems (4 groups) and
test yourself on the remaining 20. By rotating which group you test on, you ensure that
you have practiced and tested on all problems fairly.

1.4.1.2 Types of Cross Validation Techniques
1.	 Hold-Out Validation: In this approach, the dataset is split into two parts:

one for training and the other for testing. For instance, if you have 1,000 data
points, you might use 800 for training and 200 for testing. This method is
simple and quick but can lead to inconsistent results because the performance
depends heavily on how the data is split. For example, if the test set happens
to have unusual patterns, the evaluation might not reflect the model’s true
performance.

2.	 k-Fold Cross Validation: This method divides the dataset into k equal parts
or folds. The model is trained on k-1 folds and tested on the remaining fold.
This process is repeated k times, with each fold serving as the test set once.
For example, in 5-fold cross-validation, the dataset is split into five parts. If
you have 100 rows of data, each fold will have 20 rows. The model is trained
on 80 rows and tested on 20 rows in each iteration. The results from all folds
are averaged to get a reliable performance estimate.

43 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

3.	 Leave-One-Out Cross Validation (LOOCV): LOOCV is an extreme
version of k-fold cross-validation where k equals the total number of data
points. Each data point serves as a test set once, while the rest are used for
training. For example, if you have 10 data points, the model is trained on 9
points and tested on 1 point for each iteration. This approach is thorough but
computationally expensive for large datasets.

4.	 Stratified k-Fold Cross Validation: This variation of k-fold cross-validation
ensures that each fold has a similar distribution of target labels. For example,
if your dataset contains 60% positive and 40% negative labels, each fold
will maintain this ratio. This method is particularly useful for imbalanced
datasets, where some classes are underrepresented.

5.	 Time Series Cross Validation: For time-dependent data, splitting the dataset
randomly can disrupt the sequence. Time series cross-validation respects the
order of the data. For example, if you are forecasting sales, the model is
trained on data from January to June and tested on July data, then trained on
January to July and tested on August, and so on. This approach ensures that
future data is never used to predict the past.

Example: Imagine you are a teacher preparing a student for multiple tests. In
hold-out validation, you give the student one practice test to solve and evaluate their
performance. In k-fold cross-validation, you divide all practice questions into groups
and test the student on each group. In LOOCV, you give them one question at a time and
repeat this until every question is tested. Stratified k-fold ensures the difficulty levels
of the questions are balanced in each test. For time series, you give the student practice
tests that increase in difficulty as they progress.

1.4.2 Bias-Variance Tradeoff
The bias-variance tradeoff is a concept that helps us understand the balance between

a model being too simple (high bias) or too complex (high variance) as shown in Fig
1.4.3. It is about finding the sweet spot where the model is neither underfitting nor
overfitting.

Fig 1.4.3 Bias-Variance Tradeoff

44 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

The bias-variance tradeoff is a fundamental concept in machine learning, particularly
relevant when evaluating model performance. Bias refers to the error introduced
due to incorrect assumptions about the underlying data distribution or the model’s
inability to capture complex patterns. Variance, on the other hand, refers to the model’s
sensitivity to small fluctuations or noise in the data. The total error of a model consists
of bias, variance, and irreducible noise, with the goal being to minimize the expected
generalization error.

If a model is too simple, it may miss important patterns in the data (underfitting).
If it is too complex, it may focus too much on the training data and fail on new data
(overfitting). Striking the right balance ensures the model performs well on unseen
data. Errors in bias and variance is shown in Fig 1.4.4.

Fig 1.4.4 Errors in Bias and Variance

1.4.2.1 How Do We Perform It?
1.	 Start by creating a simple model and check its performance.
2.	 Gradually increase the complexity of the model while monitoring its accuracy

on training and validation data.
3.	 Look for the point where validation performance is highest without

overfitting.
Example: Think of learning how to draw. If you only use stick figures (simple

models), your drawings will not capture much detail (high bias). If you add too many
unnecessary details, your drawings may look messy and inconsistent (high variance). A
balanced approach gives you neat and expressive drawings, just like a balanced model
generalizes well.

1.4.2.2 Bias (Error due to Inaccurate Assumptions)

Bias refers to the error introduced when a model makes incorrect assumptions
about the underlying data distribution or fails to capture the true relationships between
variables. High bias results in underfitting, where the model does not capture sufficient
complexity in the data. In linear models such as simple linear regression, bias tends to
be high because these models assume a linear relationship between input features and
the target variable. Consequently, linear models are limited in their ability to capture
complex patterns, leading to inaccurate predictions.

In contrast, complex models (e.g., deep neural networks) tend to have low bias due
to their flexibility and capacity to capture intricate relationships in the data. However,

45 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

this increased model complexity often leads to overfitting, where the model fits the
noise as well as the true signal, resulting in poor generalization.

1.4.2.3 Variance (Error due to Sensitivity to Small Changes)

Variance measures the model's sensitivity to small changes in the training data. High
variance leads to overfitting, where the model adapts too closely to the training data,
capturing noise rather than the true signal. In linear models, variance tends to be low
because they have fewer parameters and thus cannot overfit the data as easily. However,
in complex models with more parameters, variance tends to be higher, as these models
have the capacity to fit fine details, including noise.

Mathematical Perspective:

Mathematically, this variance is captured by the term:

Variance = E[(f(x)−f^(x))2]

where f(x) is the true function, and f^(x)is the prediction of the model. High variance
means that the model’s predictions deviate significantly from the true function when
trained on different subsets of the data.

1.4.2.4 Mathematical Formulation Generalization Error

The total error in a model can be expressed as:

Generalization Error =Bias2 + Variance + Noise

Where:

	y Bias² captures the error due to incorrect assumptions.

	y Variance reflects the model's sensitivity to small changes in the data.

	y Noise refers to the irreducible error, stemming from randomness in the data that
cannot be reduced.

The goal of the bias-variance tradeoff is to balance bias and variance to minimize
the total error. If the model is too simple (high bias, low variance), it underfits the data,
capturing only the global trends. Conversely, if the model is too complex (low bias,
high variance), it overfits the data, capturing noise along with the true relationships.

To achieve a balance, several techniques are employed:

	y Regularization : In linear models, L1 (Lasso) and L2 (Ridge) regularization
help control model complexity by penalizing large coefficients, reducing
variance.

	y Complex models: Techniques like dropout, weight decay, and early stopping
help mitigate overfitting by reducing variance without excessively increasing
bias.

	y Cross-Validation: A crucial method for assessing model performance, ensuring
it generalizes well by evaluating errors on unseen data.

46 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Recap

Cross Validation Techniques

	♦ Purpose: Evaluate model performance on unseen data by splitting data into
parts for training and testing.

	♦ How It Works:

•	 Divide Data: Split dataset into parts or folds.

•	 Train and Test: Train on k−1 folds, test on the remaining fold,
repeat for all folds.

•	 Evaluate: Average results for reliable performance.

	♦ Techniques:

•	 Hold-Out Validation: Split data into training and testing sets.
Simple but prone to inconsistencies.

•	 k-Fold Cross Validation: Divide data into k folds, train, and
test iteratively, average results.

•	 Leave-One-Out Cross Validation (LOOCV): Use one
data point for testing and the rest for training. Thorough but
computationally expensive.

•	 Stratified k-Fold Cross Validation: Ensures class distribution
remains consistent across folds, ideal for imbalanced datasets.

•	 Time Series Cross Validation: Respects data order, suitable
for time-dependent datasets.

Bias-Variance Tradeoff

	♦ Concept: Balance between a model being too simple (high bias) or too
complex (high variance).

	♦ Key Terms:

Objective Type Questions

1.	 What technique estimates model performance by splitting data into training
and validation sets?

2.	 What type of cross-validation involves dividing the dataset into k parts?

47 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Answers to Objective Type Questions

1.	 Cross-validation

2.	 K-fold cross-validation

3.	 Leave-One-Out Cross-Validation (LOOCV)

4.	 Bias

5.	 Variance

6.	 Generalization Error: Bias^2+Variance+Noise

7.	 Overfitting

8.	 Underfitting

9.	 Regularization

10.	Noise

3.	 Which method leaves out one data point at a time during validation?

4.	 What term describes error from incorrect model assumptions?

5.	 What term describes sensitivity to training data fluctuations?

6.	 What is the formula that represents prediction error on unseen data?

7.	 What term refers to fitting the training data too closely?

8.	 What term refers to a model that is too simple to capture data patterns?

9.	 What technique penalizes complexity to reduce overfitting?

10.	What increases error by introducing random fluctuations in the data?

Assignments

1.	 Explain the concept of overfitting and underfitting in machine learning.
Discuss how cross-validation techniques help mitigate overfitting.

2.	 Describe the differences between supervised and unsupervised learning.
Provide examples of algorithms used in each category and explain their
applications.

48 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suggested Reading

1.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

2.	 Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems
(2nd ed.). O'Reilly Media.

3.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press

4.	 Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: Data mining, inference, and prediction (2nd ed.). Springer.

5.	 Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT
Press.

Reference

1.	 Alpaydin, E. (2020). Introduction to machine learning (4th ed.). MIT Press.

2.	 Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd
ed.). Wiley-Interscience.

3.	 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to
statistical learning: With applications in R (2nd ed.). Springer.

4.	 Mitchell, T. M. (1997). Machine learning. McGraw-Hill.

5.	 Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine
learning: From theory to algorithms. Cambridge University Press.

3.	 What is the bias-variance tradeoff? How does it affect the performance of a
machine learning model? Illustrate with an example.

4.	 Explain the process of training a deep learning model using backpropagation.
Discuss how the gradient descent algorithm is used to update the weights
during training.

5.	 Implement a k-nearest neighbors (K-NN) algorithm from scratch. Use a
sample dataset to demonstrate its functionality, and evaluate its performance
based on accuracy.

49 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Supervised Learning

BLOCK 2

50 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Basics of Neural Networks

Learning Outcomes

	♦ define key terms related to neural networks

	♦ recall the basic architecture of a neural network

	♦ familiarize the role of weights, biases, and activation functions in the working
of a neural network

	♦ describe the process of multi-layer perceptron

Prerequisites

Have you ever wondered how your brain helps you recognize a face, learn a new
skill, or even make decisions? Imagine you walk into a party. The room is buzzing
with people, and you spot a familiar face. How do you instantly recognize your best
friend across the room? Your brain, with its intricate network of neurons, processes this
effortlessly.

In that moment:

1.	 Input: Your eyes take in the raw data - color, shapes, patterns, and even motion.

UNIT 1

Upon completion of this unit, the learner will be able to :

51 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Keywords

Weight, Bias,Summation, Activation Function, Perceptron

2.	 Processing: Your brain's neurons work together, comparing this data with the
"memory" of your friend's face stored in your mind.

3.	 Output: You smile and wave, recognizing your friend.

This process is exactly what a neural network in AI mimics when solving problems
like facial recognition! A neural network works in a similar way to the human brain. It
is a key concept in artificial intelligence (AI) that allows computers to learn and make

Discussion
Neural networks are important in machine learning because they can learn complex

patterns from large and high-dimensional datasets. Unlike traditional models, they
automatically extract relevant features, reducing the need for manual feature engineering.
Neural networks are very effective at tasks like image recognition, speech recognition,
language processing, and forecasting over time. Moreover, they form the foundation
of deep learning, driving major advancements in artificial intelligence across various
industries.

2.1.1 What is Neural Network?
A neural network is an artificial model inspired by the human brain, designed

to simulate its learning process. It is commonly referred to as an Artificial Neural
Network(ANN) or simply a Neural Net (NN). Traditionally, the term "neural network"
refers to a network of biological neurons in the nervous system that process and
transmit information. In contrast, an artificial neural network consists of interconnected
artificial neurons that utilize mathematical or computational models for information
processing, following a connectionist approach to computation. These networks
mimic certain properties of biological neural networks, with interconnecting artificial
neurons working together. An artificial neural network is essentially a system of
simple processing elements (neurons) that exhibit complex behavior, influenced by the
connections between these elements and their parameters.

2.1.1.1 Importance of Neural Network

1.	 Learn complex and non-linear patterns – Neural networks excel at
modeling intricate relationships in data that traditional models often miss.

2.	 Automatically extract features – They eliminate the need for manual
feature engineering by learning useful patterns directly from raw input.

52 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

3.	 Power tasks like image, speech, and language processing – Neural
networks are behind major breakthroughs in computer vision, speech
recognition, and natural language understanding.

4.	 Form the foundation of deep learning – Advanced architectures like
CNNs, RNNs, and Transformers are all built on neural network principles.

5.	 Enable real-world AI applications – From healthcare and finance to self-
driving cars and virtual assistants, neural networks drive many cutting-edge
technologies today.

2.1.1.2 Biological Neural Model

The human brain has billions of neurons and trillions of connections between these
neurons. With the help of this network of neurons, it always tries to recognize patterns in
anything we see or experience. Figure 2.1.1 illustrates the structure of a human neuron.

Fig 2.1.1 Biological Neuron

Parts of neurons are

	♦ Dendrite: It receives signals from other neurons.

	♦ Soma (cell body): It sums all the incoming signals to generate input.

	♦ Axon: When the sum reaches a threshold value, neuron fires and the signal
travels down the axon to the other neurons.

	♦ Synapses: The point of interconnection of one neuron with other neurons.
The amount of signal transmitted depends upon the strength (synaptic
weights) of the connections.

When a neuron receives input through its dendrites, it generates an electrical impulse
called an Action Potential. This impulse travels down the axon to the synapse, the gap
between neurons. At the synapse, the neuron releases neurotransmitters, which are
chemical messengers that pass the signal to the next neuron. This process continues,
allowing the brain and nervous system to process information, make decisions, and
control the body. The strengths of synaptic connections often change in response to
external stimuli. This change is how learning takes place in living organisms.

53 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.1.2 Perceptron in Neural Networks
The Perceptron also known as an Artificial Neuron or Neural Network Unit is a

fundamental building block of Artificial Neural Networks and a linear machine learning
algorithm used for supervised learning in binary classification tasks. It enables neurons
to learn and process elements sequentially, making it useful for detecting input data
capabilities in business intelligence. The Perceptron is one of the simplest types of
neural networks, consisting of four main parameters: input values, weights and bias, net
sum, and an activation function.

2.1.2.1 Characteristics of Perceptron

	♦ A perceptron is a supervised machine learning algorithm used for binary
classification.

Frank Rosenblatt introduced the Perceptron Model

	♦ It automatically learns weight coefficients, which are initially multiplied by
input features to determine if a neuron should fire.

	♦ The activation function applies a step rule to check if the weighted sum
exceeds zero.

	♦ A perceptron creates a linear decision boundary, allowing it to distinguish
between two linearly separable classes (+1 and -1).

	♦ If the total sum of inputs exceeds the threshold, an output signal is generated;
otherwise, no output is produced.

2.1.2.2 Structure of a Perceptron

The basic structure of perceptron is given in Fig 2.1.2.

Fig:2.1.2 Perceptron Structure

1.	 Inputs (x1,x2,...,xn) – This is the primary component of Perceptron which
accepts the initial data into the system for further processing. Each input
node contains a real numerical value. It is the features of the dataset.

54 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.	 Weights (w1,w2,...,wn) – Weight parameter represents the strength of the
connection between units. Weight is directly proportional to the strength of
the associated input neuron in deciding the output.

3.	 Bias (b) – Bias can be considered as the line of intercept in a linear equation.
Allows shifting the activation threshold.

4.	 Summation Function – Computes weighted sum:
		 Z = w1x1+ w2x2 +...+ wnxn + b
5.	 Activation Function (Step Function) – Decides whether the neuron should

be activated.

2.1.2.3 Working of a Perceptron

The perceptron model begins with the multiplication of all input values and their
weights, then adds these values together to create the weighted sum. Then this weighted
sum is applied to the activation function 'f' to obtain the desired output. This activation
function is also known as the Step Function and is represented by 'f’. The steps are

 Step 1: Compute Weighted Sum
In the first step first, multiply all input values with corresponding weight values and

then add them to determine the weighted sum.

Step 2: Apply Activation Function
In the second step, an activation function is applied with the above - mentioned

weighted sum, which gives us output either in binary form or a continuous value. A
threshold function (step function) determines whether the neuron fires (outputs 1) or
remains inactive (outputs 0).

Step 3: Output Decision
If the weighted sum is above a threshold, the perceptron outputs 1; otherwise, it

outputs 0.

Example: Perceptron used to solve a basic logical problem - the AND gate

Table 2.1.1 AND Gate

X1 X2 Output(y)

0 0 0

0 1 0

1 0 0

1 1 1

	♦ Give the perceptron two numbers (like 0 and 1).

55 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	♦ It multiplies them by small values called weights (for example, 0.5).

	♦ It adds a number called bias (like -0.7).

	♦ Then it checks:

●	 If the total is 0 or more, it outputs 1.

●	 If it is less than 0, it outputs 0.
i.e.,If we give it 1 and 1, it does:(1 × 0.5 + 1 × 0.5 - 0.7) = 0.3 → It gives 1

If we give it 0 and 1, it does: (0 × 0.5 + 1 × 0.5 - 0.7) = -0.2 → It gives 0

2.1.2.4 Types of Perceptron Models

Based on the layers, perceptron models are divided into two types as

	♦ Single-layer Perceptron Model - It is the most basic type of neural network
consisting of only one layer of output nodes connected directly to the input
layer.

	♦ Multi-layer Perceptron Model – It is the advanced neural network that has
one or more hidden layersbetween the input and output layers.

2.1.3 Multi-Layer Perceptron Model
A Multi-layer Perceptron (MLP) is a kind of artificial neural network made up

of several layers of interconnected neurons. These neurons usually apply nonlinear
activation functions, which enables the network to capture and learn complex patterns
within the data. The MLP works only in the forward direction. All nodes are fully
connected to the network. Each node passes its value to the coming node only in the
forward direction. The MLP neural network uses a Backpropagation algorithm to
increase the accuracy of the training model.

2.1.3.1 Structure of Multi-layer Perceptron Neural Network

An Artificial Neural Network (ANN) is built from three essential layers as shown in
Fig 2.1.3 that work together to process input data and produce predictions.

Fig: 2.1.3 Multi-layer Perceptron

56 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

1. Input Layer

	♦ This is the first layer of a multilayer perceptron

	♦ The input layer receives data from the dataset, where each neuron represents
a feature and passes the values to the next layer without computation

2. Hidden Layer

	♦ This is the central layer of the network, where most of the processing takes
place.

	♦ A model can have one or more hidden layers

	♦ This layer performs all the computations by applying weights and activation
functions to detect complex patterns in the data

3. Output Layer

	♦ This is the final layer of the network

	♦ The layer produces the final prediction, with the number of neurons depending
on the type of task, such as regression or classification

2.1.3.2 Advantages of Multi-Layer Perceptron

	♦ A multi-layered perceptron model can be used to solve complex non-linear
problems.

	♦ It works well with both small and large input data.

	♦ It helps us to obtain quick predictions after the training.

	♦ It helps to obtain the same accuracy ratio with large as well as small data.

2.1.3.3 Disadvantages of Multi-Layer Perceptron

	♦ Computations are difficult and time-consuming.

	♦ It is difficult to predict how much the dependent variable affects each
independent variable.

	♦ The model functioning depends on the quality of the training.

	♦ A neural network is a computer model inspired by the human brain.

	♦ Neural networks are powerful because they can learn complex patterns from
data.

	♦ They reduce the need for manual feature selection by learning useful features
automatically.

Recap

57 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	♦ Neural networks are widely used in image recognition, speech recognition,
and language processing.

	♦ The perceptron is the simplest type of neural network used for binary
classification.

	♦ A perceptron works by multiplying inputs with weights, adding a bias, and
passing the result through an activation function.

	♦ If the result is above a threshold, the perceptron outputs 1; otherwise, it
outputs 0.

	♦ Multi-layer perceptron (MLP) has more than one layer and can solve
complex problems.

	♦ MLPs use hidden layers to perform computations and learn non-linear
patterns.

	♦ The MLP uses a backpropagation algorithm to improve accuracy during
training.

Objective Type Questions

1.	 What type of learning does a perceptron use?

2.	 What is the basic unit of a neural network?

3.	 Which part of a neuron receives signals?

4.	 What kind of data pattern can neural networks model?

5.	 Which algorithm is used in MLP for training?

6.	 What is applied to the weighted sum in a perceptron?

7.	 What component allows shifting the activation threshold in a perceptron?

8.	 Which layer in MLP performs complex computations?

9.	 What is the decision boundary formed by a perceptron?

10.	Which parameter in a perceptron represents input strength?

Answers to Objective Type Questions

1.	 Supervised

2.	 Neuron

58 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Assignments

1.	 Explain the biological neural model and compare it with an artificial neural
network

2.	 Describe the working of a perceptron with the help of a simple logical
example

3.	 Discuss the structure and function of each component in a perceptron model.

4.	 Explain the architecture and learning process of a multi-layer perceptron
using backpropagation

5.	 In what ways do hidden layers contribute to the learning ability of a neural
network? Analyze with reference to pattern recognition.

3.	 Dendrite

4.	 Nonlinear

5.	 Backpropagation

6.	 Activation

7.	 Bias

8.	 Hidden

9.	 Linear

10.	Weight

Suggested Reading

1.	 Aggarwal, C. (2018). Neural networks and deep learning: A textbook.
Springer.

2.	 Chollet, F. (2017). Deep learning with Python. Manning Publications.

3.	 Narendra, K. S., & Parthasarathy, K. (1990). Neural networks for control.
MIT Press.

4.	 Sejnowski, T. J. (2018). The deep learning revolution. MIT Press.

5.	 Sivanandam, S. N., Sumathi, S., & Deepa, S. N. (2006). Introduction to
artificial neural networks. Springer.

59 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Reference

1.	 Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford
University Press.

2.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

3.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press.

4.	 Haykin, S. (1998). Neural networks: A comprehensive foundation. Prentice
Hall.

5.	 Neamtu, M. (2019). Artificial neural networks: A practical course. Springer.

60 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

 Classification

Learning Outcomes

Prerequisites

	♦ define classification in machine learning

	♦ list the types of classification algorithms

	♦ explain Naïve Bayes classification

	♦ explain Decision Tree classification

	♦ identify the purpose of a support vector in SVM

Imagine you are sorting emails in your inbox. Some are personal, some are work-
related, and some are spam. You often decide which email goes where based on the
sender, subject, or keywords. This is a real-life example of classification — grouping
items based on certain features. You do it naturally without much thought, but what if
we could teach a computer to do the same?

Classification in machine learning works on the same idea: using patterns in data
to assign items to categories. This is especially useful when the amount of data is too
large for humans to handle manually. Machines can learn from past examples and use
that knowledge to predict outcomes for new data. For example, by analyzing medical
records, a system can predict the likelihood of a disease. Or by studying images, it can
recognize objects like cars, animals, or faces.

In this unit, we will learn how three powerful machine learning techniques — Naïve
Bayes, Decision Trees, and Support Vector Machines — help computers make such
smart decisions. Each method has its own approach to learning from data and making
predictions. By understanding how they work, you will gain insight into how intelligent
systems are built and how these techniques are applied in real-world scenarios like
healthcare, finance, marketing, and more.

UNIT 2

Upon completion of this unit, the learner will be able to :

61 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion

Keywords

Naïve Bayes, Decision Trees, Support Vector Machines, Machine Learning, Supervised
Learning

2.2.1 What is Classification ?
Classification is a fundamental concept in machine learning. It refers to the process

of predicting the category or class label of new observations based on past data. In
simple terms, it helps in answering questions like “What kind of thing is this?” or
“Which group does this belong to?”

The goal of classification is to assign input data (like customer age, income, or exam
marks) to one of several predefined categories (like "Pass" or "Fail", "Spam" or "Not
Spam", or "Buys Product" or "Does Not Buy").

Example:

Suppose we have data about students' attendance and internal marks, and we want
to predict whether a student will pass or fail. Here, the output class is either “Pass” or
“Fail”, and the input features are attendance and marks.

Real-Life Applications of Classification:

1.	 Email Filtering: Automatically categorizing incoming emails as either
spam or not spam based on their content and sender details.

2.	 Medical Diagnosis: Assisting doctors by predicting whether a patient is
likely to have a disease or not, based on symptoms and diagnostic data.

3.	 Customer Behavior Prediction: Identifying whether a customer is likely
to purchase a product or not, using data such as age, browsing history, and
past purchases.

2.2.1.1 Types of Classification

Classification is a supervised machine learning technique used to categorize data
into predefined labels or classes. There are various algorithms used for classification,
each with its own approach to learning patterns from data. Some commonly used
classification algorithms include:

	♦ Naïve Bayes :A probabilistic method based on Bayes’ theorem, often used
in text classification.

	♦ Decision Trees : A rule-based model that makes decisions using a tree-like
structure.

	♦ Support Vector Machines (SVM) : A powerful model that finds the best
boundary to separate different classes.

62 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.2.2 Naive Bayes Classification
Naïve Bayes is a type of supervised learning algorithm used to sort data into categories

or classes. It is called a probabilistic model because it uses the rules of probability to
make predictions. This method is based on something called Bayes’ Theorem, which
helps calculate the chance of something happening based on what we already know. It is
called “naïve” because it assumes that all the features (or input values) are independent
of each other, even though this is not always true in real life. Still, Naïve Bayes works
well in many situations, especially for tasks like identifying spam emails or classifying
text.

2.2.2.1 Baye’s Theorem

Bayes' Theorem is a fundamental concept in probability theory and statistics. It is
used to calculate the probability of a hypothesis based on prior knowledge and observed
evidence. This theorem is widely used in classification problems, particularly in the
Naïve Bayes Classifier algorithm.

Bayes’ Theorem is based on conditional probability and is expressed by the following
formula:

P(A|B) = (P(B|A).P(A))/(P(B))

Where:

	♦ P(A|B) → Posterior Probability: The probability of hypothesis A being
true given that event B has occurred.

	♦ P(B|A) → Likelihood: The probability of observing event B given that
hypothesis A is true.

	♦ P(A) → Prior Probability: The initial probability of hypothesis A before
any evidence is observed.

	♦ P(B) → Marginal Probability: The total probability of observing event B
under all possible hypotheses.

2.2.2.2 Working of Naive Bayes Classification

Imagine we have a dataset that shows different weather conditions and whether or
not people played on those days. Using this data, we want to figure out if we should
play on a day when the weather is sunny.

To make this decision, we follow these steps:

1.	 First, create a frequency table from the data to see how often each weather
type occurs with each outcome.

2.	 Next, calculate the probabilities (likelihood) of each weather condition for
both outcomes - playing and not playing.

3.	 Finally, apply Bayes' Theorem to find the chance of playing given that the
weather is sunny.

63 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Example:

	 Consider the following data set of weather conditions

 Table 2.2.1 weather conditions data

Day Outlook Play

1 Rainy Yes

2 Sunny Yes

3 Overcast Yes

4 Overcast Yes

5 Sunny No

6 Rainy Yes

7 Sunny Yes

8 Overcast Yes

9 Rainy No

10 Sunny No

11 Sunny Yes

12 Rainy No

13 Overcast Yes

14 Overcast Yes

Question:

If the weather is sunny today, should we play or not?

Step 1: Frequency table for the weather conditions:

Table 2.2.2 Frequency table

Weather Yes No

Overcast 5 0

Rainy 2 2

Sunny 3 2

Total 10 5

64 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Step 2: Calculation of probabilities (Likelihood)

 Table 2.2.3 Likelihood of weather condition data

Weather Yes No Probabilities
Overcast 5 0 P(Obercast) =

5/14 = 0.35
Rainy 2 2 P(Rainy) =

4/14 = 0.29
Sunny 3 2 P(Sunny) =

5/14 = 0.35
Total 10 4
All P(Yes)=10/14= 0.71 P(No)=4/14 = 0.29

Applying Bayes'theorem:

a) P(Yes|Sunny)= P(Sunny|Yes)*P(Yes)/P(Sunny)

P(Sunny|Yes)= 3/10= 0.3

P(Sunny)= 0.35

P(Yes)=0.71

So P(Yes|Sunny) = 0.3*0.71/0.35= 0.60

b) P(No|Sunny)= P(Sunny|No)*P(No)/P(Sunny)

P(Sunny|NO)= 2/4=0.5

P(No)= 0.29

P(Sunny)= 0.35

So P(No|Sunny)= 0.5*0.29/0.35 = 0.41

So as we can see from the above calculation that P(Yes|Sunny)>P(No|Sunny)

Hence on a Sunny day, Player can play the game.

2.2.3 Decision Tree
A Decision Tree is a type of supervised learning method used for both classification

and regression tasks, though it is more commonly used for classification. It works like
a tree structure. A Decision Tree has two main types of nodes: Decision Nodes and
Terminal Nodes or Leaf Nodes.

	♦ Decision Nodes are points where the tree makes a choice based on a condition.
These nodes have branches that lead to other parts of the tree.

	♦ Terminal Nodes show the final result or prediction. They do not split any
further and do not have branches.

65 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Fig. 2.2.1 Overview of decision tree

 where:

	♦ Each inner node checks a specific feature or condition from the data,

	♦ Each branch shows the result of that decision, and

	♦ Each leaf node gives the final output or prediction.
Example :

Let’s say you are trying to decide whether to eat a fruit based on two features:

	♦ Is the fruit ripe?

	♦ Is the fruit clean?
 Table 2.2.3 Sample data

Ripe Clean Eat Fruit?

Yes Yes Yes

Yes No No

No Yes No

No No No

66 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

 Fig. 2.2.2 Decision tree of the sample data

To decide whether to eat a fruit, the decision tree first checks if the fruit is ripe. If it
is not ripe, the decision is not to eat it. However, if the fruit is ripe, the tree then checks
whether it is clean. If the fruit is both ripe and clean, the decision is to eat it. But if the
fruit is ripe but not clean, the final decision is not to eat it. This step-by-step decision-
making process as given in Fig 2.2.2 helps reach a clear outcome based on the given
conditions.

2.2.4 Support Vector Machine (SVM)
Support Vector Machine (SVM) is a widely used supervised learning algorithm that

can be applied to both classification and regression tasks. However, it is most commonly
used for solving classification problems in the field of machine learning.

Working of Support Vector Machine (SVM)
Support Vector Machine (SVM) works by finding the best boundary, called a

Hyperplane, that separates data into different classes. The goal is to classify new data
points correctly based on this boundary.

Here’s how it works step by step:

1. Plot the Data Points:
In the first step, SVM takes a labeled dataset where each data point belongs to one of

two classes—for example, "Yes" or "No", or "Spam" and "Not Spam". These points are
plotted in space, where each axis represents a feature (like height, weight, or frequency
of a word). This visual layout helps the algorithm understand how the classes are
distributed.

67 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2. Find the Hyperplane:
Next, SVM tries to draw a straight line (in two-dimensional data) or a flat surface

called a Hyperplane (in higher dimensions) that separates the two classes. Among all
possible lines or hyperplanes, the best one is the one that not only separates the classes
correctly but also leaves the widest possible margin between them. This ensures the
model is not only accurate on the current data but also performs well on new data.

3. Identify Support Vectors:
Support vectors are the key data points that lie closest to the separating hyperplane

from both classes. These are the most important points because they "support" or define
the margin. If these points were moved or removed, the hyperplane would shift. Thus,
support vectors directly influence how the boundary is drawn.

4. Make Predictions:
Once the hyperplane is established, the SVM model is ready to make predictions.

When a new data point comes in, the model simply checks on which side of the
hyperplane it lies. Based on that, it classifies the new data as belonging to one class or
the other—just like deciding if an email is spam or not based on its features.

Example: Classifying fruits based on weight and size

Imagine you want to classify two fruits: Apples and Oranges.

You collect data for each fruit:

	♦ Feature 1: Weight
	♦ Feature 2: Size

You plot this data on a graph where:

	♦ Each dot is a fruit.
	♦ Apples are marked with red dots.
	♦ Oranges are marked with blue dots.

Now, your goal is to draw a line (or boundary) that separates apples from oranges.

Fig. 2.2.3 Classification using support vector machine

68 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

The above shown figure 2.2.3 illustrates how a Support Vector Machine (SVM) can
classify two different types of fruits—apples and oranges—based on features like weight
and size. In the diagram, the blue and red dots represent individual apples and oranges,
respectively. The SVM algorithm analyzes these data points and draws a solid black
line, known as the decision boundary, which best separates the two classes. Alongside
this boundary, there are two dashed lines that represent the margins—the maximum
possible distance between the boundary and the closest data points from each class.
These closest data points, highlighted with circles, are called support vectors, and they
play a crucial role in defining the position and orientation of the decision boundary.
This setup helps the model classify new data accurately based on which side of the
boundary the data falls.

Recap
	♦ Classification : It is the process of assigning input data to one of the predefined

categories or classes based on past data.

	♦ Types of Classification Algorithms

●	 Naïve Bayes

●	 Decision Trees

●	 Support Vector Machines (SVM)

	♦ Naïve Bayes Classification

●	 Is a probabilistic classification algorithm based on Bayes’ Theorem and
assumes independence between input features.

●	 Based on Bayes’ Theorem

●	 Assumes independence among features

●	 Commonly used in spam detection and text classification

	♦ Bayes’ Theorem

●	 Formula: P(A|B) = [P(B|A) * P(A)] / P(B)

●	 Support Vector Machine : Use a tree-like structure with decision nodes
and leaf nodes to make predictions based on feature values in a step-by-
step manner.

●	 Support Vector Machine (SVM) is a supervised learning model that
finds the optimal boundary or hyperplane to separate data into different
classes.

69 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Objective Type Questions

1.	 What is the process of predicting the category of data in machine learning
called?

2.	 Which classification algorithm is based on Bayes’ Theorem?

3.	 What type of learning does classification belong to?

4.	 What is the full form of SVM?

5.	 What algorithm uses a tree-like structure to make decisions?

6.	 In SVM, what are the key data points that define the margin?

7.	 What is the name of the line that separates classes in SVM?

8.	 Which algorithm can be both used for classification and regression tasks?

9.	 What type of variable does classification predict—categorical or numerical?

10.	What term describes the final nodes in a decision tree?

Answers to Objective Type Questions
1.	 Classification
2.	 Naïve Bayes
3.	 Supervised
4.	 Support Vector Machine
5.	 Decision Tree
6.	 Support Vectors
7.	 Hyperplane
8.	 Decision Tree
9.	 Categorical
10.	Leaf

Assignments

1.	 Define classification and explain its importance in machine learning with
examples.

2.	 What is the basic idea behind the Naïve Bayes classifier? Explain with an
example.

3.	 Describe the structure and working of a Decision Tree with a simple
illustration.

70 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suggested Reading

1.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer
Science+Business Media.

2.	 Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends,
perspectives, and prospects. Science, 349(6245), 255–260.

3.	 Kubat, M. (2017). An introduction to machine learning. Springer.

Reference

1.	 https://archive.nptel.ac.in/courses/106/106/106106139/

4.	 Explain the concept of Support Vector Machine (SVM) and how it separates
data.

5.	 Compare Naïve Bayes and Decision Trees in terms of accuracy and
performance.

71 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Regression

Learning Outcomes

Prerequisites

	♦ define regression in the context of machine learning

	♦ list the types of regression techniques

	♦ identify the formula used for linear regression

	♦ recall the sigmoid function used in logistic regression

	♦ differentiate between linear regression and logistic regression

In your earlier studies, you may have come across the idea of finding patterns in
data—like drawing a straight line through points on a graph to show how one thing
affects another. For example, you might have noticed how your exam marks change
depending on how many hours you study. This basic idea of relating two or more
variables is the foundation of regression.

Now, imagine if we could use this idea not only to understand the past but also to
predict future outcomes—like estimating your future score based on your preparation
time. This is exactly what regression helps us do. It gives us a method to make informed
predictions based on available data.

In this unit, you will learn about Linear Regression, which is used when the result
is a continuous value (such as temperature or price), and Logistic Regression, which
is used to predict categories (such as yes/no or pass/fail). These techniques are part of
supervised learning, where the model learns from existing data to make predictions on
new data.

UNIT 3

Upon completion of this unit, the learner will be able to :

Keywords

Linear Regression, Logistic Regression, Supervised Learning, Sigmoid Function,
Classification

72 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion
2.3.1 What is Regression ?

Regression is a supervised machine learning technique used for predicting a
continuous or categorical outcome based on input features. It helps us understand the
relationship between dependent and independent variables. In simple terms, regression
tries to find patterns in data and make predictions accordingly.

Two widely used regression techniques are:

1.	 Linear Regression

2.	 Logistic Regression

2.3.2 Linear Regression
Linear Regression is a statistical method that models the relationship between a

dependent variable and one or more independent variables using a straight line. It is
mainly used when the target variable is continuous in nature (e.g., predicting salary,
temperature, or price).

Linear regression is an algorithm that models a linear connection between a dependent
variable (y) and one or more independent variables (x). It is termed "linear" because
it aims to capture this straight-line relationship, indicating how the dependent variable
changes in response to variations in the independent variable(s).

The output of a linear regression model is typically a straight line with a certain
slope, visually representing this relationship. The figure 2.3.1 below illustrates this
concept:

 Fig. 2.3.1 Linear Regression

73 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Mathematically, we can represent a linear regression as:

where,

y = Dependent Variable (Target Variable)

x = Independent Variable (predictor Variable)

a0= intercept of the line

a1 = Linear regression coefficient

ε = random error

Types of Linear Regression

1.	 Simple linear Regression

2.	 Multiple Linear Regression

2.3.2.1 Simple Linear Regression

Simple Linear Regression is a method used to understand the relationship between
one independent variable and one dependent variable. It helps us predict the value of
the dependent variable based on the value of the independent one. Suppose you want
to predict the monthly electricity bill of a house based only on the number of units of
electricity consumed. Here:

●	 The independent variable (X) is the number of units consumed.

●	 The dependent variable (Y) is the electricity bill amount.

If you collect data for a few months and plot it on a graph, you'll likely see that as the
number of units increases, the bill also increases in a straight-line pattern.

2.3.2.2 Multiple Linear Regression

Multiple Linear Regression is used when there are two or more independent variables
affecting the dependent variable. It helps us understand how different factors together
influence the outcome. For example, Imagine you are trying to predict the price of a
house. The price does not depend on just one factor, it can be influenced by many
things such as:

●	 Size of the house (in square feet)

●	 Number of bedrooms

●	 Distance from the city center

Using Multiple Linear Regression, we can build a model that takes all these variables
into account and helps us estimate the house price.

74 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.3.3 Logistic Regression
Logistic regression is one of the most popular machine learning algorithms, which

comes under the Supervised Learning technique. It is mainly used to predict outcomes
that fall into categories, especially when there are only two possible results, like yes
or no, true or false, or 0 or 1. Unlike linear regression, which gives continuous number
values, logistic regression gives the chance (or probability) that something belongs to a
certain group. This chance is always between 0 and 1.

In Logistic Regression, rather than fitting a straight regression line, an "S"-shaped
curve known as the Logistic function is used. This curve estimates the probability of
outcomes and is bounded between two extremes, typically 0 and 1.

The sigmoid function is mathematically defined as:

Where:

●	 is the output probability (ranging from 0 to 1)
●	 z is the linear combination of input features (i.e.,

)
●	 e is Euler’s number, approximately equal to 2.718

 Fig. 2.3.2 Logistic Function

As shown in the above fig. 2.3.2 , the sigmoid function increases gradually and sharply
rises near the midpoint, offering a smooth transition from low to high probabilities. This
makes it ideal for classification problems where we want to predict whether an input
belongs to a certain class or not.

75 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

The logistic regression model applies the sigmoid function to the weighted sum of
the input variables, converting it into a probability score. This output is then compared
against a decision threshold, usually set at 0.5. If the probability is ≥ 0.5, the outcome
is classified as class 1; otherwise, it's classified as class 0.

2.3.4 Comparison between Linear Regression and Logistic
Regression

 Table 2.3.1 Comaprison between linear and logistic regression

Feature Linear Regression Logistic Regression

Type of Output Continuous value Categorical (usually
binary: 0 or 1)

Equation Used

Graph Shape Straight line S-shaped curve (Sigmoid
function)

Prediction Goal Predict a numeric
outcome

Predict class membership
(yes/no, true/false)

Application Example Predicting house price Predicting if an email is
spam or not

Range of Output Any real number Between 0 and 1

Recap

Regression

●	 Supervised machine learning technique

●	 Predicts continuous or categorical outcomes

●	 Explores relationships between dependent and independent variables
Types of Regression Techniques:

●	 Linear Regression

●	 Logistic Regression
Linear Regression

●	 Models a linear relationship between dependent and independent
variables

●	 Suitable for predicting continuous values (e.g., salary, temperature)

●	 Mathematical Formula:

76 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Types of Linear Regression:

●	 Simple Linear Regression – One independent variable

●	 Multiple Linear Regression – Multiple independent variables
Logistic Regression

●	 Classification algorithm used for binary outcomes (Yes/No, 0/1)

●	 Outputs probabilities using the sigmoid function

●	 Sigmoid Function:

Objective Type Questions

1.	 What type of learning technique is regression (supervised or unsupervised)?

2.	 What kind of variable does linear regression predict?

3.	 What is the shape of the curve used in logistic regression?

4.	 What kind of relationship does linear regression model?

5.	 What does the variable Y represent in regression?

6.	 What does the variable X represent in regression?

7.	 What kind of regression uses multiple independent variables?

8.	 Which regression is used for predicting categorical outcomes?

9.	 What is the graphical shape of the sigmoid curve?

10.	Which algorithm is suitable for binary classification?

Answers to Objective Type Questions
1.	 Supervised
2.	 Continuous
3.	 Sigmoid
4.	 Linear
5.	 Dependent

77 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Assignments

1.	 Explain the concept of regression in machine learning with suitable examples.

2.	 Differentiate between linear regression and logistic regression in terms of
output and use cases.

3.	 Write the mathematical equation of linear regression and explain each term.

4.	 Describe the sigmoid function used in logistic regression. Include its formula
and significance.

5.	 What are the key differences between simple linear regression and multiple
linear regression? Explain with examples.

Suggested Reading

1.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer
Science+Business Media.

2.	 Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends,
perspectives, and prospects. Science, 349(6245), 255-260.

3.	 Kubat, M. (2017). An introduction to machine learning. Springer.

Reference

1.	 https://archive.nptel.ac.in/courses/106/106/106106139/

6.	 Independent
7.	 Multiple
8.	 Logistic
9.	 S-shaped
10.	Logistic

78 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Overfitting, Underfitting
and Regularization

Learning Outcomes

Prerequisites

	♦ to familiarize the concept of Overfitting and Underfitting

	♦ identify Characteristics of Overfitting and Underfitting

	♦ describe Regularization Methods in detail

	♦ illustrate the Importance of Cross-Validation

Suppose you are building a machine learning model to predict student exam scores
using features like study hours, class participation, and sleep patterns. If the model is
too simple and only considers study hours while ignoring other important factors, it may
underfit the data. This means the model will not capture key patterns and relationships,
resulting in poor performance on both the training and test data. As a result, predictions
such as exam scores might be far off, failing to reflect real-world conditions. On the
other hand, if you build a highly complex model that tries to account for every small
detail in the training data, it may overfit. In this case, the model memorizes noise and
rare instances, such as students scoring unusually high due to temporary factors like
extra tutoring. This leads to high accuracy on the training set but poor results on new
data because the model cannot generalize effectively.

To overcome these problems, regularization techniques such as L1 (Lasso) and L2
(Ridge) can be used. Regularization adds a penalty to large feature weights, limiting
the influence of noise and preventing the model from becoming overly complex. For
instance, regularization may prevent the model from giving too much weight to a minor
feature like sleep patterns if it has little impact on actual scores. This ensures that the
model focuses on more relevant factors, such as study hours and class participation,
improving its ability to predict scores accurately on both the training and new data.
By finding the right balance between model complexity and simplicity through
regularization, you can avoid both underfitting and overfitting, leading to reliable and
consistent predictions in real-world scenarios. This balance is crucial for developing
models that perform well across various applications and datasets.

UNIT 4

Upon completion of this unit, the learner will be able to :

79 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion
2.4.1 Overfitting

Overfitting is a common problem in machine learning that occurs when a model
learns the training data too well. Instead of learning general patterns, the model
memorizes both meaningful patterns and irrelevant details (noise) from the training
data. This results in high performance on the training set but poor performance on new,
unseen data. Overfitting limits a model's ability to make accurate predictions on real-
world examples.

2.4.1.1 Understanding Overfitting

The goal of training a machine learning model is to recognize patterns that are
general enough to apply to future data. However, overfitting happens when the model
becomes too complex and tries to capture every detail in the training data, including
random fluctuations or noise.

For example, imagine a model designed to predict house prices based on factors like
the size of the house, the number of rooms, and the neighborhood. If this model overfits,
it might also learn irrelevant patterns, such as temporary price fluctuations based on the
time of year when the data was collected. These irrelevant details may not apply to new
data, causing the model to perform poorly in predicting prices for new houses.

2.4.1.2 Causes of Overfitting

Several factors can lead to overfitting, including:

1. Model Complexity

	♦ A model with too many parameters (e.g., deep neural networks) may
"memorize" the training data instead of learning general rules.

	♦ For instance, a decision tree with unlimited depth can split on every tiny
variation in the data, perfectly fitting the training data but failing on new
data.

2. Small Training Dataset

	♦ When the dataset is too small, the model may not have enough examples to
learn general patterns. As a result, the model fits the limited data perfectly,
including random noise.

Example : you train a cat -vs-dog image classifier using only 5 pictures of
each. With so few examples, the model " remembers" those exact images
instead of learning general cat or dog features.

Keywords

Hyperparameters, Data patterns, Feature selection, Model complexity, Training
accuracy, Validation loss, Data generalization

80 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

3. Excessive Training Time

	♦ If the model is trained for too many iterations or epochs, it starts to learn
even minor details and fluctuations in the data. This decreases its ability to
generalize to new data.

Example : You teach a student the same with problems too many times, and
they just memorize the answers. When given new problems, they cannot solve
them, just like a model trained too long that cannot handle new data.

4. High Noise in Data

	♦ Noisy data contains random variations that are not part of the underlying
pattern. A model may incorrectly treat this noise as meaningful, reducing its
predictive accuracy on new data.

Example : You want to predict the price of a house, so you can include the co-
lour of the front door and the member of flowers in the garden as features. These
details donot really affect the price, but the model may wrongly think they do,
leading to bad predictions on new house .

2.4.1.3 Symptoms of Overfitting

There are several signs that a model might be overfitting:

1. High training accuracy but low test accuracy
	♦ The model performs extremely well on the training set but poorly on new

data because it has not generalized the patterns.
2. Large gap between training and validation loss

	♦ During training, the loss on the training set keeps decreasing, but the
validation loss stops improving or starts increasing after a certain point.

3. Overly complex model output
	♦ For example, a complex model may fit every data point in the training set

with a curve that has many fluctuations. This is a sign that the model has
learned noise rather than general patterns.

2.4.1.4 Examples of Overfitting

1. Example 1: Polynomial Regression
Imagine you have a dataset where the relationship between input and output is

approximately linear. If you fit a high-degree polynomial model (e.g., a 10th-degree
polynomial), the model may perfectly pass through every data point in the training set.
However, this results in a complex wavy curve that does not capture the true relationship
and performs poorly on new data.

2. Example 2: Decision Trees
A decision tree that is allowed to grow without constraints may create a highly

complex structure that classifies every training instance correctly. However, this tree
may fail to generalize to new data, as it has memorized the training data rather than
learning robust rules.

81 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.4.1.5 Preventing Overfitting
There are several techniques to prevent overfitting and improve a model's

generalization ability:
1. Regularization

	♦ Regularization adds constraints to a model to prevent it from becoming
overly complex.

	♦ Common methods include:

●	 L1 Regularization (Lasso): Adds a penalty proportional to the absolute
values of the model's parameters, encouraging sparsity (some parameters
become zero).

●	 L2 Regularization (Ridge): Adds a penalty proportional to the square
of the parameters, discouraging large parameter values.

2. Simplifying the Model
	♦ Reducing model complexity, such as limiting the depth of a decision tree or

the number of layers in a neural network, helps prevent overfitting.

	♦ For example, restricting a decision tree to a maximum depth of 5 might
reduce the risk of the tree memorizing every detail in the training data.

3. Using More Training Data
	♦ Providing more data gives the model more opportunities to learn general

patterns, reducing its reliance on noise.

	♦ For instance, if a model trained on 100 examples overfits, increasing the
training set to 1,000 examples may help it generalize better.

4. Early Stopping

	♦ Early stopping involves monitoring the validation loss during training and
stopping the process when the loss stops improving.

	♦ This prevents the model from overfitting to the training data by halting
training before it begins to learn noise.

5. Cross-Validation
	♦ Cross-validation splits the dataset into multiple subsets (e.g., folds), allowing

the model to be trained and tested on different data splits. This helps ensure
that the model generalizes well to unseen data.

6. Data Augmentation
	♦ In fields like image classification, data augmentation techniques (e.g.,

rotating, flipping, or cropping images) artificially increase the size and
variety of the training data, helping reduce overfitting.

7. Dropout (for Neural Networks)

	♦ Dropout randomly disables a portion of the neurons in a neural network
during training. This prevents the network from becoming overly dependent
on specific neurons and forces it to learn more robust features.

82 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.4.1.6 Measuring Model Performance

To detect and address overfitting, it's essential to monitor the following metrics:

1. Training accuracy vs.validation accuracy:
A significant gap between these two metrics indicates overfitting.

2. Loss curves:
Plotting the training and validation loss over epochs can reveal when overfitting

begins. Early stopping can be applied if validation loss increases while training loss
continues to decrease.

3. Cross-Validation scores:
 Consistent performance across multiple cross-validation folds indicates good

generalization.

Overfitting occurs when a model learns both meaningful patterns and noise from the
training data, causing poor performance on new data. It can result from excessive model
complexity, small datasets, or noisy data. Detecting overfitting involves monitoring
training and validation performance. Techniques such as regularization, simplifying
the model, using more data, early stopping, and cross-validation can help prevent
overfitting and improve a model's ability to generalize to new data.

2.4.2 Underfitting
Underfitting happens when a machine learning model is too simple to capture the

complexities of the data it is trained on. The model struggles to identify patterns or
relationships between input features and the target output. As a result, it performs poorly
on both the training data and new, unseen data. This situation indicates that the model
has high bias and low variance, it makes overly simplified assumptions about the data.

2.4.2.1 Characteristics of Underfitting

	♦ The model has low accuracy on both the training and test datasets.

	♦ It fails to capture important patterns in the data.

	♦ Predictions are often far from the actual values due to the model's
oversimplified assumptions.

2.4.2.2 Causes of Underfitting

1. Model complexity is too low
The model may not have enough parameters to capture the data's complexity. Using

a linear regression model on a dataset where the relationship between features and
the target output is non-linear. The model's straight-line predictions will not match the
actual curved data pattern, leading to errors.

2. Insufficient training time
In some models, especially neural networks, inadequate training (too few iterations

83 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

or epochs) prevents the model from learning data patterns effectively. Stopping training
too early in a neural network may leave the model without enough information to
generalize.

3. Incorrect features
The model might underperform if important features are missing or irrelevant

features dominate the dataset. Trying to predict house prices using only square footage
while ignoring key factors like location and property condition.

4. Over-regularization
Regularization techniques like L1 or L2 add constraints to a model to prevent

overfitting. However, applying excessive regularization can overly restrict the model's
ability to learn complex patterns. A highly regularized model may ignore valuable data
variations, leading to poor performance.

2.4.2.3 Impact of Underfitting

Underfitting results in a model that performs poorly across all data. It neither fits the
training data well nor generalizes to unseen data. This leads to:

	♦ High error rates on both training and test datasets.

	♦ Poor predictions that do not align with the actual data, regardless of input
conditions.

Imagine a dataset where the relationship between the input (e.g., study hours) and
output (e.g., exam scores) follows a curved trend. If you apply a simple linear regression
model, it may predict a straight line that does not match the curve. As a result, both
training and test predictions will have large errors because the model cannot capture
the curve in the data.

2.4.2.4 Detecting Underfitting

You can identify underfitting by analyzing the model's performance:

1.	 Training and validation errors are both high.

	 If the model struggles to learn from the training data, it is likely underfitting.

2.	 Visual inspection of predictions.

	By comparing the model’s predictions with actual data points, you can see if the
model’s output is oversimplified and fails to capture important trends.

2.4.2.5 Solutions to Underfitting

1.	 Increase Model Complexity

	 Use a more advanced model that can handle complex relationships in the data.
Switch from linear regression to polynomial regression, which can capture
nonlinear patterns.

84 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.	 Reduce Regularization

	 Decrease the strength of regularization to give the model more flexibility to
learn from the data.

3.	 Feature Engineering

	 Add relevant features or transform existing features to help the model better
understand the data. For a housing price prediction model, include features like
property age and location in addition to square footage.

4.	 Increase Training Time

	 Train the model for more iterations or epochs, especially in neural networks, to
allow the model to better capture patterns in the data.

5.	 Tune Hyperparameters

	 Adjust model hyperparameters (e.g., learning rate, number of hidden layers, or
number of neurons) to improve performance. Increasing the learning rate might
help the model converge faster on a solution.

Example Scenario: Suppose you are building a machine learning model to predict
house prices. Initially, you use only one feature, square footage, to make predictions.
The model underperforms because it ignores other important factors like location,
number of bedrooms, and age of the property. By adding these features, the model
becomes more capable of capturing the complex factors that influence house prices.

2.4.2.6 Underfitting vs. Overfitting

Table 2.4.1 Comparison of Underfitting and Overfitting

Feature Underfitting Overfitting
Model Complexity Too simple Too complex
Training Accuracy Low High

Test Accuracy Low Low (due to poor
generalization)

Bias High (oversimplifies
the problem)

Low (sensitive to data
noise)

Variance Low High

Underfitting occurs when a machine learning model is too simple to effectively
learn from data. It fails to capture important patterns, resulting in poor performance
on both training and test datasets. Common causes of underfitting include low model
complexity, insufficient training, and missing features. To address underfitting, you can
increase the model's complexity, reduce regularization, and perform feature engineering.
Achieving a balance between underfitting and overfitting is crucial for building models
that generalize well to unseen data.

85 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2.4.3 Regularization
Regularization is a technique used in machine learning to prevent a model from

overfitting the training data. Overfitting occurs when a model learns not only the
underlying patterns in the data but also the noise and random fluctuations. This causes the
model to perform well on training data but poorly on new, unseen data. Regularization
addresses this by adding a penalty term to the model's objective (or loss) function,
discouraging overly complex models.

2.4.3.1 Why is Regularization Important?

	♦ Models with too many parameters or features are prone to overfitting.

	♦ Overfitting leads to poor generalization and high test error.

	♦ Regularization helps strike a balance between underfitting (too simple) and
overfitting (too complex) by controlling the complexity of the model.

2.4.3.2 Types of Regularization

1. L1 Regularization (Lasso Regression)
L1 regularization adds a penalty equal to the absolute value of the coefficients to

the loss function. It is defined as:

Here, λ is the regularization parameter that controls the penalty strength, and wiw_
iwi are the model's weights (parameters).

	♦ Effect: L1 regularization can drive some weights to exactly zero, effectively
performing feature selection by eliminating irrelevant features.

	♦ Use Case: L1 regularization is beneficial when you suspect that only a few
features are important for the prediction.

Suppose you have a dataset with many features, but only a few of them are actually
relevant to the target variable. Applying L1 regularization will shrink the weights of the
irrelevant features to zero, simplifying the model.

2. L2 Regularization (Ridge Regression)
L2 regularization adds a penalty equal to the square of the coefficients to the loss

function. It is defined as:

	♦ Effect: L2 regularization discourages large weight values, forcing the model
to distribute importance across features.

86 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	♦ Use Case: L2 regularization is useful when all features contribute to the
prediction but need to be balanced to avoid overfitting.

Example:

In a linear regression model predicting house prices, L2 regularization can prevent
the model from assigning overly large weights to certain features, such as square footage
or lot size, ensuring that other features like location and age of the property also play
a role.

3. Elastic Net Regularization
Elastic Net combines both L1 and L2 regularization. Its loss function is defined as:

	♦ Effect: Elastic Net provides a balance between feature selection (L1) and
weight distribution (L2).

	♦ Use Case: It is useful when there are many correlated features or when
neither L1 nor L2 alone gives optimal performance.

2.4.3.3 Regularization in Different Models

1. Linear Models (e.g., Linear Regression, Logistic Regression)
Regularization helps prevent linear models from overfitting by constraining their

coefficients.

2. Neural Networks
Neural networks are highly flexible and can overfit easily. Techniques like L2

regularization (also called Weight Decay) and dropout are used to regularize neural
networks:

	♦ Weight Decay: Adds a penalty on large weights, similar to L2 regularization.

	♦ Dropout: Randomly deactivates a fraction of neurons during training to
prevent co-adaptation of neurons.

3. Decision Trees and Ensemble Models
While decision trees are prone to overfitting, regularization techniques such as

pruning and limiting tree depth can control their complexity. For ensemble methods
like random forests and gradient boosting, hyperparameters like the number of trees
and learning rate act as regularization methods.

2.4.3.4 How Regularization Affects the Loss Function

The original loss function (e.g., mean squared error for regression or cross-entropy
for classification) measures the model's prediction error. Regularization modifies this
function by adding a penalty term that discourages complex models:

87 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	♦ If the regularization parameter λ (lambda) is too large, the model may
underfit, failing to capture important patterns in the data.

	♦ If λ(lambda) is too small, the model may still overfit.
Finding the right balance for λ (lambda) is critical and is often done through

hyperparameter tuning using techniques like cross-validation.

2.4.3.5 Hyperparameter Tuning for Regularization

To optimize the performance of a regularized model, you need to tune the
regularization parameter λ (lambda). Common approaches include:

1.	 Grid Search: Test multiple values of λ (lambda) and evaluate model
performance on a validation set.

2.	 Random Search: Randomly sample λ(lambda)values from a predefined
range.

3.	 Automated Techniques: Use algorithms like Bayesian optimization to find
the optimal regularization parameter.

Example Scenario:Imagine you are building a model to predict loan defaults. The
dataset contains various features like income, credit score, and employment history.
Without regularization, the model may overfit, learning noise and spurious patterns
from the training data. By applying L2 regularization, the model is forced to balance
the importance of all features, preventing it from giving excessively high weight to
irrelevant features like the number of dependents or ZIP code.

Regularization reduces overfitting by penalizing complex models. However,
excessive regularization can cause underfitting, where the model is too simple to capture
the data's patterns.

2.4.3.6 Advantages of Regularization

1.	 Improved Generalization:
	 Regularization helps models perform better on unseen test data by preventing

them from memorizing training data.

2.	 Feature Selection:

	 L1 regularization can automatically select important features by shrinking
irrelevant ones to zero.

3. 	 Reduced Overfitting:

	 Regularization discourages complex models, reducing the risk of overfitting.

88 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Recap

	♦ Overfitting occurs when a model memorizes training data, causing poor
performance on new data.

	♦ Overfitting is caused by excessive model complexity, small datasets, or
noisy data.

	♦ Overfitting symptoms include high training accuracy but low test accuracy.

	♦ A complex model like a deep decision tree often overfits the data.

	♦ Regularization prevents overfitting by controlling model complexity.

	♦ Simplifying the model and using more training data helps reduce overfitting.

	♦ Early stopping prevents overfitting by halting training when validation loss
increases.

	♦ Underfitting occurs when a model is too simple to learn data patterns.

	♦ Underfitting causes high errors on both training and test data.

	♦ Insufficient training time and poor feature selection can lead to underfitting.

	♦ Increasing model complexity and training time helps fix underfitting.

	♦ L1 regularization shrinks irrelevant features to zero, simplifying the model.

	♦ L2 regularization balances feature importance to prevent large weights.

	♦ Elastic Net combines L1 and L2 regularization for optimal performance.

	♦ Hyperparameter tuning helps balance underfitting and overfitting.

Objective Type Questions
1.	 What problem occurs when a model learns both patterns and noise in training

data?

2.	 Which term describes a model that performs well on training data but poorly
on test data?

3.	 What causes overfitting when the dataset is too small?

4.	 What regularization technique penalizes the absolute values of model
parameters?

5.	 What is the key characteristic of underfitting in terms of accuracy?

6.	 What type of regression adds a penalty based on the square of the coefficients?

7.	 Which regularization technique combines both L1 and L2 penalties?

89 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

8.	 Which method prevents a model from training too long by stopping when
validation loss increases?

9.	 What term is used for splitting data into multiple subsets to evaluate model
performance?

10.	Which technique disables random neurons during training in neural
networks?

11.	What problem arises when a model is too simple to capture data patterns?

12.	What metric indicates poor generalization when the gap between training
and test accuracy is large?

13.	What technique helps reduce overfitting by increasing the size and variety
of the training data?

14.	What do hyperparameter tuning techniques like grid search aim to optimize?

Answers to Objective Type Questions

1.	 Overfitting

2.	 Overfitting

3.	 Data scarcity

4.	 Lasso

5.	 Low accuracy

6.	 Ridge regression

7.	 Elastic Net

8.	 Early stopping

9.	 Cross-validation

10.	Dropout

11.	Underfitting

12.	Generalization gap

13.	Data augmentation

14.	Model performance

90 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Assignments

1.	 Explain the concept of overfitting in machine learning, its causes, and
methods to prevent it.

2.	 Discuss underfitting in machine learning, its impact on model performance,
and strategies to address it.

3.	 Define regularization in machine learning and explain the differences
between L1, L2, and Elastic Net regularization techniques.

4.	 Describe the role of training and validation accuracy in detecting overfitting
and underfitting in a model.

5.	 Explain how hyperparameter tuning can help balance underfitting and
overfitting in machine learning models.

Suggested Reading

1.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

2.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press.

3.	 Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: Data mining, inference, and prediction. Springer.

4.	 Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT
Press.

Reference

1.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

2.	 Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: Data mining, inference, and prediction (2nd ed.). Springer.

3.	 Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems
(2nd ed.). O'Reilly Media.

4.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press.

91 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Unsupervised
Learning and
Reinforcement
Learning

BLOCK 3

92 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Partition Clustering:
K-means Clustering,
K-Medoid

Learning Outcomes

Prerequisites

	♦ define clustering and its importance in data analysis

	♦ identify the different types of clustering methods

	♦ list the steps involved in the K-means clustering algorithm

	♦ describe the basic concept of K-medoid clustering

	♦ state the key difference between K-means and K-medoid clustering

Think about how you organize your clothes like shirts in one drawer, jeans in
another, and jackets in a separate closet. This makes it easy to find what you're looking
for because similar items are grouped together. In a similar way, clustering is about
grouping data into clusters based on similarities. For example, in an online store,
products might be grouped into categories like clothing, electronics, or books. This
helps customers find what they need quickly. Two popular methods for grouping data
are K-Means and K-Medoids. Both are ways to organize data into clusters, but they do
it slightly differently:

●	 K-Means: Imagine picking a random shirt and jacket to represent each group.
You then sort the rest of your clothes into the group that’s closest to these "centers."
After that, you update the group centers based on the average of the clothes in each
group, and repeat until the groups stop changing.

●	 K-Medoids: Instead of choosing the center based on averages, you pick actual
items (like the shirt that is the most representative of the group). The goal is still to
group similar items together, but this method focuses on choosing specific data points
that best represent the cluster.

UNIT 1

 Studying this unit will enable the learner to:

Keywords

K-Means, K-Medoids, Centroid, Data Grouping, Euclidean Distance, Partitioning
Methods

93 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion

3.1.1 What is Clustering ?
Clustering involves organizing a collection of data objects into several groups or

clusters, ensuring that the objects within each cluster are highly similar to one another
while being significantly different from those in other clusters.Clustering has numerous
applications across a variety of fields, as it helps in organizing and analyzing data
effectively. Below are some key areas where clustering is widely used:

1. Business Intelligence
In business intelligence, clustering is utilized for customer segmentation by

grouping customers based on characteristics such as purchase history, demographics,
or preferences. This enables businesses to design targeted marketing strategies and
tailor their services to meet the specific needs of different customer groups, ultimately
enhancing customer satisfaction and business outcomes.

Market Research: Businesses use clustering to identify patterns in consumer behavior,
which can aid in developing products or services that meet market demand.

2. Image and Pattern Recognition
Clustering is used in handwritten character recognition to categorize variations in

handwriting styles. This process improves the accuracy of recognition systems by
identifying and grouping similar writing patterns.

3. Web Search
Clustering is used to organize search results into related groups. This makes it easier

for users to navigate and find relevant information quickly.

3.1.2 Basic Clustering Methods
Basic clustering methods can be divided into several main categories, each with its

unique approach to grouping data. These fundamental clustering techniques include:

3.1.2.1 Partitioning Methods

Partitioning methods divide the data into non-overlapping subsets or clusters. Each
data point belongs to exactly one cluster. A popular example of partitioning is the
K-Means algorithm, where the number of clusters (K) is predefined, and the algorithm
aims to minimize the variance within each cluster.

3.1.2.2. Hierarchical Methods

Hierarchical clustering builds a tree-like structure (dendrogram) of nested clusters.
It can be agglomerative (bottom-up), starting with individual data points and merging
them into larger clusters, or divisive (top-down), starting with all data points in one
cluster and recursively dividing them. Agglomerative Hierarchical Clustering is a
common approach used in many applications.

94 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

3.1.2.3. Density-Based Methods

Density-based clustering algorithms group together points that are closely packed,
marking regions of high density as clusters. These methods can find arbitrarily shaped
clusters and are particularly effective at handling noise. DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) is a widely used density-based clustering
algorithm.

3.1.2.4.Grid-based methods

Grid-based methods divide the object space into a finite number of cells, creating
a grid structure. Clustering operations are then carried out on this grid (the quantized
space). The key advantage of this approach is its efficient processing time, which
generally depends on the number of cells in each dimension of the quantized space,
rather than on the number of data objects.

In this unit, you are required to learn only the partitioning method of clustering.

3.1.3 Partitioning Methods
The most basic and essential form of cluster analysis is partitioning, where the

objects in a set are grouped into distinct and non-overlapping clusters. For simplicity,
we can assume that the number of clusters is predetermined, and this parameter serves
as the foundation for partitioning methods.

Formally, given a dataset D consisting of n objects and a specified number k of
clusters (where k≤ n), a partitioning algorithm divides the objects into k clusters. The
clusters are created to optimize a partitioning criterion, such as a dissimilarity function
based on distance, ensuring that objects within the same cluster are "similar" to each
other and "dissimilar" to those in different clusters based on the dataset's attributes.

In this section, you will explore the two most popular and widely used partitioning
methods: k-means and k-medoids.

3.1.3.1 k-Means Clustering

K-Means clustering is one of the simplest and most popular unsupervised machine
learning algorithms for partitioning data into distinct groups or clusters. The main idea
is to categorize data points such that the points within each group are more similar to
each other than to points in other groups. The "K" in K-means represents the number of
clusters you want the algorithm to find in your dataset.

Working of K-means clustering

1. Initialization
The first step in the K-means algorithm is to decide how many clusters you want to

divide your data into. This number is denoted by K (hence the name K-means).

2. Randomly Initialize Centroids:
The algorithm then randomly selects K data points from the dataset and assigns them

as the initial centroids of the clusters. A centroid is the center (mean) of each cluster.

95 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

3. Assign Data Points to Nearest Centroid
Once you have the initial centroids, the next step is to assign each data point to the

closest centroid. The "closeness" is typically measured using the Euclidean distance
between each point and the centroid.

The Euclidean distance formula in 2D for points and

 Distance =

4. Update Centroids
After all data points have been assigned to clusters, the centroids of the clusters need

to be updated. The new centroid of each cluster is calculated by taking the mean of all
the data points assigned to that cluster.

For cluster the new centroid

Where:

 is the number of data points in cluster .

 represents each data point in the cluster.

The summation calculates the mean of all data points in the cluster.

5. Repeat Until Stable
The process of assigning points to the nearest centroid and updating the centroids is

repeated several times. This continues until the centroids stop changing much, or we
complete a fixed number of steps.

6. Final Clusters
After the process stops, each data point belongs to its closest centroid, forming

groups or clusters. These groups can then be used for tasks like identifying patterns or
organizing data.

Example

Grouping People Based on Height and Weight

Imagine you're a fitness trainer, and you want to group people into 2 categories:

Group 1: People with lower height and weight

Group 2: People with higher height and weight

You have data on 6 individuals who have shared their height and weight measurements.
You want to use K-Means clustering to organize them into two groups.

96 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Table 3.1.1 Height and Weight of 6 person

Person Height Weight
A 150 50
B 160 55
C 175 70
D 180 75
E 145 45
F 170 65

Step 1: Decide the Number of Groups (K)
You want to divide the people into 2 groups based on their height and weight. So, K = 2.

Step 2: Choose Initial Centroids
Now, you randomly pick 2 people to act as the starting points (centroids) for your 2

groups. These centroids are just initial guesses of where your groups might be.

	♦ Centroid 1 (C1): Person A (Height = 150 cm, Weight = 50 kg)

	♦ Centroid 2 (C2): Person D (Height = 180 cm, Weight = 75 kg)

Step 3: Assign Each Person to the Nearest Centroid
Now, you calculate the distance between each person and the two centroids. We'll

use the Euclidean distance formula to calculate the distance between the person and
each centroid.

Where:

 are the coordinates of the centroid.

 are the coordinates of the individual.

Person A (150 cm, 50 kg) to Centroid 1 (150 cm, 50 kg):

So, Person A is assigned to Centroid 1.

Person A (150 cm, 50 kg) to Centroid 2 (180 cm, 75 kg):

=

So, Person A is closer to Centroid 1.

97 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Repeat for other people:

Person B (160 cm, 55 kg):

Distance to Centroid 1:

 Distance to Centroid 2:

 Person B is closer to Centroid 1.

Person C (175 cm, 70 kg):

Distance to Centroid 1:

Distance to Centroid 2:

			

Person C is closer to Centroid 2.

Person D (180 cm, 75 kg):

Distance to Centroid 1:

				

Distance to Centroid 2:

Person D is closer to Centroid 2.

Person E (145 cm, 45 kg):

Distance to Centroid 1:

98 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

 Distance to Centroid 2:

			

Person E is closer to Centroid 1.

●	 Person F (170 cm, 65 kg):

 Distance to Centroid 1:

	 Distance to Centroid 2:

Person F is closer to Centroid 2.

Step 4: Update the Centroids
Now, you have grouped the students, and it's time to update the centroids (find the

new group center). We’ll calculate the average height and weight of each group.

New Centroid for Group 1:

New Height:

New Weight:

So, the new Centroid 1 is (151.67 cm, 50 kg).

New Centroid for Group 2:

People in Group 2: C, D, F

New Height:

99 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

New Weight:

So, the new Centroid 2 is (175 cm, 70 kg).

Step 5: Reassign People Based on the New Centroids
Now that the centroids have been updated, we check again if the students need to be

reassigned to the new centroids.

Person A (150 cm, 50 kg): Closer to Centroid 1 (151.67 cm, 50 kg) → Group 1.

Person B (160 cm, 55 kg): Closer to Centroid 1 (151.67 cm, 50 kg) → Group 1.

Person C (175 cm, 70 kg): Closer to Centroid 2 (175 cm, 70 kg) → Group 2.

Person D (180 cm, 75 kg): Closer to Centroid 2 (175 cm, 70 kg) → Group 2.

Person E (145 cm, 45 kg): Closer to Centroid 1 (151.67 cm, 50 kg) → Group 1.

Person F (170 cm, 65 kg): Closer to Centroid 2 (175 cm, 70 kg) → Group 2.

Step 6: Stop When Groups Stabilize

After updating the centroids and reassigning the students, you can see that no one
needs to switch groups anymore. The groups have stabilized, and the process is
complete.

Final Groups:

	♦ Group 1 (Centroid: 151.67 cm, 50 kg):
Students A, B, E (Shorter and lighter students)

	♦ Group 2 (Centroid: 175 cm, 70 kg):
Students C, D, F (Taller and heavier students)

3.1.3.2 K-Medoid Clustering

Imagine you have a group of friends, and you want to divide them into smaller groups
based on how similar they are to one another. For example, you might group them based
on their favorite hobbies, like sports, reading, or music. K-Medoid clustering helps you
do this by finding one person in each group who best represents the entire group.

What is K-Medoid Clustering?

K-Medoid clustering is a method of dividing data points into groups (clusters) based
on their similarity. It is similar to K-Means clustering, but instead of using the "average"
to find the center of a group, it uses actual data points (called medoids) as the center of
each cluster. Medoids are the most "central" points in a cluster, meaning they are the
least different from all the other points in the group.

100 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Working of K-medoid Clustering

1.	 Choose the Number of Groups (K): Decide how many clusters (K) you want
to form. For example, if you want 3 groups, K = 3.

2.	 Pick Random Medoids: Select K random data points as the initial medoids.
These medoids represent the clusters.

3.	 Assign Points to the Closest Medoid: For each data point, calculate its
distance from each medoid (how "similar" it is) and assign it to the closest
one.

4.	 Update the Medoids: For each group, find the most central point (the one
with the smallest total distance to other points in the group). This point
becomes the new medoid.

5.	 Repeat Until Stable: Keep reassigning points and updating medoids until no
points change clusters. This means the groups are stable.

Example
Imagine we have a small dataset of students with their scores in two subjects: Math

and Science. We want to group these students into 2 clusters based on their scores.

Table 3.1.2 Students Score

Student Math Score Science Score

A 90 85

B 80 70

C 85 95

D 60 65

E 55 70

F 65 60

Step 1: Initialization

	♦ Decide on the number of clusters (k = 2).

	♦ Randomly pick two students as the initial cluster centers:

●	 Cluster 1: (90, 85) (Student A)

●	 Cluster 2: (60, 65) (Student D)

101 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Step 2: Assign Each Student to the Nearest Cluster
Calculate the distance (e.g., Euclidean distance) between each student and the cluster

centers.

For example:

	♦ Distance of Student B (80, 70) to Cluster 1 (90, 85):

	 =

	♦ Distance of Student B to Cluster 2 (60, 65):

	 =

Student B is closer to Cluster 1, so assign them to Cluster 1.

Do this for all students:

We will get the clusters as :

●	 Cluster 1: A, B, C

●	 Cluster 2: D, E, F
Step 3: Update Cluster Centers (medoids)

For Cluster 1 (A, B,C)

Compute the total distance from each to others

A as medoid :

dist to B 18.03

dist to C 11.18

Total Distance

= 18.03 + 11.18 = 29.21

Similarly, find the total distance by making B as medoid and also C as medoid. From
the 3 total values, choose the best medoid (smallest total distance). This smallest total
distance will be new medoid for cluster 1. Do the same for cluster 2 and find the new
medoid for cluster 2.

Step 4: Repeat Steps 2 and 3

	♦ Reassign students to clusters based on the updated centers.

	♦ Update the cluster centers again.

	♦ Stop when the clusters don’t change or after a fixed number of iterations.

102 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Final Clusters
After a few iterations, the final clusters are:

	♦ Cluster 1 (High Scorers): A, B, C

	♦ Cluster 2 (Average Scorers): D, E, F

Recap

	♦ Clustering groups data objects into clusters where intra-cluster similarity is
high and inter-cluster similarity is low.

	♦ Applications: Used in business intelligence (customer segmentation, market
research), image recognition, and web search.

Basic Clustering Methods

	♦ Partitioning Methods: Divide data into non-overlapping clusters (e.g.,
K-Means).

	♦ Hierarchical Methods: Create a tree-like structure using agglomerative or
divisive approaches.

	♦ Density-Based Methods: Identify clusters based on density (e.g., DBSCAN).

	♦ Grid-Based Methods: Use a grid structure to group objects efficiently.

Partitioning Methods

K-Means Clustering

	♦ Chooses K clusters and initializes centroids randomly.

	♦ Assigns data points to the nearest centroid based on Euclidean distance.

	♦ Updates centroids as the mean of assigned points.

	♦ Repeat until centroids stabilize.
K-Medoids

	♦ Select K random medoids from the dataset.

	♦ Assign each data point to the nearest medoid based on distance.

	♦ Swap non-medoid points with medoids to minimize total dissimilarity.

	♦ Repeat until medoids do not change.

103 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Objective Type Questions

1.	 What type of learning does clustering belong to?

2.	 Which clustering algorithm selects actual data points as cluster centers?

3.	 What metric is commonly used in K-Means clustering to measure distance?

4.	 Which clustering method builds a hierarchy of clusters?

5.	 What is the process of grouping similar data points together?

6.	 Which clustering algorithm assigns each point to the nearest centroid?

7.	 What is the central object around which K-Medoids clustering is formed?

8.	 Which algorithm minimizes the sum of squared distances from cluster
centroids?

Answers to Objective Type Questions

1.	 Unsupervised

2.	 K-Medoids

3.	 Euclidean

4.	 Hierarchical

5.	 Clustering

6.	 K-Means

7.	 Medoid

8.	 K-Means

Assignments

1.	 Explain the basic working principle of the K-Means clustering algorithm.
How does it assign data points to clusters?

2.	 Explain how K-Medoids clustering differs from K-Means. What is the role
of the medoid in K-Medoids clustering?

3.	 Compare the k means and k medoid clustering methods.

104 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suggested Reading

1.	 Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). An overview of
machine learning. Machine learning, 3(1), 3-23.

2.	 Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT
Press.

3.	 Marsland, S. (2011). Machine learning: An algorithmic perspective.
Chapman and Hall/CRC.

4.	 Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques.
Morgan Kaufmann.

Reference

1.	 MacQueen, J. (1967). Some methods for classification and analysis of
multivariate observations. In Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability (Vol. 1, pp. 281-297). University of
California Press.

2.	 Kaufman, L., & Rousseeuw, P. J. (1987). Finding groups in data: An
introduction to cluster analysis. Wiley-Interscience.

105 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

 Hierarchical Clustering

Learning Outcomes

Prerequisites

	♦ define hierarchical clustering and its purpose.

	♦ identify the two types of hierarchical clustering

	♦ explain what a dendrogram represents in hierarchical clustering

	♦ recall the formula for calculating Euclidean distance

	♦ list the steps involved in agglomerative clustering

In many situations, you group things together based on similar characteristics. For
example, you might group animals into categories like mammals, birds, and reptiles, or
you might organize books on a shelf based on their genre.

Now, imagine you're working with a large set of data points, like customer information
or a list of products, and you need to group them based on their similarities. Clustering
is a method that allows us to do this automatically, without any prior labels. Hierarchical
clustering is one such technique, and it helps us understand how to organize data in a
way that shows both the individual similarities and the overall structure of the data.

In this topic, we will explore how hierarchical clustering works, how to calculate
distances between data points, and how we can visually represent these relationships
using a dendrogram.

UNIT 2

Studying this unit will enable the learner to:

Keywords

Agglomerative clustering, dendrogram, Euclidean distance, clustering methods,
Divisive clustering, data grouping

106 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion
3.2.1 Hierarchical Clustering

Hierarchical clustering is a way to group objects (like people, animals, or data
points) based on how similar they are to each other. The goal is to build a "hierarchy"
of clusters, which means we can organize objects from individual points all the way to
bigger groups.

This method is particularly useful because:

	♦ You don’t need to decide how many groups you want in advance.

	♦ You can look at the structure of the groups and decide later.
To achieve this, hierarchical clustering builds a tree-like diagram, known as a

dendrogram, which shows how individual points or smaller groups are merged into
larger groups step by step.

Dendrogram:

A dendrogram is a tree-like diagram that illustrates the arrangement of clusters
created through hierarchical clustering.

 Fig 3.2.1 A dendrogram structure

3.2.2 Types of Hierarchical Clustering
There are two main types of hierarchical clustering:

1. Agglomerative (Bottom-Up):
This is the most common method. It starts with each point (or object) as its own

group, and then it keeps combining the most similar groups together until there is one
big group.

107 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

2. Divisive (Top-Down):
This approach works the opposite way. It starts with one big group and keeps splitting

it into smaller and smaller groups until every point is its own group.

3.2.3 Agglomerative Clustering
Agglomerative clustering is a hierarchical clustering method that follows a bottom-up

approach, where each data point starts as an individual cluster, and similar clusters are
progressively merged until a single cluster or a predefined number of clusters is formed.

Agglomerative clustering works by gradually merging the closest groups. Here’s
how it goes step by step:

1.	 Start with each object as its own group.

2.	 Find the two closest objects (based on similarity, like distance) and merge
them into a new group.

3.	 Repeat this process, always looking for the two closest groups, and merge
them.

4.	 Continue this until all objects are grouped into one single group.

Example of Agglomerative Clustering:

Let’s use an example with 4 friends to see how this works. Each friend likes different
activities:

●	 Alex likes playing sports.
●	 Helen likes playing sports.
●	 Daive likes reading books.
●	 Alice likes reading books

 Figure 3.2.2 Data points

108 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Step 1: Start with individual groups:

	♦ Alex, Helen, Daive, and Alice are each in their own group.

	♦ So, at first, we have 4 groups: Alex | Helen | Daive | Alice.

 Figure 3.2.3 Four Individual group

Step 2: Find the two most similar friends:
●	 Alex and Helen both love playing sports, so they are the most similar.

●	 We merge Alex and Helen into one group.

●	 Now, we have 3 groups: (Alex, Helen) | Daive | Alice.

 Figure 3.2.4 Result of step 2

Step 3 : Find the next most similar group:
●	 Daive and Alice both love reading books, so they are the next most similar.

●	 We merge Daive and Alice into one group.

●	 Now, we have 2 groups: (Alex, Helen) | (Daive, Alice).

109 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

 Figure 3.2.5 Result of Step 3

Final merge:

	♦ The last two groups, (Alex, Helen) and (Daive, Alice), are merged into one
final group.

	♦ Now, we have 1 big group: (Alex, Helen, Daive, Alice).

 Figure 3.2.6 Final Dendrogram

Example of Agglomerative Clustering with Distance Calculation

Let’s say you are organizing a group of students based on their height. The idea is to
group students who are similar in height together. Here's the data for 4 students:

	♦ Rose: 160 cm

	♦ Bob: 170 cm

	♦ James: 180 cm

	♦ Gana: 175 cm
We will use Euclidean distance to calculate the distance between the students. The

Euclidean distance is just the straight-line distance between two points.

110 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Step 1: Start with individual groups
Each student starts in their own group:

	♦ Group 1: Alex (160 cm)

	♦ Group 2: Beth (170 cm)

	♦ Group 3: Charlie (180 cm)

	♦ Group 4: Dana (175 cm)

Figure 3.2.7 Individual data groups

Step 2: Calculate the distances between each pair of students
Now, we calculate the Euclidean distance between each pair of students. In this case,

the formula for Euclidean distance in one dimension (height) is simply the absolute
difference between their heights.

	♦ Distance between Rose (160 cm) and Bob (170 cm):

	♦ Distance between Rose (160 cm) and James (180 cm):

	♦ Distance between Rose (160 cm) and Gana (175 cm):

	♦ Distance between Bob (170 cm) and James (180 cm):

	♦ Distance between Bob (170 cm) and Gana (175 cm):

	♦ Distance between James (180 cm) and Gana (175 cm):

111 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Step 3: Find the closest pair of groups
Now that we have all the distances, we look for the two closest groups (the ones with

the smallest distance):

	♦ The smallest distance is 5 cm, which is between Bob (170 cm) and Gana
(175 cm), and also between James (180 cm) and Gana (175 cm).

For simplicity, let’s choose Bob and Gana to merge first (though, in some cases, you
may have a tie and can choose any pair).

Step 4: Merge the closest groups
We now merge Beth and Dana into a single group:

	♦ New Group 1: (Bob, Gana) — 170 cm and 175 cm

	♦ Group 2: Rose (160 cm)

	♦ Group 3: James (180 cm)

 Figure 3.2.8 Groups after step 4

Step 5: Calculate the distances again
Now, we recalculate the distances between the new groups. We need to calculate

the distance between the merged group (Bob, Gana) and the other groups (Rose and
James):

	♦ Distance between (Bob, Gana) [170 cm, 175 cm] and Rose (160 cm):
	 We take the average height of the merged group:

	

	♦ Distance between (Bob, Gana) [170 cm, 175 cm] and James (180 cm):

 	
Step 6: Find the next closest pair

The smallest distance is 7.5 cm between (Bob, Gana) [172.5 cm] and James (180 cm).

112 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

We merge these two groups:

	♦ New Group 1: (Bob, Gana, James)-(172.5 cm, 170 cm, 180 cm)

	♦ Group 2: Rose -(160 cm)

Figure 3.2.9 Groups after step 6

Step 7: Final merge
Now, the last two groups are (Bob, Gana, James) and Rose. We calculate the distance

between these groups:

Distance between (Beth, Dana, Charlie) [172.5 cm, 175 cm, 180 cm] and Alex (160
cm):

Average height of the merged group:

Finally, we merge Rose and the group (Bob, Gana, James) into one final group:

 Figure 3.2.10 Final Dendrogram

113 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Recap

Hierarchical Clustering:

	♦ Groups objects based on similarity.

	♦ Builds a "hierarchy" of clusters, starting from individual points to larger
groups.

	♦ Uses a tree-like diagram called a dendrogram to show the clustering process.
Dendrogram:

	♦ A tree-like diagram illustrating the arrangement of clusters in hierarchical
clustering.

Types of Hierarchical Clustering:

	♦ Agglomerative (Bottom-Up):

●	 Starts with individual objects as separate groups.

●	 Merges the closest groups progressively until one large group
remains.

	♦ Divisive (Top-Down):

●	 Starts with one big group and splits it into smaller groups until
each object is its own group.

Agglomerative Clustering:

	♦ A bottom-up method where clusters are merged step by step based on
similarity.

	♦ Steps:
1.	Start with each object as its own group.
2.	Find the two most similar objects and merge them.
3.	Repeat the process until one big group remains.

Objective Type Questions

1.	 What is the name of the tree-like diagram used in hierarchical clustering?

2.	 Which method of hierarchical clustering starts with individual points and
progressively merges them?

3.	 In divisive hierarchical clustering, what is the starting point?

4.	 What type of distance is commonly used to calculate the closeness between
data points in clustering?

114 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

5.	 Which approach in hierarchical clustering divides a large group into smaller
groups?

6.	 What is the first step in agglomerative clustering?

7.	 What does hierarchical clustering aim to group data based on?

8.	 What do you call the process of assigning data points to clusters based on
their features?

Answers to Objective Type Questions

1.	 Dendrogram

2.	 Agglomerative

3.	 One group

4.	 Euclidean

5.	 Divisive

6.	 Individual groups

7.	 Similarity

8.	 Clustering

Assignments

1.	 Explain the concept of hierarchical clustering. Discuss its main features and
how it differs from other clustering techniques.

2.	 Illustrate the process of agglomerative hierarchical clustering using a simple
example with 5 data points. Calculate the distances between the points and
explain the merging process step by step.

3.	 What is a dendrogram? Explain how it is constructed and how it helps in
understanding the clustering process.

4.	 Perform agglomerative hierarchical clustering on a set of 6 students based
on their heights. Use Euclidean distance for the calculations and draw the
final dendrogram.

5.	 Discuss the advantages and disadvantages of hierarchical clustering.

115 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suggested Reading

1.	 Carbonell, Jaime G., Ryszard S. Michalski, and Tom M. Mitchell. "An
overview of machine

2.	 learning." Machine learning (1983): 3-23

3.	 Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press,
2012.

4.	 Marsland, Stephen. Machine learning: an algorithmic perspective. Chapman
and Hall/CRC, 2011.

5.	 Jiawei, Han, and Kamber Micheline. Data mining: concepts and techniques.
Morgan Kaufmann, 2006.

Reference

1.	 Jain, A. K., Murty, M. N., and Flynn, P. J. "Data clustering: A review." ACM
Computing Surveys (CSUR) 31.3 (1999): 264–323.

2.	 Everitt, B. S., Landau, S., and Leese, M. Cluster Analysis (4th ed.). Wiley,
2001.

3.	 Kaufman, L., and Rousseeuw, P. J. Finding Groups in Data: An Introduction
to Cluster Analysis. Wiley, 2009.

4.	 Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer, 2009.

116 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Dimensionality Reduction
– Principal Component
Analysis, Singular Value

Decomposition
Learning Outcomes

Prerequisites

	♦ identify the concept of dimensionality reduction and its importance in data
analysis

	♦ describe how Principal Component Analysis (PCA) reduces dimensionality.

	♦ explain the process of Singular Value Decomposition (SVD) and its role in
dimensionality reduction

	♦ list the steps involved in performing PCA on a dataset

	♦ recognize the relationship between PCA and SVD in the context of
dimensionality reduction

Before diving into Dimensionality Reduction with concepts like Principal Component
Analysis (PCA) and Singular Value Decomposition (SVD), let’s revisit something
you’re already familiar with – data and features.

You know that datasets in machine learning often have many features (like height,
weight, age, etc.). These features describe different aspects of the data, but sometimes, too
many features can make the analysis complicated or slow. This is where dimensionality
reduction steps in: it's like summarizing a long list of details into a few key points
without losing important information.

You might have seen how in linear regression we try to find patterns in data by
drawing straight lines through points. Now, imagine if we could automatically find the
most important patterns in data with many features, just like finding a simpler way to
describe a complex picture. PCA and SVD are tools that help do exactly that – they
simplify complex data to make it easier to work with while retaining the most important
details.

By understanding these new techniques, you’ll be able to handle large datasets more
efficiently and make better predictions.

UNIT 3

Studying this unit will enable the Learner to:

117 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Keywords

Dimensionality Reduction, Principal Component Analysis, Singular Value
Decomposition, Feature Reduction, Data Analysis, Machine Learning

Discussion
3.3.1 Dimensionality reduction

In machine learning, we often deal with datasets that have many features or variables.
While more features can provide detailed information, they can also make the data
more complex and harder to analyze. For example, imagine you are trying to predict the
price of a house based on features like size, location, number of rooms, age, and others.
If you add too many factors like distance from the nearest grocery store, school ratings,
or even the weather, the data becomes overwhelming. Dimensionality reduction is a
technique used to reduce the number of features, simplifying the model without losing
important information.

The main advantage of dimensionality reduction is that it helps make models faster
and more efficient. With fewer features, the model requires less computational power,
which is especially helpful when working with large datasets. Additionally, reducing
the number of features can help to improve the performance of machine learning
algorithms by reducing the risk of overfitting, where the model becomes too closely
tied to the training data and fails to generalize well to new data. In essence, it allows the
model to focus on the most important patterns in the data.

There are several ways to perform dimensionality reduction. Principal Component
Analysis (PCA) is one of the most common techniques, which finds the most important
features by identifying patterns of variation in the data. Another technique is Singular
Value Decomposition (SVD), which breaks down complex data into simpler, meaningful
components. Think of dimensionality reduction as a way of summarizing a long book
into a few key chapters, allowing you to focus on the essence without getting lost in
unnecessary details. Both PCA and SVD help you achieve this in a mathematical way,
making large datasets much easier to handle and interpret.

3.3.1.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a technique used to simplify a dataset by
reducing the number of features while retaining as much of the original information
as possible. Imagine you have a dataset with many columns, or features, such as the
height, weight, and age of a group of people. Each of these columns represents a
different dimension of the data. However, some features may not add much value or
may be correlated with each other. PCA helps by transforming the data into fewer
dimensions, called principal components, while still keeping the most important
patterns or variations.

118 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

To achieve dimensionality reduction, PCA works by identifying the directions of
maximum variance in the data. These directions are called the principal components.
The first principal component is the direction in which the data has the largest variance
(i.e., the greatest spread or difference between data points). The second component is
the next direction of maximum variance, but it is perpendicular to the first one, and so
on. By selecting the first few principal components, PCA captures the most important
information in the data, reducing the complexity while keeping the essence of the
dataset intact.

Fig 3.3.1: Principal Component Analysis - Change of Axes

Let’s consider an example to understand this better. Imagine you have a dataset with
the heights and weights of a group of people. These two features (height and weight) are
highly related. When PCA is applied, it will find the direction in which both height and
weight vary the most, and that will become the first principal component. The second
component will find the direction that captures the next most important variation, but
it will be at a right angle to the first one. By using just these two components, PCA can
represent the data with fewer dimensions, but the reduced data will still contain most of
the information needed to understand the original dataset.

I. Methodology for Performing Principal Component Analysis
To perform PCA, the process begins by standardizing the dataset. This step ensures

that all the features are on the same scale, as PCA is sensitive to the scale of the data.
For instance, if you have one feature like height (in centimeters) and another like weight
(in kilograms), the difference in units could influence the results. Standardizing the data
means subtracting the mean and dividing by the standard deviation, so all features will
have a mean of 0 and a standard deviation of 1. This step is crucial to prevent features
with larger ranges from dominating the analysis.

After standardization, PCA computes the covariance matrix, which shows how
the features vary with each other. The next step is to calculate the eigenvectors and
eigenvalues of the covariance matrix. Eigenvectors represent the directions of maximum
variance, and eigenvalues indicate the magnitude of variance along those directions.
The eigenvectors with the highest eigenvalues represent the most important dimensions
(principal components) of the data. These eigenvectors form the new set of axes, and
the data is projected onto these axes to reduce its dimensions.

119 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Eigenvalues and eigenvectors are fundamental concepts in linear algebra and play
a crucial role in methods like Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD). In simple terms, an eigenvector is a non-zero vector that
only changes by a scalar factor when a linear transformation is applied to it, while
the corresponding eigenvalue represents the factor by which the eigenvector is scaled.
In PCA, eigenvectors represent the directions of maximum variance in the data, and
the eigenvalues indicate how much variance is captured by each eigenvector. Larger
eigenvalues correspond to more important components, allowing for the reduction of
dimensionality by selecting the top eigenvectors that explain most of the data's variance.
These concepts also form the basis for SVD, where the singular values are related to
the eigenvalues, and the left and right singular vectors correspond to the eigenvectors.

For example, if we apply PCA to the height and weight dataset, the first principal
component might capture the overall "size" of a person, which is a combination of
height and weight. The second component could capture some other factor, such as body
proportions, that is less significant. By keeping only the first few principal components,
we can reduce the dataset from two dimensions (height and weight) to just one or two,
depending on how much variance each component explains. This reduction simplifies
the analysis, speeds up computation, and reduces noise, making it easier to visualize
and work with the data without losing much valuable information.

Fig 3.3.2: PCA Transformation

Once the principal components are determined, the next step is to project the data
onto the new set of axes (the eigenvectors). This means that the original data points are
transformed into a new space, where the axes represent the most significant patterns of
variation in the data. The number of dimensions you keep depends on the cumulative
explained variance, which tells you how much of the total variance is captured by
each principal component. For instance, if the first two components capture 90% of
the variance, you might decide to keep only these two dimensions and ignore the rest,
effectively reducing the dimensionality of the data.

120 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

This reduction makes the data easier to analyze and visualize. For example, if you
had a dataset with many features (such as height, weight, age, income, etc.), visualizing
it in a higher-dimensional space would be challenging. But by reducing the dimensions,
PCA allows you to visualize the data in 2D or 3D while retaining most of the important
patterns. This simplification is particularly useful when working with large datasets, as
it reduces computational complexity and the risk of overfitting.

Additionally, PCA can help with noise reduction. High-dimensional datasets often
contain noise, which can obscure meaningful patterns. By keeping only, the principal
components that explain the majority of the variance, PCA filters out the components
that contribute little to the overall variation in the data. As a result, the reduced dataset
is less noisy and more focused on the underlying trends. This makes PCA a valuable
tool for improving the performance of machine learning models by ensuring they focus
on the most important features while discarding irrelevant information.

II. Step-by-Step: How PCA is Performed

Step 1: Collect the Data
Fruit	 Size	 Weight Sweetness

Apple	 5	 120		 7

Banana	 6	 110		 9

Orange	 4	 130		 6

Each fruit is a data point, and each column is a feature.

Step 2: Standardize the Data
Because features like "Weight" (120 grams) and "Sweetness" (score of 7) have

different scales.

	♦ Subtract the mean of each column

	♦ Divide by standard deviation
This makes everything work on the same scale.

Step 3: Find the Directions where data varies most
This is the heart of PCA.

You imagine plotting all the fruits in space, maybe a 3D plot for size, weight, and
sweetness. PCA finds:

“In which direction does the data spread out the most?”That direction is called
Principal Component 1.

Step 4: Calculate Principal Components (Math Magic Time)
Behind the scenes, PCA does this using:

Covariance matrix (shows how features move together)

121 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Eigenvectors & eigenvalues of that matrix (Eigenvectors = directions, Eigenvalues
= how important each direction is)

Step 5: Transform the Data
Nowproject the original data onto these new directions (principal components). This

gives us a new version of the data, usually in fewer dimensions.

So, your 3-feature fruit data might become:

Final PCA

Fruit		 PC1	 PC2

Apple		 -0.25	 -0.01

Banana		 1.57	 -0.12

Orange		 -1.32	 0.13

III. Advantages and disadvantages of PCA.	 	

Fig 3.3.3: Advantages and Disadvantages of PCA

3.3.1.2 Introduction to SVD (Singular Value Decomposition)

Singular Value Decomposition (SVD) is a powerful technique in linear algebra used
for dimensionality reduction, data compression, and noise reduction. It decomposes
a matrix into three smaller matrices, which makes it easier to analyze complex data.
In machine learning, SVD is commonly used to simplify high-dimensional datasets,
similar to PCA, by reducing the number of dimensions while retaining as much of the
variance (information) as possible. It provides insights into the structure of the data and
is particularly useful in applications such as recommender systems, image compression,
and natural language processing (NLP).

122 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Why is SVD Useful?

●	 It simplifies complex data

●	 Helps in data compression

●	 Finds hidden patterns

●	 Improves accuracy in machine learning models

●	 Makes search and recommendation systems smarter

Fig 3.3.4: Singular value matrix

Imagine this situation:
You run a small fruit store, and you track how much each customer likes different

fruits. Here's the data:

This table is a 5×3 matrix: 5 people, 3 fruits.
	

Apple Banana Orange
Alice 5 3 0
Bob 4 0 0

Carol 1 1 0
Dave 0 2 4
Eve 0 0 5

You want to figure out:

●	 Which fruits are similar?

●	 Which customers have similar tastes?

●	 Can we predict what someone might like even if they haven't
tried it yet?

This is where SVD helps!

123 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

What SVD Does:

Now, instead of looking at all the data in full, you can:

●	 Keep only the top patterns (top singular values),

●	 This simplifies the data removing noise or unimportant
information.

●	 Still keeps the main structure of customer preferences.

I. How SVD Works and its Relevance

SVD works by decomposing the original data matrix into its components in such a
way that each singular value in Σ corresponds to a certain amount of variance in the
data. The larger the singular value, the more significant that direction of the data is.
The key idea here is that SVD organizes the data in terms of its principal components,
much like PCA, but it works directly on the original matrix instead of covariance or
correlation matrices.

For example, in text mining, a matrix might represent a collection of documents,
where each row corresponds to a document and each column corresponds to a word.
The values in the matrix represent how frequently words appear in documents. By
applying SVD, we can decompose this matrix into simpler components that capture
the underlying structure of the data. This decomposition can reveal patterns such as
clusters of similar documents or words, making it easier to perform tasks like document
classification or similarity detection.

II. Dimensionality Reduction with Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a mathematical technique used to perform
dimensionality reduction by decomposing a matrix into three simpler matrices. By
retaining only, the most important components of the data, we reduce the number of
features while preserving essential information. This is similar to Principal Component
Analysis (PCA), which helps us reduce the dimensionality of the data by keeping the
most significant components.

124 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Recap

Principal Component Analysis (PCA):

	♦ What it does : Reduces dimensionality by identifying the principal
components, which are the directions of maximum variance in the data.

	♦ How it works :

●	 Compute the covariance matrix of the data.

●	 Find the eigenvectors (principal components) and eigenvalues
of the covariance matrix.

●	 Project the data onto the eigenvectors corresponding to the
largest eigenvalues.

	♦ Applications :

●	 Image compression : Reducing the size of images while
preserving key features.

●	 Feature selection : Removing redundant or less important
features in datasets.

●	 Visualization : Simplifying high-dimensional data to two or
three dimensions for easier understanding.

	♦ What happens inside : PCA rotates the data along the directions of
maximum variance, creating uncorrelated axes (principal components). The
largest variance is captured by the first component, the second-largest by the
next, and so on.

Singular Value Decomposition (SVD):

	♦ What it does:

●	 Decomposes a matrix A into three matrices: A=UΣV

●	 U and V are orthogonal matrices, and Σ contains singular values,
which measure the importance of corresponding components.

	♦ How it works:

●	 Decompose the matrix into U, Σ, and VT using mathematical
algorithms like QR decomposition or iterative methods.

●	 Retain only the largest k singular values to approximate the
original matrix.

	♦ Applications:

●	 Recommender systems: Decomposing user-item matrices to

125 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

find latent features for personalized recommendations.

●	 Text processing: Latent Semantic Analysis (LSA) in NLP to
find hidden relationships between terms and documents.

●	 Image processing: Compressing images by keeping dominant
singular values.

	♦ What happens inside: SVD finds patterns by breaking down a matrix into
its fundamental components. The singular values indicate the strength of
each component, and by ignoring smaller singular values, noise and less
significant data are filtered out.

Objective Type Questions

1.	 What is the main purpose of PCA in machine learning?

2.	 What are principal components?

3.	 In PCA, what does the first principal component capture?

4.	 What is the role of eigenvectors in PCA?

5.	 Which matrix is diagonal in the result of SVD?

6.	 Which decomposition is at the heart of PCA?

7.	 What type of matrix is typically used to perform PCA?

8.	 What are eigenvalues used for in PCA?

9.	 In SVD, what does the matrix U represent?

10.	Which of the following is a real-world application of SVD?

11.	What happens if you don’t standardize data before PCA?

12.	Which of the following tools use PCA or SVD?

13.	What does SVD return when applied to a matrix A?

14.	What does PCA transform the features into?

15.	When should dimensionality reduction be used?

16.	What is the shape of the covariance matrix if you have 4 features?

17.	What does the rank of Σ matrix in SVD indicate?

126 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Answers to Objective Type Questions

1.	 Dimensionality reduction

2.	 Linear combinations of input features

3.	 Maximum variance in the data

4.	 Represent directions of maximum variance

5.	 Σ (Sigma)

6.	 Eigen decomposition

7.	 Covariance matrix

8.	 To choose most important principal components

9.	 Left singular vectors

10.	Image compression

11.	Features with larger ranges dominate.

12.	Scikit-learn

13.	A = U × Σ × Vᵗ

14.	Principal components

15.	When the number of features is very high

16.	4 × 4

17.	Number of significant components

Assignments

1.	 What is dimensionality reduction in machine learning, and why is it
important?

2.	 Explain the steps involved in performing Principal Component Analysis
(PCA) on a dataset.

3.	 How does Singular Value Decomposition (SVD) relate to PCA? Explain
their connection.

4.	 Describe a scenario where dimensionality reduction using PCA can be
beneficial. How does PCA help in reducing computational complexity?

127 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suggested Reading

1.	 Hastie, Trevor, et al. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. 2nd ed., Springer, 2009.

2.	 Raschka, Sebastian, and Vahid Mirjalili. Python Machine Learning: Machine
Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow 2.
3rd ed., Packt Publishing, 2019.

3.	 Russell, Stuart, and Peter Norvig. Artificial Intelligence: A Modern
Approach. 4th ed., Pearson, 2021.

Reference

1.	 Alpaydin, Ethem. Introduction to Machine Learning. 4th ed., MIT Press,
2020.

2.	 Bishop, Christopher M. Pattern Recognition and Machine Learning.
Springer, 2006.

3.	 Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
2nd ed., O’Reilly Media, 2019.

4.	 Goodfellow, Ian, et al. Deep Learning. MIT Press, 2016.

5.	 Murphy, Kevin P. Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

128 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Introduction to
Reinforcement Learning,

Markov Decision
Processes (MDPs)

Learning Outcomes

Prerequisites

	♦ define the key components of Reinforcement Learning (RL) and Markov
Decision Processes (MDPs),

	♦ identify real-world applications of Reinforcement Learning and MDPs in
areas

	♦ describe the role of probability and basic mathematics in understanding
Reinforcement Learning and MDPs

	♦ explain the relationship between actions, rewards, and states in the context
of decision-making using MDPs

Before jumping into reinforcement learning (RL) and Markov Decision Processes
(MDPs), it’s helpful to know a few basic ideas. These will make understanding RL and
MDPs much easier and more interesting.

First, having a simple understanding of probability is useful. Probability is about
understanding how likely things are to happen. In RL and MDPs, systems need to
predict what might happen after an action is taken, so knowing the basics of chance
helps you grasp how decisions are made based on possible outcomes.

Next, some basic math knowledge, especially simple algebra, will help. In RL, we
often work with numbers to track rewards, values, and how actions lead to certain
results. You don’t need to be a math expert, but knowing how to work with simple math
will make the learning process easier.

Finally, it helps to know a bit about algorithms—the step-by-step methods that
computers use to solve problems. In RL, algorithms help machines learn how to make
the best decisions. If you understand how a computer follows instructions to solve a
problem, you’ll have a good starting point to understand RL’s learning process.

Once you know these basic ideas, you'll be ready to dive into RL and MDPs and see
how they help machines make smarter decisions.

UNIT 4

 Studying this unit will enable the learner to:

129 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion

Keywords

Reinforcement Learning (RL), Markov Decision Processes (MDPs), Probability,
Algebra, Algorithms, Rewards, Actions, States, Transition Probabilities, Decision-
Making

3.4.1 Introduction to Reinforcement Learning
Think about teaching a dog to do a new trick. You give it a treat when it gets it right,

like sitting or fetching a ball. Over time, the dog figures out what earns the treat and
repeats those actions. That’s the basic idea behind Reinforcement Learning (RL)—
except instead of training a dog, we’re teaching computers!

Reinforcement Learning is a way for machines to learn by doing. Instead of giving
them step-by-step instructions, we let them explore and figure things out on their own.
They interact with their surroundings called the environment and try different actions.
When they make a good decision, they get a reward, and when they don’t, they might
get a penalty.

3.4.1.1 Definition and Core Concepts

Reinforcement Learning (RL) is a way to teach machines how to make decisions by
learning from their own experiences. Instead of telling them exactly what to do, we let
them figure it out through trial and error. The machine, called the agent, interacts with
its surroundings, known as the environment. When the agent makes a good decision,
it earns a reward, and when it makes a bad decision, it gets a penalty. Over time, this
feedback helps the agent learn what works best to achieve its goals.

At its core, RL has a few key ideas. The agent is the decision-maker, and the
environment is the world it operates in. The agent performs actions, which affect the
environment and result in new states. Along the way, the agent uses a policy—a kind
of strategy that helps it decide what action to take next. Another important idea is the
value function, which helps the agent figure out how good a particular state or action is
for long-term success.

3.4.1.2 Characteristics of RL

Reinforcement Learning is special because it teaches machines by letting them learn
from experience, not from a pre-made dataset. Unlike other types of machine learning,
RL doesn’t give the agent all the answers upfront. Instead, the agent experiments, learns
from its mistakes, and improves over time. This makes it perfect for solving tricky, real-
world problems where the rules aren’t always clear.

One of the most interesting parts of RL is the balance between exploration and
exploitation. The agent has to explore new actions to learn what works, but it also has
to exploit the actions it already knows will give good results. Another key feature is

130 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

handling delayed rewards—sometimes, the agent has to take several steps before seeing
whether its choices were good or bad. This ability to learn over time makes RL great
for tasks like teaching robots to walk, making self-driving cars navigate safely, or even
mastering video games.

By combining these characteristics, RL gives machines the power to adapt, improve,
and tackle challenges just like humans do in the real world.

3.4.1.3 Key Components of Reinforcement Learning

Reinforcement Learning (RL) relies on a few key building blocks that make the
learning process work. These components help the system figure out how to make
decisions, learn from its surroundings, and get better with time. Each piece has a
specific job, and together, they allow RL to tackle tough problems and adapt to different
situations.

1. Agent, Environment, and Action
The main players in RL are the agent, the environment, and the actions. The agent

is the learner or decision-maker. For example, in a video game, the agent could be the
character you’re controlling. The environment is everything around the agent that it can
interact with, like the game world with its rules and obstacles.

The agent learns by taking actions, which are the choices it makes to interact with
the environment. For example, a robot might move forward, turn, or pick something
up. Each action changes the environment in some way, and the agent observes these
changes to learn what works best. This back-and-forth interaction between the agent, its
actions, and the environment is how RL builds knowledge.

2. Policy, Reward Function, and Value Function
The agent’s decisions are guided by a policy, which is like a game plan. The policy

tells the agent what action to take in different situations. A good policy helps the agent
make smart choices, leading to better results.

The reward function is what motivates the agent to learn. It gives the agent feedback
after each action—a positive reward for good choices and a penalty for bad ones. For
example, if a robot successfully stacks a block, it might get a reward, encouraging it to
keep doing similar actions.

The value function helps the agent think ahead by estimating how good a situation
or action will be in the long run. Instead of focusing only on immediate rewards, it
considers future benefits, helping the agent plan better strategies. With the policy, reward
function, and value function working together, the agent learns to make decisions that
maximize success over time.

By using these components, RL enables machines to explore, learn from their
experiences, and improve, just like humans do when learning a new skill.

3.4.2 Introduction to Markov Decision Processes (MDPs)
Imagine you’re playing a game where you make choices step by step, like deciding

131 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

whether to turn left or right in a maze. Each choice changes what happens next, and
sometimes you get points for good decisions. But you don’t know the full maze at
first—you have to learn as you go. Markov Decision Processes (MDPs) work in a
similar way, helping machines or people figure out the best way to make decisions
when the future depends on both the current choice and what happens afterward.

MDPs have four key parts that make them easy to understand. States tell you where
you are, like being at a specific point in the maze. Actions are the choices you can make,
like turning left or right. Rewards are the feedback you get—positive for good moves
and negative for bad ones. Lastly, transitions explain how one choice leads to the next
state, helping you figure out how your actions affect the world around you.

One of the cool things about MDPs is that they handle uncertainty really well. For
example, if a robot is navigating a room, it might not always land where it expects
because of obstacles or slippery surfaces. MDPs help the robot decide what to do next,
even when things don’t go exactly as planned.

MDPs are used in all kinds of areas, like training self-driving cars to choose safe
routes, teaching robots to move efficiently, or even making virtual assistants smarter.
By breaking big decisions into smaller steps and focusing on learning from feedback,
MDPs make it possible for machines to tackle complex challenges in a logical and
effective way.

3.4.2.1 Definition and Significance

A Markov Decision Process (MDP) is a way to model decision-making problems
where some things are out of your control, and some things you can influence. It's used
to help machines, robots, or even people figure out the best choices to make over time.
An MDP breaks things down into four parts: states (where you are), actions (what you
can do), rewards (what you get from your actions), and transitions (how one action
leads to the next state). By using these, an agent can learn from experience and make
better decisions in uncertain situations.

The importance of MDPs is that they help solve problems where you don’t always
know what will happen next. Whether it’s a robot moving through a room or a game
character making decisions, MDPs help figure out how to make the best choices based
on the current situation and the possible outcomes. This approach is useful in real-world
areas like teaching self-driving cars to find the safest path, helping companies make
smarter business decisions, or planning how to use resources efficiently.

3.4.2.2 Assumptions of MDPs

MDPs are based on a few key ideas that make them work. One important assumption
is the Markov property, which means that the future depends only on what’s happening
now, not on the past. For example, in a maze, where you go next only depends on your
current position and what direction you choose, not on the steps you took to get there.

Another assumption is that the rules of the environment are stable and predictable.
This means the agent can trust that actions will lead to certain outcomes and rewards.
Lastly, MDPs assume that the agent can always see its current situation clearly, meaning

132 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

it knows where it is and what choices it can make.

These assumptions make it easier to solve complex problems, even if the real world
is messier. MDPs help break things down into manageable steps and give us a solid
framework to find solutions to challenging problems, whether for machines or humans.

3.4.2.3 Components of MDPs

Markov Decision Processes (MDPs) are made up of a few important parts that
work together to help an agent make smart choices. These parts include states, actions,
rewards, and transition probabilities. Each one plays a role in helping the agent learn
the best way to act in different situations.

1. States, Actions, and Rewards
The first key parts are states, actions, and rewards. A state is simply the situation

or condition the agent is in at any given time. For example, in a game, the state could
be where the character is on the screen. Actions are the things the agent can do while
in that state—like moving, jumping, or attacking. The agent wants to choose actions
that will give it rewards, which are points or benefits for making good choices. These
rewards help the agent understand which actions are helpful, guiding it to make better
decisions as it goes along.

2. Transition Probabilities
Transition probabilities explain what happens when the agent takes an action. They

describe the chances of moving from one state to another after making a choice. For
example, if the agent moves right in a maze, the transition probability tells it how likely
it is to reach a new area or run into a wall. These probabilities help the agent understand
what to expect when it takes an action, so it can make better decisions. Over time,
the agent can learn how the environment reacts and improve its choices based on this
information.

3.4.3 Applications of Reinforcement Learning and MDPs
Reinforcement learning (RL) and Markov Decision Processes (MDPs) are being

used in many different areas today to help machines learn and make better choices.
These techniques allow systems to learn from their experiences and improve over time.
Let’s explore some real-life examples where RL and MDPs are making a real impact.

3.4.4 Real-world Use Cases
One interesting example is how robots are using RL and MDPs to do tasks like

picking up objects, moving through spaces, or even putting things together. Instead of
needing someone to program each action, robots can learn from experience. They try
different actions and get rewards for doing things right, which helps them figure out the
best way to complete a task.

Another exciting application is in self-driving cars. These cars use RL to make

133 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

decisions while driving, like when to stop, speed up, or turn. MDPs help them understand
how their choices affect what happens next, such as avoiding accidents or staying on
track. Over time, they get better at driving safely through different situations.

In the finance world, RL and MDPs are being used to help with investment decisions.
By looking at past market trends, these systems learn how to make better choices on
where to invest money. They improve their strategies over time, helping investors make
smarter decisions to get better returns.

From robots to self-driving cars to finance, RL and MDPs are becoming very useful
tools in helping machines and systems make smarter decisions and improve as they
learn from experience.

Recap
	♦ Reinforcement Learning (RL) helps machines make decisions by learning

from experience.

	♦ Markov Decision Processes (MDPs) describe how actions affect the future
state of the system.

	♦ In RL, an agent interacts with an environment to learn the best actions.

	♦ States represent different situations the agent can be in.

	♦ Actions are choices the agent can make while in a certain state.

	♦ Rewards tell the agent how good or bad a particular action was.\

	♦ Transition probabilities explain the chances of moving from one state to
another.

	♦ RL uses algorithms to guide the agent in learning from trial and error.

	♦ In MDPs, decisions are based on actions, rewards, and the current state.

	♦ RL can be used in robotics to help robots learn how to perform tasks.

	♦ Self-driving cars use RL to learn safe driving strategies in real time.

	♦ RL and MDPs are used in finance to help make better investment decisions.

	♦ Understanding probability helps in predicting the chances of different
outcomes.

	♦ Basic algebra is used in RL to track rewards and values.

	♦ Algorithms are essential in RL to define the steps the agent takes to learn.

	♦ RL helps systems adapt to new situations and improve over time.

	♦ Markov Decision Processes (MDPs) provide a structured way to model
decision-making problems.

	♦ RL uses rewards to teach agents which actions lead to the best outcomes.

134 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	♦ The agent learns from its past experiences to make better decisions in the
future.

	♦ Understanding basic mathematics and algorithms will make it easier to study
RL and MDPs.

Objective Type Questions

1.	 What is the main goal of Reinforcement Learning?

2.	 What represents a situation or condition in which an agent finds itself?

3.	 What are the choices an agent can make in a given state called?

4.	 What tells the agent how good or bad its action is?

5.	 What term describes the probability of transitioning from one state to
another?

6.	 What is the agent called in the context of Reinforcement Learning?

7.	 What does the environment represent in RL?

8.	 What type of process models the decision-making of an agent?

9.	 Which mathematical tool helps in predicting the likelihood of an event?

10.	What technology helps robots learn tasks through trial and error?

11.	What kind of vehicles use RL for autonomous driving?

12.	What is the main purpose of rewards in an MDP?

13.	Why are MDPs useful in decision-making problems?

14.	What does the Markov property state?

15.	What does a state represent in an MDP?

16.	Which of the following is assumed in an MDP?

17.	MDPs help in learning optimal actions through:

Answers to Objective Type Questions
1.	 Learning

2.	 State

3.	 Action

135 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Assignments

1.	 Explain the role of the agent, environment, and action in Reinforcement
Learning. How do these components work together to enable the agent to
learn and make decisions?

2.	 Analyze the significance of transition probabilities in Markov Decision
Processes. How do they influence the agent's ability to make optimal
decisions, and what role do they play in the learning process?

3.	 Describe how Reinforcement Learning and Markov Decision Processes can
be applied in real-world scenarios like robotics or self-driving cars. Provide
examples of how these applications use rewards and actions to improve
decision-making over time.

4.	 Discuss the importance of probability and basic algebra in understanding
Reinforcement Learning. How do these mathematical concepts help in
tracking rewards and making decisions based on previous actions and
outcomes?

5.	 Evaluate the challenges and potential benefits of applying Reinforcement
Learning to financial decision-making. How can RL algorithms assist
investors in making better choices, and what are the limitations of using RL
in financial markets?

4.	 Reward

5.	 Transition

6.	 Learner

7.	 Surroundings

8.	 Markov

9.	 Probability

10.	Robotics

11.	Cars

12.	To guide the agent toward good behavior

13.	They break complex problems into smaller steps

14.	The next state depends only on the current state and action

15.	The situation the agent is currently in

16.	The agent can clearly observe its current state

17.	Feedback and experience.

136 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Reference

1.	 Alpaydin, E. (2020). Introduction to machine learning (4th ed.). MIT Press.

2.	 Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT Press.

3.	 Puterman, M. L. (2005). Markov decision processes: Discrete stochastic
dynamic programming. Wiley-Interscience.

4.	 Lapan, M. (2020). Deep reinforcement learning hands-on. Packt Publishing.

Suggested Reading

1.	 Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT Press.

2.	 Gagniuc, P. A. (2017). Markov chains: From theory to implementation and
experimentation. John Wiley & Sons.

3.	 Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach.
Pearson.

4.	 Busoniu, L., et al. (2017). Reinforcement learning and dynamic programming
using function approximators. CRC Press.

137 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Advanced Topics
and Applications of
Machine Learning

BLOCK 4

138 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

NLP and Computer Vision

Learning Outcomes

Prerequisites

	♦ familiarize what Natural Language Processing (NLP) and Computer Vision
(CV) are

	♦ learn about the main parts of NLP and CV

	♦ know how NLP is used in chatbots, translation, text summarization, and
speech recognition

	♦ explore how NLP and CV make life easier, from voice assistants and facial
recognition to AI chatbots and smart cameras

Have you ever wondered how Siri understands your questions or how Google Trans-
late converts text from one language to another? What about how your phone unlocks
just by recognizing your face? These aren’t just random tricks. This is the power of
Natural Language Processing (NLP) and Computer Vision (CV) at work! NLP helps

computers understand and process human language, while Com-
puter Vision allows them to "see" and make sense of images and
videos.

Imagine a world without these technologies. Chatbots wouldn’t
understand your messages, search engines wouldn’t suggest rele-
vant results, and self-driving cars wouldn’t recognize traffic
signals. Without NLP, virtual assistants would be clueless, and
without Computer Vision, medical AI wouldn’t detect diseases in
scans. These fields are shaping the way we interact with technol-

ogy, making machines smarter and more helpful in our daily lives.

In this chapter, we’ll explore how NLP and
Computer Vision work, the key techniques behind
them, and where they’re used. By the end, you’ll
have a clear understanding of how AI-powered
systems read, listen, and see just like humans.
Ready to explore the magic behind these intelli-
gent technologies? Let’s get started!

UNIT 1

Upon completion of this unit, the learner will be able to :

139 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion
In today's digital world, communication is key. People interact with computers,

smartphones, and virtual assistants daily, expecting them to understand and respond just
like humans. However, human language is complex—it involves different meanings,
dialects, and emotions that computers traditionally struggle to process. Imagine trying
to communicate with a computer using only rigid commands. Without NLP, search
engines wouldn’t understand natural queries, chatbots wouldn’t provide meaningful
responses, and voice assistants wouldn’t recognize spoken language. This is where
Natural Language Processing (NLP) plays a crucial role.

4.1.1 What is NLP?
Natural Language Processing (NLP) is a branch of artificial intelligence that helps

computers understand, interpret, and generate human language. It enables machines
to process text and speech just like humans. NLP bridges the gap between human
communication and machine understanding, making interactions smoother and more
efficient.

Have you ever used voice assistants like Siri, Alexa, or Google Assistant? When you
ask them a question, they understand your words and respond correctly. This is possible
because of NLP. Another common example is when your phone suggests words as you
type a message. This predictive text feature is an NLP application that learns from your
typing patterns.

Fig. 4.1.1 NLP

Keywords

NLP, tokenization, part-of-speech tagging, computer vision, image processing, OCR

140 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

4.1.1.1 Key Components of NLP

1.	 Tokenization - Tokenization is the process of breaking a sentence into
words or phrases. This helps computers analyze and process the text more
effectively.

2.	 Part-of-Speech Tagging - This helps computers identify words as nouns,
verbs, adjectives, etc.

3.	 Named Entity Recognition (NER) - NER identifies names of people,
places, and organizations in a sentence. This feature is widely used in search
engines, news analysis, and chatbots.

4.	 Sentiment Analysis - Sentiment analysis determines whether a sentence
is positive, negative, or neutral. Businesses use this technology to analyze
customer feedback on social media and improve their services.

Fig. 4.1.2 NLP Techniques

Teaching Machines to Understand Language: Key Components in a story

Emma, a young data scientist, was thrilled to start her first day at a leading AI research
lab. She had always been fascinated by how machines understand human language, and
today, she was about to see it in action.

As she entered the lab, her mentor, Dr. Patel, greeted her with a warm smile. "Emma,
let me introduce you to how we teach computers to process text," he said, opening a
sample file filled with sentences.

Step 1: Tokenization
Dr. Patel began by explaining how the computer breaks sentences into smaller parts,

a process called tokenization. He typed, "I love ice cream," into the system, and the
screen displayed:

["I", "love", "ice", "cream"]

"This helps the machine understand individual words rather than seeing the whole
sentence as a block of text," he explained.

141 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Step 2: Part-of-Speech Tagging
Next, he introduced Part-of-Speech (POS) Tagging, which labels words as nouns,

verbs, adjectives, and more. He typed:

"The cat runs fast."

The system responded:

"cat" → Noun

"runs" → Verb

"fast" → Adverb

"By knowing the role of each word, the machine can better understand sentence
structure", Dr. Patel said.

Step 3: Named Entity Recognition (NER)
Emma leaned forward as he demonstrated Named Entity Recognition (NER). This

feature detects names of people, places, and organizations. He entered:

"Elon Musk is the CEO of Tesla."

The computer highlighted:

"Elon Musk" → Person

"Tesla" → Organization

"This is useful for search engines, news analysis, and even chatbots," Dr. Patel
explained.

Step 4: Sentiment Analysis
Finally, they explored Sentiment Analysis, which determines the emotional tone of

a sentence. Dr. Patel typed:

"The product is amazing!"

The system classified it as positive. When he entered, "I am disappointed with the
service," it marked it as negative.

"Businesses use this to analyze customer reviews and improve their services," he
said.

Emma was amazed. "I never realized how much effort goes into teaching machines
to understand language!"

Dr. Patel smiled. "Language is complex, but with the right techniques, AI can become
a great assistant."

Excited, Emma knew she was on the path to shaping the future of AI-driven
communication.

142 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

4.1.1.2 Applications of NLP
1.	 Chatbots and Virtual Assistants - Chatbots like WhatsApp bots, Facebook

Messenger bots, and customer support AI use NLP to answer queries
automatically. These systems save time by providing instant responses and
handling large numbers of customer requests.

2.	 Machine Translation - Google Translate and similar tools convert text from
one language to another using NLP. These applications help break language
barriers and enable global communication.

3.	 Text Summarization - NLP can summarize long articles into short
paragraphs, making it easier for readers to grasp key points without going
through lengthy content. This is widely used in news articles and research
papers.

4.	 Speech Recognition Voice-to-text applications like dictation software
convert spoken words into text. This technology is used in medical
transcription, virtual assistants, and accessibility tools for differently-abled
individuals.

Fig. 4.1.3 Applications of NLP

4.1.2 Introduction to Computer Vision
Imagine a world where machines can see and interpret the world just like humans.

From unlocking your phone with facial recognition to self-driving cars detecting
obstacles, Computer Vision makes this possible.

4.1.2.1 What is Computer Vision?

Computer Vision (CV) is a field of AI that enables machines to see and interpret
images and videos, just like humans. It allows computers to analyze visual data, extract
useful information, and make decisions based on the input.

143 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Think about how your phone unlocks using facial recognition. It scans your face,
matches it with saved data, and grants access. This is possible due to Computer Vision.
Another example is Google Photos, which groups images based on faces, locations, or
objects.

4.1.2.2 Key Components of Computer Vision
1.	 Image Processing - Image processing enhances image quality by adjusting

brightness, contrast, and removing noise. This technology is used in photo
editing applications like Adobe Photoshop and smartphone camera filters.
Imagine you took a photo in low light. Your smartphone automatically
brightens the image and sharpens the details. This is image processing at
work!

2.	 Object Detection - This helps identify objects in images, such as detecting
pedestrians in self-driving cars. Object detection is also used in security
surveillance, where systems can alert authorities if they detect suspicious
activities.

3.	 Facial Recognition - Used in security systems and social media tagging,
facial recognition identifies people from images. Social media platforms like
Facebook and Instagram use this technology to suggest tags for friends in
photos. Unlocking phones using your face, and in airport security systems
for identifying passengers are also facial recognition.

4.	 Optical Character Recognition (OCR) - OCR converts printed or
handwritten text into digital format. This is useful for scanning books,
receipts, and official documents to make them editable and searchable.

Fig. 4.1.4 Human Vision vs Computer Vision

4.1.2.3 Applications of Computer Vision
1.	 Autonomous Vehicles - Self-driving cars use Computer Vision to detect

roads, traffic signals, and pedestrians. Tesla and Waymo are some of the
companies developing autonomous vehicle technology using AI.

2.	 Medical Imaging - Doctors use CV to analyze X-rays, MRIs, and CT
scans for diagnosing diseases. AI-powered tools assist in detecting tumors,
fractures, and other medical conditions more accurately.

144 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

3.	 Surveillance and Security - Security cameras use Computer Vision to detect
intruders or unusual activities. Advanced AI-powered surveillance systems
can identify individuals from footage and alert security personnel.

4.	 Augmented Reality (AR) - AR applications like Snapchat filters, Pokémon
GO, and virtual furniture placement in shopping apps use CV to overlay
digital objects in the real world.

Recap
1. Introduction to NLP

	♦ NLP helps computers understand and process human language.

	♦ It enables applications like chatbots, search engines, and voice assistants.

	♦ Without NLP, communication with computers would be limited to rigid
commands.

2. What is NLP?

	♦ NLP is a branch of AI that helps machines interpret and generate human
language.

	♦ Examples include voice assistants (Siri, Alexa), predictive text, and
translation tools.

3. Key Components of NLP

	♦ Tokenization – Breaking text into words or phrases.

	♦ Part-of-Speech Tagging – Identifying words as nouns, verbs, adjectives,
etc.

	♦ Named Entity Recognition (NER) – Detecting names of people, places, or
organizations.

	♦ Sentiment Analysis – Determining if a sentence is positive, negative, or
neutral.

4. Applications of NLP

	♦ Chatbots and Virtual Assistants – Automated customer support responses.

	♦ Machine Translation – Tools like Google Translate.

	♦ Text Summarization – Condensing long articles into short summaries.

	♦ Speech Recognition – Converting spoken words into text (e.g., dictation
software).

5. What is Computer Vision?

	♦ CV enables machines to "see" like humans by extracting and processing
visual data.

145 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Objective Type Questions
1.	 What does NLP stand for?

2.	 Which AI technology enables machines to understand and process human
language?

3.	 What is the process of breaking text into words or phrases in NLP?

4.	 Which NLP technique identifies words as nouns, verbs, and adjectives?

5.	 What does NER stand for in NLP?

6.	 Which NLP application converts spoken language into text?

7.	 What type of AI is used in Google Translate?

8.	 Which NLP technique determines whether a sentence is positive, negative,
or neutral?

9.	 What is the main function of a chatbot in NLP?

10.	What is the AI field that enables machines to interpret images and videos?

11.	Which AI technology is used in facial recognition systems?

12.	What is the process of converting printed or handwritten text into digital
format?

	♦ Example: Facial recognition in smartphones, object detection in security
cameras.

6. Key Components of Computer Vision

	♦ Image Processing – Enhancing image quality (brightness, contrast, noise
removal).

	♦ Object Detection – Identifying objects in images (e.g., detecting pedestrians
in self-driving cars).

	♦ Facial Recognition – Identifying individuals from images (used in security
systems, social media).

	♦ Optical Character Recognition (OCR) – Converting printed text into
digital form.

7. Applications of Computer Vision

	♦ Autonomous Vehicles – Self-driving cars detect roads, traffic signals, and
obstacles.

	♦ Medical Imaging – AI analyzes X-rays and MRIs for diagnosis.

	♦ Surveillance & Security – Cameras detect intruders and unusual activities.

	♦ Augmented Reality (AR) – Snapchat filters, Pokémon GO, and virtual
furniture placement.

146 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Answers to Objective Type Questions

1.	 Natural Language Processing
2.	 NLP
3.	 Tokenization
4.	 Part-of-Speech Tagging
5.	 Named Entity Recognition
6.	 Speech Recognition
7.	 Machine Translation
8.	 Sentiment Analysis
9.	 Answering Queries
10.	Computer Vision
11.	Facial Recognition
12.	Object Detection
13.	Optical Character Recognition
14.	Medical Imaging
15.	Augmented Reality

Assignments

1.	 Explain the importance of Natural Language Processing (NLP) in modern
technology. Provide real-world examples where NLP is used effectively.

2.	 Discuss the key components of NLP, such as Tokenization, Part-of-Speech
Tagging, Named Entity Recognition, and Sentiment Analysis, with suitable
examples.

3.	 What is Computer Vision? Describe its major components and explain how
it enables machines to interpret images and videos like humans.

4.	 Compare and contrast NLP and Computer Vision in terms of their
applications, challenges, and real-world impact. Provide relevant examples
for both fields.

13.	Which computer vision technique helps self-driving cars detect obstacles?

14.	What technology is used in Snapchat filters to overlay digital objects on real
images?

15.	Which medical field uses computer vision to analyze X-rays and MRI scans?

147 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suggested Reading

1.	 Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with
Python. O'Reilly Media.

2.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

3.	 Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow. O'Reilly Media.

4.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press.

Reference

1.	 Jurafsky, D., & Martin, J. H. (2020). Speech and language processing (3rd
ed.). Pearson.

2.	 Szeliski, R. (2020). Computer vision: Algorithms and applications (2nd ed.).
Springer.

3.	 Goyal, P., Pandey, S., & Jain, K. (2019). Deep learning for natural language
processing and computer vision. Apress.

148 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Transformers

Learning Outcomes

Prerequisites

	♦ familiarize the process of tokenization

	♦ define self-attention and its role in processing sentences

	♦ identify the steps involved in self-attention

	♦ define the function of the Feed Forward Layer in a Transformer model

	♦ state the primary difference between the Encoder and Decoder in a
Transformer model

Machine learning algorithms are increasingly indispensable in various industries
due to their ability to analyse large datasets, extract patterns, and make predictions
without explicit programming instructions. One compelling example of the need for
machine learning algorithms is in the healthcare sector. Consider a hospital aiming to
improve patient outcomes and reduce re-admissions rates for heart failure patients. By
implementing machine learning algorithms, such as logistic regression or decision trees,
the hospital can analyse electronic health records, demographic data, and patient history
to identify risk factors associated with re-admissionsreadmissions. These algorithms
can then predict which patients are at high risk of re-admission, allowing healthcare
providers to intervene proactively by providing targeted interventions, personalised
treatment plans, and follow-up care. Ultimately, the use of machine learning algorithms
enables healthcare institutions to enhance patient care, optimise resource allocation,
and improve overall healthcare delivery.

UNIT 2

Upon completion of this unit, the learner will be able to :

Keywords

Tokenization, Self-Attention, Multi-Head Attention, Attention Scores, Feed Forward
Layer, Encoder, Decoder

149 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Discussion
4.2.1. Tokenization

Tokenization is a crucial preprocessing step in Natural Language Processing (NLP)
that converts raw text into a structured format that machine learning models can process.
Transformers, the dominant architecture in modern NLP, rely on tokenization to break
down text into smaller units that can be numerically represented and fed into the model.

Unlike traditional neural networks, which may process raw words as whole entities,
transformers operate on tokenized text, ensuring efficient representation, handling of
unknown words, and optimization of computational resources. Proper tokenization
enhances a model’s ability to understand and generate human-like text by preserving
linguistic meaning while making text suitable for mathematical computations.

Tokenization plays a vital role in various NLP applications, including machine
translation, text summarization, speech recognition, and sentiment analysis. Without
tokenization, it would be difficult for models to handle diverse vocabularies, syntactic
variations, and complex sentence structures.

Recent AI research and development are largely driven by transformer-based
neural networks, where tokenization plays a crucial role. In transformer architectures,
the model processes input data as tokens and applies attention mechanisms to create
dynamic representations of each token based on its context.

Step 1:

Step 2:

150 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

4.2.1.1 Why is Tokenization Important in Transformers?

Tokenization serves multiple purposes in Transformers:

1.	 Converting Text into a Numerical Format: Since machine learning models
process numbers, tokenization provides a structured way to represent text in
numerical form.

2.	 Handling Large Vocabularies: Instead of storing an extensive list of
words, tokenization reduces vocabulary size by breaking words into smaller,
manageable units.

3.	 Mitigating Out-of-Vocabulary (OOV) Issues: Tokenization strategies,
such as subword tokenization, allow models to process new words by
breaking them into familiar sub-parts.

4.	 Improving Contextual Understanding: Advanced tokenization strategies
enable models to capture semantic relationships between words.

5.	 Optimizing Memory and Computational Efficiency: Smaller, structured
token representations help models process text faster and with lower memory
consumption.

Without tokenization, Transformers would struggle to process textual input
effectively, leading to degraded performance in NLP tasks.

4.2.1.2 Types of Tokenization in Transformers

Different tokenization methods are used in Transformers, each with unique
advantages and challenges. The choice of tokenization method affects the model's ability
to understand language, handle new words, and optimize computational efficiency.

Word Tokenization splits text into individual words, treating each word as a separate
token. For example, the sentence "Natural Language Processing is amazing" would
be tokenized as ["Natural", "Language", "Processing", "is", "amazing"]. While this
method is simple and intuitive, it has some challenges. One of the main issues is that it
creates a large vocabulary size, requiring the model to store and recognize every unique
word. Additionally, it struggles with unknown words, meaning that if a word was not
seen during training, the model may not understand it or know how to process it.

Character Tokenization breaks text down into individual characters rather than
words. For example, the word "Hello" would be tokenized as ["H", "e", "l", "l", "o"].
This method ensures that the model can recognize any word, even if it has never seen it
before, since it is based on individual letters. However, character tokenization results in
much longer sequences, increasing computational requirements and making processing
less efficient. Additionally, because words are broken into single letters, it loses semantic
meaning, making it harder for the model to understand the relationships between words
and their context.

Subword Tokenization is a commonly used method in Transformers that splits
words into smaller, meaningful sub-units rather than treating them as whole words
or individual characters. For example, the word "unhappiness" might be tokenized as
["un", "happiness"]. This method is widely used because it provides a balance between

151 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

vocabulary size and computational efficiency while also handling unknown words
effectively. Some of the most popular subword tokenization techniques include Byte
Pair Encoding (BPE), which is used in models like GPT, WordPiece, which is used in
BERT, and SentencePiece, which is used in T5. Subword tokenization helps models
generalize better across different words by keeping frequent words intact while breaking
down rare or unknown words into familiar sub-components.

4.2.1.3 The Process of Tokenization

Tokenization in Transformers involves several key steps to prepare text for processing.
It begins with text cleaning, where extra spaces, special characters, and unnecessary
formatting are removed to standardize the input. Next, token splitting breaks the text
into smaller units, such as words, characters, or subwords, depending on the chosen
tokenization method. Once split, each token is assigned a unique numerical ID from
the model’s predefined vocabulary, allowing the Transformer to interpret the text in a
structured manner. These token IDs are then converted into dense numerical vectors
through an embedding layer, ensuring the model can capture semantic relationships.
Since Transformers lack an inherent understanding of word order, positional encoding
is applied to retain sequence information. Finally, the tokenized input passes through
multiple layers of self-attention and feedforward networks, enabling the model to
understand context and generate meaningful predictions.

Tokenization in Practice: Python Example
Let's explore how tokenization works using the Hugging Face transformers library.

Example: Tokenizing Text Using a Pre-trained Transformer Tokenizer

from transformers import AutoTokenizer

Load a tokenizer (example: BERT's tokenizer)

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

Sample text

text = "Transformers are revolutionizing NLP."

Tokenization process

tokens = tokenizer.tokenize(text)

token_ids = tokenizer.convert_tokens_to_ids(tokens)

print("Tokens:", tokens)

print("Token IDs:", token_ids)

152 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Output:

Tokens: ['transformers', 'are', 'revolutionizing', 'nl', '##p', '.']

Token IDs: [19081, 2024, 27665, 17953, 2361, 1012]

Here, "NLP" is split into ["nl", "##p"] using subword tokenization, ensuring the
model can process it efficiently.

4.2.1.4 Comparison of Tokenization Methods

Method Example Pros Cons
Word Tokenization "I love AI" → ["I",

"love", "AI"]
Simple and

intuitive
Large vocabulary,
struggles with new

words
Character

Tokenization
"AI" → ["A", "I"] No OOV issues Loses meaning,

longer sequences
Subword

Tokenization
"unhappiness" →

["un", "happiness"]
Efficient, handles

rare words
Slightly complex

Each method has its use cases, but subword tokenization is widely used in Transformer
models for its ability to balance efficiency and context retention.

4.2.1.5 Challenges in Tokenization

Despite its many advantages, tokenization also presents several challenges that
can impact the effectiveness of Transformer models. One major issue is the loss of
word boundaries, particularly when using subword tokenization. While breaking
words into smaller units helps handle rare words and reduces vocabulary size, it can
sometimes alter the original semantic meaning, making it difficult for the model to
fully grasp the context. Additionally, handling multi-language texts can be complex, as
different languages have unique structures, morphologies, and writing systems. Some
tokenization strategies that work well for one language may not be as effective for
another, requiring adjustments or language-specific approaches.

Another challenge is the computational cost associated with tokenization. More
advanced methods, such as Byte Pair Encoding (BPE) or WordPiece, require extra
processing power, particularly during training, as they involve frequent lookups and
complex transformations. This increased computation can slow down the training
process and demand higher hardware resources. Furthermore, domain-specific
vocabulary issues can arise in specialized fields like medicine, law, or finance, where
common tokenization techniques may fail to recognize industry-specific terminology.
Without adaptation, models may struggle with accuracy in such specialized areas.

To address these challenges, it is crucial to carefully select the appropriate
tokenization strategy based on the specific application and dataset. In some cases,
custom tokenization rules or domain-specific preprocessing may be required to enhance
the model’s performance. By optimizing tokenization approaches, NLP models can

153 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

achieve better contextual understanding, improved accuracy, and greater efficiency
across different tasks and languages.

4.2.1.6 Future of Tokenization in NLP

As NLP models continue to evolve, tokenization techniques will also advance to
improve efficiency and accuracy. One promising development is learned tokenization,
where models automatically determine the optimal way to tokenize text instead of
relying on predefined rules. Another advancement is context-aware tokenization,
which adapts dynamically based on sentence structure and meaning, allowing for more
precise linguistic representation. Additionally, multimodal tokenization is emerging as
a technique to unify different data types, such as text, images, and audio into a single
token representation, enabling models to process multiple forms of input seamlessly.

Tokenization remains a critical step in Transformer-based NLP models, as it converts
raw text into a structured format suitable for machine learning. Different tokenization
methods, including word, character, and subword tokenization, each come with trade-
offs related to efficiency, vocabulary size, and contextual understanding. Among
these, subword tokenization methods such as Byte Pair Encoding (BPE), WordPiece,
and SentencePiece strike the best balance between handling rare or unknown words
and maintaining a manageable vocabulary size, making them the most widely used
approaches in modern NLP.

Understanding tokenization is essential for optimizing NLP models and enhancing
their effectiveness across various applications, from chatbots and virtual assistants to
machine translation and automated content generation. As the field of NLP advances,
newer tokenization techniques will continue to improve model efficiency, enabling
deeper and more nuanced language understanding.

4.2.2 Positional Encoding
In machine learning, especially in models like Transformers (e.g., BERT, GPT),

handling sequences of data is a key challenge. These models are powerful, but they
do not use recurrence (like in Recurrent Neural Networks) or convolutions (like in
Convolutional Neural Networks). This means that the model does not have a built-in
way of understanding the order of elements in a sequence, such as the words in a
sentence.

To make sure the model knows the order of the words, we need to inject information
about their positions. This is where positional encoding comes in. Simply put, positional
encoding is a way to give each word in a sentence a unique "position label" so that the
model knows which word comes first, second, and so on.

4.2.2.1 How Does Positional Encoding Work?

Since the Transformer model does not use any recurrent or convolutional structure,
it does not naturally understand the order of the sequence. To fix this, we add positional
encodings to the input embeddings of the words. This allows the model to not only
know what each word means (via the word embeddings) but also where each word
appears in the sequence.

154 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Each word in the sentence is represented by a vector, which is a list of numbers (its
embedding). We add the positional encoding to this vector, so the word embedding now
includes both its meaning and its position in the sequence. The result is a combined
representation that tells the model both "this is the word" and "this is where the word
is in the sentence.

4.2.2.2 Generating Positional Encoding
There are several techniques for generating positional encodings in machine learning

models, particularly in sequence-based models like Transformers.

1. Sinusoidal Positional Encoding
This method uses patterns of sine and cosine waves to represent positions. Each

word or token in the sequence gets a unique position encoding based on its place in the
sequence. These encodings are designed in such a way that the model can easily figure
out how far apart two tokens are in the sequence. The advantage of this method is that
it helps the model understand the relative position between tokens, meaning that it
does not just know "this is the first word" but also "this is the second word," "this is the
third word," and so on. It also works well for sequences longer than those seen during
training, because the pattern continues even for unseen positions.

2. Learned Positional Encoding
Instead of using predefined mathematical functions, the model learns its own

positional encodings during training. This means that the model finds the best way
to represent the positions based on the data it is trained on. This method is flexible,
and it allows the model to adapt its positional encoding to the specific data and tasks.
However, it can be less general than sinusoidal encoding when dealing with sequences
longer than those seen in training.

3. Absolute Positional Encoding
In this method, each position in the sequence gets a unique value based on its position

in the sequence. For example, the first word might be labeled with "1," the second word
with "2," and so on. This can be done either with fixed values (like the sinusoidal
encoding) or learned values. It gives clear and direct information about the absolute
position of each token in the sequence.

4. Relative Positional Encoding
Unlike absolute positional encoding, which tells you the exact position of each word,

relative positional encoding gives information about the distance between two words.
It helps the model understand "how far apart" two words are in the sequence rather
than their exact position. This can be more useful in certain tasks where the distance
between words is more important than their exact positions (e.g., in tasks like language
modeling, where the focus is on context rather than sequence order).

5. Trainable or Learned Embeddings
Instead of using mathematical functions or fixed patterns for positional encoding,

this method learns position-specific embeddings as part of the model's training process.
These embeddings are updated along with the rest of the model's parameters to best suit
the specific task. This approach is highly adaptable to the model and task at hand. It

155 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

works well when the model needs to learn the best way to handle positional information
based on the data.

4.2.3. Decoder
In models like Transformers, the decoder plays a crucial role in generating output

sequences, such as when translating one language to another or predicting the next
word in a sentence. The decoder works in tandem with the encoder, and while they
share some similarities, the decoder has additional features that allow it to handle the
generation of output sequences more effectively.

4.2.3.1 Structure of the Decoder

The decoder is made up of a stack of identical layers, typically 6 layers (though the
number can vary depending on the model). Each of these layers is composed of three
key parts, or sub-layers:

1.	 Self-Attention: This allows each word in the sequence to focus on other
words in the same sequence to understand their relationship. However, in the
decoder, there is a modification to prevent each word from "seeing" future
words. This is done by masking, so that each word can only attend to the
words that have appeared before it, ensuring that predictions are made step
by step in the correct order.

2.	 Multi-Head Attention Over Encoder Output: This is the second part of
the decoder. It allows the decoder to focus on the encoder's output, which
holds information about the entire input sequence. This helps the decoder
generate output based on the input sequence and previous words in the
output sequence.

3.	 Feed-Forward Neural Network: Like the encoder, the decoder includes a
feed-forward network to process the output of the attention layers and pass
it through additional transformations.

4.2.3.2 Key Features of the Decoder

Key features of the Decoder are:

1.	 Residual Connections: Like the encoder, the decoder also uses residual
connections in each layer. This means that the output of a layer is added back
to its input before moving to the next step. These connections help prevent
problems like vanishing gradients and make learning easier.

2.	 Layer Normalization: After each sub-layer, layer normalization is used.
It helps keep the training stable and faster by making sure the network's
outputs stay at a good size, neither too large nor too small, which makes
learning easier.

3.	 Masking in Self-Attention: A key difference between the decoder and
encoder is how self-attention works. In the decoder, a technique called
masking is used to stop a word from looking at future words. This makes
sure that each word in the output only depends on the words before it, not the
ones after. This is important for tasks like language generation or translation,

156 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

where the model needs to predict the next word based on the words it has
already generated.

4.	 Offset Output Embeddings : In the decoder, the output embeddings are
shifted by one position. This makes sure that the prediction for a word only
depends on the words before it, not the ones after. It helps keep the sequence
in the right order and ensures the model generates the output one word at a
time.

4.2.4 Introduction to Self-Attention
Imagine a classroom setting where a teacher is delivering a lecture. As students

listen, their minds instinctively focus on the most significant words and concepts
while filtering out less relevant details. This ability to selectively concentrate on key
information facilitates better comprehension and retention of the subject matter.

A similar process occurs in Self-Attention, a technique used in machine learning
models to enhance a computer's ability to understand and process language. Self-
Attention enables machine learning models to identify and prioritize the most relevant
words within a sentence, ensuring a more accurate interpretation of meaning and
context.

4.2.4.1 What is Self-Attention?

When we read a sentence, we don’t treat every word equally. Some words are more
important than others. Self-attention helps a computer figure out which words are
important when analyzing a sentence.

Example:

Take this sentence:

"The cat sat on the mat because it was tired."

When we read this sentence, we understand that "it" refers to "cat", not "mat." But
how does a computer figure that out? Self-attention helps the computer focus on "cat"
when processing "it" so that it understands the meaning correctly.

4.2.4.2 How Does Self-Attention Work?

Step 1: Breaking the Sentence into Words
When a computer reads a sentence, it first breaks it into individual words. For

example, in the sentence "The cat sat on the mat because it was tired," the computer
separates each word into a list:

 ["The", "cat", "sat", "on", "the", "mat", "because", "it", "was", "tired"].

Step 2: Assigning Importance to Words
After breaking the sentence into words, the computer must determine which words

are important in relation to each other. When processing the word "it," the computer

157 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

needs to figure out which word "it" refers to. This is where self-attention comes in.
Instead of treating all words equally, the computer compares "it" with all other words in
the sentence to find the most relevant one.

Step 3: Giving Attention Scores
To decide how strongly "it" is related to each word, the computer assigns attention

scores. These scores are calculated based on how likely "it" refers to each word. If
the sentence talks about a "cat" being tired, the computer assigns a high score to "cat"
because it makes sense that "it" refers to "cat." On the other hand, "mat" is not something
that gets tired, so it receives a low score.

Step 4: Understanding the Meaning Correctly
Once the computer assigns attention scores, it chooses the word with the highest

score to determine the meaning of "it." Since "cat" has the highest attention score, the
computer understands that "it" refers to "cat" rather than "mat." This step ensures that
the sentence is interpreted correctly, just as a human would understand it.

4.2.5 What is Multi-Head Attention?
Multi-Head Attention is an advanced mechanism that allows a machine to process

multiple relationships between words in a sentence at the same time. Unlike a single self-
attention mechanism that looks at only one aspect of a sentence, multi-head attention
divides this process into multiple “heads,” each of which focuses on a different part of
the sentence. This helps the model capture more information and context, improving its
ability to understand meaning accurately.

4.2.5.1 Working of Multi-Head Attention

Step 1: Splitting Attention into Multiple Heads
In traditional self-attention, a single attention mechanism determines how important

each word is in relation to another word. However, in complex sentences, there can be
multiple relationships that need to be understood. Multi-head attention solves this by
splitting the attention mechanism into multiple smaller parts, called attention heads.
Each head independently learns to focus on different relationships within the sentence.

For example, in the sentence "The cat sat on the mat because it was tired," one
attention head might focus on understanding that "it" refers to "cat," while another
head might focus on the phrase "sat on the mat" to determine the cat’s position. By
allowing multiple heads to work simultaneously, the model captures various meanings
more effectively than a single attention mechanism would handle the task.

Step 2: Applying Self-Attention in Each Head
Once the sentence is divided among multiple attention heads, each head applies the

self-attention mechanism separately. This means that each head computes attention
scores independently by comparing words and determining how much focus should be
given to each one.

For instance, one head might assign a high attention score to the relationship between
"it" and "cat", ensuring that the AI understands that "it" refers to "cat." Another head

158 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

might assign attention to "sat" and "mat", recognizing the positional relationship.
Meanwhile, another head could focus on words like "because" to understand cause-
and-effect relationships in the sentence. Each head processes different aspects of the
sentence, helping to build a richer understanding.

Step 3: Combining the Outputs from All Heads
After each attention head has calculated its own attention scores and extracted

useful information, the results from all heads are combined. This step is crucial because
different heads have learned different relationships, and merging them allows the AI to
form a complete picture meaning of the sentences.

4.2.6 Feed-forward layer (FFN)
Imagine a Transformer model as a team working on a project. The self-attention

mechanism is like a brainstorming session where team members exchange ideas,
ensuring they consider different perspectives. However, after gathering all these insights,
each team member needs to process and refine the information individually—that’s
where the Feed-Forward Layer (FFN) comes in. It acts like a personal workspace where
each team member (token) takes the gathered ideas, expands on them to explore deeper
patterns, applies creativity (non-linearity) to think beyond just the obvious connections,
and then condenses everything into a well-structured summary. This process allows
the Transformer to capture complex relationships, enhance its expressiveness, and
ensure a balanced understanding of both global context (from self-attention) and
local refinements (from FFN). Without the FFN, the model would struggle to process
information effectively, limiting its ability to perform complex language tasks like
translation or text generation.

The feed-forward layer (FFN) is a fundamental component of Transformer models,
responsible for processing and transforming the output of the self-attention mechanism.

Feedforward networks originate from neural networks, where information flows
in one direction—from the input layer, through hidden layers, to the output layer—
without looping back, unlike recurrent neural networks. In Transformers, the FFN is
implemented as a multi-layer perceptron (MLP), consisting of an input layer, one or
more hidden layers, and an output layer.

In the Transformer architecture, the FFN enhances the model’s ability to capture
complex patterns and relationships in data. It operates independently on each token,
applying non-linear transformations to refine the representations produced by self-
attention. This improves the model’s effectiveness in performing intricate language
tasks.

4.2.6.1 Structure of Feed-Forward Layer

The Feed-Forward Layer (FFN) in a Transformer model is a crucial component
that applies non-linearity and transformations to enhance the representation learned by
the attention mechanism. It is present in both the Encoder and Decoder blocks of the
Transformer architecture. Structure of the Feed-Forward Layer include

159 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

1. Two Fully Connected (Linear) Layers:
In the first linear transformation (expansion) of the feed-forward network, the input

vector x (of dimension dmodeld_) is multiplied by the weight matrix W1, which expands
its dimensionality to a higher space.

A bias term b1 is then added to the result, preparing the transformed representation
for the activation function that follows. This expansion allows the model to capture more
complex features before projecting the representation back to its original dimension.

2. Activation Function (ReLU or GELU):
After the initial linear transformation, the output passes through a non-linear

activation function, such as ReLU (Rectified Linear Unit) or GELU (Gaussian Error
Linear Unit). This activation function plays a crucial role in introducing non-linearity
into the model, enabling it to learn and represent more complex patterns in the data.
Without this step, the entire transformation would remain a simple linear mapping,
limiting the model's ability to capture relationships. ReLU is commonly used due to its
computational efficiency and ability to mitigate the vanishing gradient problem, while
GELU is often preferred in Transformer architectures because it provides smoother
and more adaptive activation. This non-linearity ensures that the model can better
generalize to diverse inputs, enhancing its ability to perform complex tasks in natural
language processing and other domains.

3. Second Linear Transformation (Compression):
In the second linear transformation (compression), the activated output undergoes

another linear mapping using the weight matrix W2, which reduces its dimensionality
back to the original size, dmodeld. This step ensures that the expanded feature
representation is projected back into a space that aligns with the input dimensions,
maintaining consistency across the Transformer layers. Additionally, a second bias
term, b2, is added to further refine the transformation. This compression step allows
the model to retain the expressive power gained during expansion while ensuring
computational efficiency and maintaining compatibility with subsequent layers in the
Transformer architecture.

Mathematically, this is represented as:

FFN(x)=max⁡(0,xW1+b1)W2+b2

Where:

●	 x is the input from the previous layer (either self-attention or another FFN),

●	 W1,b1 are the weights and biases of the first linear transformation,

●	 W2,b2 are the weights and biases of the second linear transformation,

●	 max⁡(0,x) represents the ReLU activation function.

4.2.6.2 Importance of Feed forward layer in transformer

Imagine a group of chefs working together in a restaurant kitchen. The self-attention
mechanism is like the chefs communicating and exchanging ingredients to ensure a well-

160 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

balanced dish. However, each chef still needs to individually refine, mix, and perfect their
assigned portions before the final dish comes together—that’s where the Feed-Forward
Layer (FFN) plays its role. The FFN acts as each chef’s personal workstation, where
they take the shared ingredients (input representations), process them further to extract
deeper flavors (feature transformation), and add their unique touch through creativity
(non-linearity) to enhance the dish beyond a simple combination of ingredients. To
maintain efficiency, they might expand their workspace temporarily (dimensional
expansion) to try different techniques before neatly arranging everything back into a
smaller, refined presentation (compression). Unlike the collaborative brainstorming in
self-attention, this part of the process happens individually for each dish (position-
wise processing), ensuring that every element is treated with care. By refining and
transforming the ingredients through structured steps, the FFN allows the final dish to
be rich, expressive, and full of depth, just as it enables Transformers to capture complex
relationships in language tasks like translation, text generation, and beyond.

 Here are the key reasons why the FFN is important:

1.	 Feature Transformation – The FFN helps refine and transform the
representations obtained from the self-attention mechanism, enabling the
model to extract deeper features from the input data.

2.	 Non-Linearity – The activation function (e.g., ReLU or GELU) introduces
non-linearity, allowing the model to learn complex relationships and avoid
being restricted to simple linear mappings.

3.	 Dimensional Expansion and Compression – The FFN temporarily expands
the feature dimension (typically by a factor of four) before compressing it
back to its original size. This helps in capturing richer feature representations
without increasing the overall computational cost.

4.	 Position-Wise Processing – Unlike self-attention, which captures
dependencies across different tokens, the FFN operates independently on
each token, ensuring that the model processes information at both a global
(self-attention) and local (FFN) level.

5.	 Enhancing Model Expressiveness – By applying two linear transformations
with an activation function in between, the FFN increases the model’s
capacity to represent complex functions, making it more powerful for tasks
like natural language processing, machine translation, and text generation.

4.2.7 Encoder
Imagine a classroom where students are working on a group project. Each student

starts with their own understanding of the topic, similar to how the encoder begins
with word embeddings for each token. To improve their knowledge, they discuss and
share ideas with each other—this represents the self-attention mechanism, where each
token learns from all other tokens. Some students focus on historical facts, while others
emphasize practical applications, just like multi-head attention capturing different
aspects of meaning.

After the discussion, each student takes time to process and refine their understanding—
this is like the feed-forward network (FFN), which enhances each token’s representation.

161 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

To stay on track, they review past discussions (residual connections) and ensure clarity
(layer normalization) before moving forward. This process repeats across multiple
layers, gradually building a deep understanding of the topic. By the end, each student has
a well-rounded perspective, just as the Transformer encoder creates rich representations
of the input, ready for tasks like translation or summarization.

In a Transformer model, the encoder is responsible for processing the input data and
generating meaningful representations. It consists of multiple layers, each with self-
attention and feed-forward networks, to transform input sequences into a rich feature
representation that the decoder (in tasks like translation) or classifier (in tasks like
sentiment analysis) can use.

4.2.7.1 Features of the Encoder in a Transformer

The encoder has the following key features:

1. Multi-Layer Structure
The encoder consists of multiple identical layers, typically six in the original

Transformer model. Each layer processes the input sequentially, applying self-
attention to capture relationships between words and a feed-forward network to refine
and transform the representation for deeper understanding.

2. Self-Attention Mechanism
The self-attention mechanism enables the model to focus on important words in

a sentence while processing the input. It helps capture relationships between words,
ensuring that relevant connections are maintained. For example, in the sentence "I love
learning AI" self-attention identifies that "learning" is closely related to "AI" allowing
the model to better understand the context and meaning.

3. Feed-Forward Network (FFN)
The position-wise feed-forward network (FFN) enhances the representation by

introducing non-linearity, allowing the model to capture more complex patterns in
the data. By complementing the self-attention mechanism, the FFN helps the model
learn intricate features that go beyond simple word relationships, improving its overall
understanding of the input.

4. Positional Encoding
Since Transformers lack recurrence, unlike RNNs, they rely on positional encoding

to capture the order of words in a sentence. This ensures that the model differentiates
between sentences with the same words but different structures. For example, "AI is
fun" and "Fun is AI"have distinct meanings and positional encoding helps preserve this
distinction, enabling the model to understand the correct context.

5. Layer Normalization and Dropout
Layer normalization ensures stable training by standardizing activations within each

layer, helping the model converge efficiently. Dropout, on the other hand, prevents
overfitting by randomly deactivating a fraction of neurons during training, encouraging
the model to learn more robust and generalized patterns.

162 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

4.2.7.2 Need for the Encoder in a Transformer

The encoder is essential in a Transformer model because it effectively captures
long-range dependencies, allowing it to process all words in parallel and understand
relationships across lengthy texts, unlike RNNs, which struggle with long sequences. Its
lack of recurrence enables faster computation, as traditional models like LSTMs process
words sequentially, making them slower. The encoder also provides deep contextual
understanding by converting raw input into rich embeddings that capture meaning and
relationships, helping differentiate words with multiple meanings based on context,
such as "bank"referring to a financial institution versus a riverbank. Additionally, it
efficiently handles variable-length inputs without requiring padding or truncation,
making it more flexible than RNN-based approaches. Beyond these advantages, the
encoder plays a crucial role in various NLP tasks, including machine translation, text
classification, and named entity recognition, where understanding input text accurately
is vital for generating meaningful outputs.

4.2.7.3 Working of the Encoder in a Transformer

The encoder follows a systematic process to transform input text into meaningful
representations.

Step 1: Input Processing
In the first step of input processing, the input sentence is tokenized by splitting it into

words or subwords. Each token is then converted into a word embedding, a numerical
vector that represents its meaning in a high-dimensional space. Since Transformers do
not have a built-in sense of word order, positional encoding is added to ensure that the
model retains the sequence information and understands the correct structure of the
sentence.

Step 2: Self-Attention Mechanism
The self-attention mechanism allows each word in a sentence to attend to all other

words, enabling the model to capture important relationships between them. This helps
in understanding contextual dependencies, such as recognizing that "learning" is closely
related to "AI" in the phrase "learning AI"ensuring that the model processes the input
with a deeper contextual awareness.

Step 3: Feed-Forward Network (FFN)
The output from the self-attention mechanism is passed through a fully connected feed-

forward network (FFN), which refines the representation by applying transformations
to each token independently. This step introduces non-linearity, enabling the model
to capture complex patterns and relationships beyond what self-attention alone can
achieve, ultimately enhancing its ability to understand and process language effectively.

Step 4: Layer Normalization and Dropout
Layer normalization ensures stable learning by standardizing activations within each

layer, helping the model converge efficiently. Dropout, on the other hand, prevents
overfitting by randomly deactivating a fraction of neurons during training, encouraging
the model to generalize better and perform well on unseen data.

163 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Step 5: Output Representation
The encoder generates contextualized embeddings for each word, capturing their

meaning based on the entire sentence. These embeddings serve as the final output of
the encoder and are then passed to the decoder in tasks like machine translation or to
a classifier in tasks such as text classification, enabling the model to generate accurate
and meaningful predictions.

Recap

Tokenization

	♦ Tokenization helps convert text into a format that Transformers can
understand. It breaks text into smaller parts like words, characters, or
subwords.

	♦ Subword tokenization is commonly used in Transformers. It helps models
handle new words better and reduces the size of the vocabulary.

	♦ New tokenization methods are being developed. These include learned
tokenization, context-aware tokenization, and multimodal tokenization to
improve model efficiency.

Positional Encoding helps the model understand the order of words in a sequence
by adding position-specific information to word embeddings.

Decoder plays a crucial role in generating output sequences, such as when translating
one language to another or predicting the next word in a sentence.

Structure of the Decoder in a Transformer includes Self-Attention, Multi-Head
Attention Over Encoder Output, Feed-Forward Neural Network.

Key Features of the Decoder in a Transformer are Residual Connections, Layer
Normalization, Masking in Self-Attention, Offset Output Embeddings.

Self-Attention helps computers determine which words are important in a sentence.

Multi-Head Attention:

	♦ Advanced mechanism that processes multiple relationships in a sentence
simultaneously.

	♦ The feed-forward layer (FFN): The feed-forward layer (FFN) is a
fundamental component of Transformer models, responsible for processing
and transforming the output of the self-attention mechanism.

	♦ Structure of Feed-Forward Layer : It is present in both the Encoder and
Decoder blocks of the Transformer architecture. Structure of the Feed-
Forward Layer include

•	 Two Fully Connected (Linear) Layers

•	 Activation Function (ReLU or GELU)
•	 Second Linear Transformation (Compression)

164 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Objective Type Questions

1.	 What is the primary purpose of tokenization in Transformers?
2.	 Which tokenization method is commonly used in Transformer-based models?
3.	 What is a major challenge associated with word tokenization?
4.	 Which mechanism helps a machine learning model determine important

words in a sentence?
5.	 What is the mathematical operation used to compute attention scores?
6.	 Which concept ensures a model focuses on multiple aspects of a sentence?
7.	 What type of connections are used in the decoder to help prevent vanishing

gradients?
8.	 What technique does the decoder use in self-attention to prevent words from

seeing future words?
9.	 What type of positional encoding allows the model to learn position

representations during training?
10.	What is the primary role of the feed-forward layer in a Transformer?
11.	The feed-forward layer in a Transformer consists of
12.	Which activation function is commonly used in the feed-forward layer of

Transformers?
13.	Why is non-linearity important in the feed-forward layer?
14.	How does the feed-forward layer process inputs?
15.	What happens if we remove the feed-forward layer from the Transformer?
16.	The feed-forward layer is applied to:

	♦ Importance of Feed forward layer in transformer

	♦ Position-Wise Nature of a Transformer : computations are applied
independently to each token in the sequence.

	♦ Encoder is responsible for processing the input data and generating
meaningful representations. It consists of multiple layers, each with self-
attention and feed-forward networks, to transform input sequences into
a rich feature representation that the decoder (in tasks like translation) or
classifier (in tasks like sentiment analysis) can use.

	♦ Features of the Encoder in a Transformer include Multi-Layer Structure,
Self-Attention Mechanism, Feed-Forward Network (FFN), Positional
Encoding, Layer Normalization and Dropout.

	♦ Working of the Encoder in a Transformer consists of these stages: of Input
Processing, Self-Attention Mechanism, Feed-Forward Network (FFN),
Layer Normalization and Dropout, Output Representation

165 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Answers to Objective Type Questions

17.	What is the key difference between self-attention and feed-forward layers?
18.	Dropout in the feed-forward layer helps in:
19.	What is the primary role of the decoder in a Transformer?
20.	How does the decoder receive input from the encoder?
21.	Which attention mechanism is unique to the decoder?
22.	Why does the decoder use masked self-attention?
23.	Which component connects the encoder to the decoder?
24.	What is the role of the final linear layer in the decoder?
25.	What happens if we remove the masked self-attention in the decoder?

1.	 Preprocessing

2.	 Subword Tokenization

3.	 Vocabulary Size

4.	 Self-Attention

5.	 Dot Product

6.	 Multi-Head Attention

7.	 Residual

8.	 Masking

9.	 Learned Positional Encoding

10.	Introduce non-linearity and refine word representations

11.	Two linear layers with an activation function

12.	ReLU or GELU

13.	It enables the model to learn complex patterns

14.	Processes all words independently

15.	The model loses its ability to refine word representations

16.	Each token independently

17.	Self-attention captures relationships between words, while the feed-forward
layer refines representations

18.	Avoiding overfitting

19.	Generate output sequences based on encoded representations

166 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Assignments

1.	 Explain in detail the process of tokenization, including its significance
in Natural Language Processing (NLP) and Transformer-based models.
Describe the key steps involved in tokenization, the different tokenization
methods used, and their impact on model performance. Provide examples to
support your explanation.

2.	 Explain the concept of self-attention in your own words with an example.

3.	 How does self-attention help in understanding relationships between words
in a sentence?

4.	 What is multi-head attention, and why is it useful in natural language
processing?

5.	 Explain the different techniques for generating positional encodings in
machine learning models.

6.	 Write a detailed report explaining the function of the feed-forward layer
in a Transformer model. Include examples of how non-linearity enhances
language representation.

7.	 Implement the feed-forward layer of a Transformer using Python
(TensorFlow/PyTorch). Explain the significance of linear transformations,
activation functions, and dimensionality changes.

8.	 Compare ReLU and GELU as activation functions in the feed-forward layer.
Conduct experiments and analyze their effects on model performance in a
text classification task.

9.	 Modify a Transformer model by removing the feed-forward layer. Train
the model on a simple NLP task and analyze the impact on accuracy and
learning ability.

10.	Research and experiment with different dropout rates in the feed-forward
layer. Explain how dropout prevents overfitting and affects training stability.

20.	Through cross-attention

21.	Masked self-attention

22.	To prevent the model from attending to future tokens

23.	Cross-attention mechanism

24.	Convert token embeddings into word probabilities

25.	The decoder can see future words, leading to data leakage

167 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suggested Reading

1.	 Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with
Python. O'Reilly Media.

2.	 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

3.	 Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow. O'Reilly Media.

4.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press.

11.	Write a detailed essay explaining the architecture of the decoder in
Transformers, including self-attention, cross-attention, and masked self-
attention mechanisms.

12.	Using Python and TensorFlow/PyTorch, implement a basic Transformer
decoder and generate text sequences. Explain how it processes input tokens
and generates output.

13.	Compare how decoder-based models like GPT (Generative Pre-trained
Transformer) differ from encoder-based models like BERT. Discuss their
applications and performance on various NLP tasks.

14.	Explain the need for masked self-attention in the decoder. Modify a
Transformer model to disable masking and analyze how it affects text
generation tasks.

15.	Build a simple machine translation model using a Transformer-based
decoder. Train it on a bilingual dataset and evaluate its performance in
generating translated text.

Reference

1.	 Jurafsky, D., & Martin, J. H. (2020). Speech and language processing (3rd
ed.). Pearson.

2.	 Szeliski, R. (2020). Computer vision: Algorithms and applications (2nd ed.).
Springer.

3.	 Goyal, P., Pandey, S., & Jain, K. (2019). Deep learning for natural language
processing and computer vision. Apress.

168 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

 Introduction to
Generative AI

Learning Outcomes

Prerequisites

	♦ define Generative AI and its key functionalities

	♦ list different types of Generative AI models with examples

Can you imagine the film-star Mammootty teaching a class on Machine Learning for
his fans among Sreenarayanaguru Open University learners, and Mohanlal delivering a
session for his fans in his iconic voice? How exciting and engaging the learning expe-
rience would be!

Imagine logging into your learning portal, where AI personalizes your dashboard,
suggests topics, and adapts lessons based on your progress. If you struggle, it offers
explanations, animations, and step-by-step guidance; if you excel, it challenges you
with advanced topics.

UNIT 3

Upon completion of this unit, the learner will be able to :

169 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

During assessments, AI-generated quizzes adjust in real-time, providing hints or
tougher questions as needed. Virtual reality brings learning to life. You can conduct
experiments in a digital lab or explore historical events firsthand.

With a 24/7 AI tutor, you get instant, tailored explanations through visuals or real-
world examples. In this AI-powered ODL experience, learning is immersive, engaging,
and always evolving to keep me on track.

Our university has its own study materials, video classes, quizzes, and other resources
to support ODL-based generative AI learning. To enable this, the university needs a
dedicated system for storing these resources and an algorithm for generating personal-
ized questions and learning experiences. This system is called a Large Language Model
(LLM).

Keywords

Generative AI, Large Language Model

Discussion

4.3.1 What is Generative AI
Generative AI refers to artificial intelligence systems capable of creating new

content, including text, images, audio, videos, and code. Unlike traditional AI, which
classifies or predicts based on given data, generative AI learns patterns and generates
unique outputs.For example Imagine a student named Rahul, who loves writing stories
but often struggles to come up with creative ideas. One day, he discovers ChatGPT,
an AI tool that can generate stories based on a few words he provides. Meanwhile, his
friend Aisha, an artist, wants to design a poster for her college event but doesn’t have
time to draw. She tries DALL•E, an AI tool that generates images from text. She types:
"A colorful festival scene with lights and music," and in moments, she has a beautiful,
AI-generated image ready for her project.

4.3.2 Evolution of Generative AI
Generative AI has significantly advanced since its early days. Here’s a step-by-step

look at its evolution over time.

1.The Early Days: Rule-Based Systems(1950s-1980s)
AI systems operated based on fixed rules set by humans to generate results. They

could only perform specific tasks they were programmed for and lacked the ability to
learn or adapt.For example, a program could solve mathematical equations but couldn’t
write a short story or compose a piece of music.

2. Introduction of Machine Learning (1990s-2000s)
AI started using machine learning, which allowed it to learn from data instead of just

170 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

following rules. The AI was fed large datasets (e.g., pictures of animals), and it learned
to identify patterns and make predictions.For example, AI could now recognize a cat in
a picture, but it still couldn’t create a picture of a cat on its own.

3. Deep Learning (2010s) era
With the introduction of deep learning, AI made significant advancements by utilizing

neural networks that function similarly to the human brain. This allowed AI to handle
highly complex data, such as analyzing thousands of images, and begin creating new
content.For example, AI could now create a realistic drawing of a cat by learning from
millions of cat images.

4. Modern Generative AI
Modern AI models can process various types of data simultaneously, including text,

images, audio, and video. For example, AI can take a written description and turn it
into an animated video or a song with the help of different models integrating together.

4.3.3 Types of Generative AI Models
1. Text-to-Text:

Text-to-Text models generate relevant and understandable text from given input.
These models are helpful for writing emails, summarizing articles, translating languages,
creating stories etc.

Examples:

1.	 Google Translate: Which takes a sentence in one language and generates
the translation in another language.

2.	 ChatGPT: Which can take a prompt like, "Write a summary of this article,"
and produce a clear, concise summary based on the input text.

2. Text-to-Image:
Text-to-Image models create pictures from written descriptions. For example the

DALL-E 2 model is an advanced text-to-image generator that creates realistic images
based on textual descriptions. It can transform prompts like "A futuristic city skyline
under a starry night" into high-quality images.

3. Image-to-Image:
An Image-to-Image AI model takes an input image and generates a new image based

on it, often by transforming or enhancing the original. For example, tools like DeepArt
can take a photo and apply an artistic style, such as turning a portrait into a painting in
the style of Picasso.

4. Image-to-Text:
AI tools examine images and provide textual descriptions of their content. This

technology is very helpful for accessibility, as it allows visually impaired people to
understand images through clear and detailed descriptions.

An example of an AI tool for image-to-text is Google Vision AI. This tool analyzes
images and converts visual content into text descriptions, making it easier for applications
to understand and interpret images.

171 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

5. Speech-to-Text:
This application transforms spoken language into written text. It serves as the

foundation for virtual assistants like Siri, transcription tools, and automatic captions,
making it essential for communication, accessibility, and record-keeping.

6.Text-to-Audio:
This application converts written text into spoken words. It is widely used in virtual

assistants, audiobook narration, and accessibility tools, enhancing communication,
learning, and user experience.

7. Text-to-Video
This application generates video content from written text. It is commonly used for

automated video creation, educational content, and digital storytelling, making visual
communication more efficient and accessible.

8. Multimodal AI
Multimodal AI processes and integrates multiple types of data, such as text, images,

audio, and video, to enhance understanding and interaction. It powers applications like
advanced chatbots, virtual assistants, and AI-driven content generation, improving user
experience and decision-making.

4.3.4 Introduction to Large Language Models
Large Language Models (LLMs), often called "transformative" or "next-generation"

language models, mark a significant advancement in Natural Language Processing
(NLP). These models utilize deep learning, particularly transformer architectures, to
analyze and comprehend complex linguistic patterns. A defining feature of LLMs is their
ability to process vast amounts of structured and unstructured text, capturing semantic
relationships between words and phrases. Additionally, they can handle multimodal
data, including text, audio, visual, and audiovisual inputs, further enhancing their
ability to generate human-like language and understand diverse forms of information.

Language modeling (LM) is a fundamental task in Natural Language Processing
(NLP) that involves predicting the next word or character in a sequence of text. Over
time, LM has evolved from simple statistical models like n-grams and Hidden Markov
Models (HMMs) to more sophisticated deep learning approaches, such as Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks. However,
a major breakthrough came with transformer-based models, particularly after the
introduction of the Transformer architecture in 2017. This advancement enabled large-
scale Large Language Models (LLMs), such as OpenAI’s GPT series, Google’s BERT,
and other foundation AI models, which can process vast datasets and generate human-
like text with improved contextual understanding.

LLMs leverage deep learning and self-attention mechanisms to capture complex
relationships between words and concepts, allowing them to perform various NLP
tasks like text generation, translation, and summarization. Modern LLMs, including
ChatGPT, Llama, and Falcon, have been trained on massive text corpora and fine-
tuned for specific applications, making them highly effective in conversational AI,

172 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

research, and specialized domains such as healthcare and coding. Additionally, recent
advancements have integrated multimodal capabilities, enabling models like GPT-4
to process and generate responses incorporating both text and visual information,
further expanding the possibilities of AI-driven communication and human-computer
interaction.

4.3.5 Large Language Model
A Large Language Model (LLM) is a deep learning algorithm designed to handle

various Natural Language Processing (NLP) tasks, such as recognizing, translating,
predicting, and generating text. These models use transformer architectures and are
trained on massive datasets, allowing them to understand and produce human-like
language.

LLMs function like neural networks (NNs), computing systems inspired by the
human brain. They consist of interconnected layers of nodes, similar to neurons, that
process and learn from data. Beyond language tasks, LLMs can also be trained for
specialized applications, such as understanding protein structures, writing code, and
problem-solving in fields like healthcare and finance.

To perform effectively, LLMs undergo pre-training on vast amounts of data and fine-
tuning for specific tasks like text classification, question answering, and summarization.
They rely on parameters, which act as a knowledge bank, helping them improve their
understanding and responses over time. These capabilities power applications such
as chatbots, AI assistants, and machine translation, making LLMs valuable tools in
various industries.

A Transformer model is a deep learning architecture used in Natural Language
Processing (NLP) and other AI applications. It is designed to efficiently process
sequential data, such as text, by understanding contextual relationships between words.
The Transformer was introduced in the 2017 paper "Attention is All You Need" by
Vaswani et al. and has since become the foundation for Large Language Models (LLMs)
like GPT, BERT, and T5.

Transformers have revolutionized NLP by enabling models like ChatGPT, BERT,
and T5 to perform complex tasks such as text generation, machine translation, question
answering, and summarization. Their efficiency and scalability make them the backbone
of modern AI applications in various fields, including healthcare, finance, and customer
service.

The Transformer model consists of two main components:

1.	 Encoder – Processes input data and extracts meaningful features.
2.	 Decoder – Generates output based on the encoded information.

Unlike older models like Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks, Transformers do not process text sequentially. Instead, they
use a mechanism called self-attention to analyze all words in a sentence simultaneously,
allowing them to capture long-range dependencies and context more effectively. Key
Features of Transformers:

173 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	♦ Self-Attention Mechanism – Helps the model understand relationships
between words, even if they are far apart in a sentence.

	♦ Positional Encoding – Allows the model to recognize word order without
relying on recurrence.

	♦ Parallel Processing – Speeds up training and improves efficiency compared
to sequential models like RNNs.

4.3.5.1 Key Features of LLMs

Large Language Models (LLMs) are advanced artificial intelligence models
designed to understand and generate human-like text. They leverage transformer-
based architectures and are trained on vast datasets, enabling them to perform a wide
range of Natural Language Processing (NLP) tasks such as text generation, translation,
summarization, and question answering.

Key features of LLMs include context awareness, allowing them to generate coherent
responses, and scalability, making them adaptable to various applications. They also
support multimodal processing, integrating text with images, audio, and video. With
capabilities like few-shot learning and zero-shot learning, LLMs can perform new tasks
with minimal or no prior training. These models are constantly evolving, addressing
challenges like bias reduction and ethical considerations, ensuring responsible AI
development. Key Features of Large Language Models (LLMs) are

1.	 Transformer-Based Architecture : LLMs use transformer models, which
leverage self-attention mechanisms to understand the context of words and
sentences efficiently.

2.	 Massive Training Data : These models are trained on vast datasets, including
books, articles, websites, and other text sources, allowing them to develop a
deep understanding of language.

3.	 Pre-training & Fine-tuning : LLMs undergo pre-training on large, diverse
datasets and fine-tuning on specialized data to improve performance in
specific tasks.

4.	 Context Awareness : They can process long sequences of text, recognize
relationships between words, and generate coherent and contextually
relevant responses.

5.	 Multimodal Capabilities : Some LLMs can handle text, images, audio, and
video, allowing them to work in multi-modal applications.

6.	 Few-Shot and Zero-Shot Learning : LLMs can perform tasks with minimal
examples (few-shot learning) or even without any prior training on a specific
task (zero-shot learning).

7.	 Scalability and Adaptability :They can be fine-tuned for various
applications, including chatbots, machine translation, content generation,
and summarization.

8.	 Parallel Processing : Unlike older models like RNNs, LLMs process
multiple words simultaneously, making them faster and more efficient.

174 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

9.	 Parameter-Driven Learning :LLMs have billions or even trillions of
parameters (akin to memory), which help improve their knowledge and
decision-making.

10.	Ethical and Bias Considerations : Developers implement techniques to
reduce biases, improve fairness, and align LLMs with ethical AI principles.

4.3.5.2 Key Components of Large Language Models (LLMs)

Large Language Models (LLMs) consist of multiple layers of neural networks,
each playing a crucial role in processing text and generating meaningful outputs. The
primary components include:

1.	 Embedding Layer : The embedding layer converts input text into numerical
embeddings, capturing both semantic and syntactic meanings to help the
model understand context effectively.

2.	 Feedforward Layers (FFN) : The feedforward layers (FFN) consist of
multiple fully connected layers that transform input embeddings, extracting
higher-level abstractions to help the model interpret user intent effectively.

3.	 Attention Mechanism :The attention mechanism enables the model to
focus on relevant parts of the input text, improving accuracy by identifying
key relationships between words.

4.	 Transformer Layers (Replacing Recurrent Layers) : Transformer layers,
which replace traditional recurrent layers, utilize self-attention mechanisms
to process entire sequences simultaneously. This approach captures
relationships between words without relying on sequential processing,
making training more efficient.

4.3.5.3 Types of Large Language Models

LLMs can be classified based on their training approach and application:

1. Generic Language Models
Generic Language Models are foundational AI systems trained on vast amounts

of text data to predict the next word in a sequence based on learned patterns. These
models rely on statistical relationships in the training data to generate text, making
them effective for tasks like autocomplete, search query suggestions, and basic text
prediction. However, they are not optimized for following specific instructions or
engaging in dynamic conversations, as their primary function is to capture language
structure and coherence rather than nuanced reasoning.

2. Instruction-Tuned Models
Instruction-Tuned Models build upon generic language models by training them to

generate responses based on specific user instructions. This tuning process involves
supervised learning on instruction-based datasets, allowing the model to better
understand tasks such as summarization, translation, sentiment analysis, and code
generation. By aligning the model’s outputs with human-like responses to structured
prompts, instruction-tuned models enhance usability for applications where precise,
context-aware text generation is required.

175 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

3. Dialog-Tuned Models
Dialog-Tuned Models are specialized versions of language models optimized for

conversational AI. They are trained using datasets containing multi-turn conversations,
enabling them to predict responses that maintain context and coherence throughout
an interaction. These models excel in applications such as chatbots, virtual assistants,
and customer service automation, as they can handle follow-up questions, personalize
interactions, and generate contextually appropriate responses in a dialogue format.

Each component and model type contributes to the overall functionality of LLMs,
enabling them to perform a wide range of Natural Language Processing (NLP) tasks
efficiently.

4.3.5.4 Working of Large Language Models

Large Language Models (LLMs) are built using deep learning techniques, primarily
based on transformer architectures, and trained on vast amounts of text data. A large
language model works by receiving an input, encoding it, and then decoding it to
produce an output prediction. But before a large language model can receive text input
and generate an output prediction, it requires training, so that it can fulfill general
functions, and fine-tuning, which enables it to perform specific tasks. Their working
can be broken down into several key stages:

Large language models (LLMs) work through a step-by-step process that involves
training and inference. LLMs undergo a multi-step process through which models
learn to understand language patterns, capture context, and generate text that resembles
human-like language. Following are the steps of working of LLMs

Step I: Data collection
The first step in training an LLM is to collect a vast amount of textual data. This can

be from books, articles, websites, and other sources of written text. The more diverse
and comprehensive the dataset, the better the LLM’s understanding of language and the
world is.

Step II: Tokenization
Once the training data is collected, it undergoes a process called tokenization.

Tokenization involves breaking down the text into smaller units called tokens. Tokens
can be words, subwords, or characters, depending on the specific model and language.
Tokenization allows the model to process and understand text at a granular level.

Step III: Pre-training
The LLM then undergoes pre-training, learning from the tokenized text data. The

model learns to predict the next token in a sequence, given the preceding tokens. This
unsupervised learning process helps the LLM understand language patterns, grammar,
and semantics. Pre-training typically involves a variant of the transformer architecture,
which incorporates self-attention mechanisms to capture relationships between tokens.

Step IV: Transformer architecture
LLMs are based on the transformer architecture, composed of several layers of

176 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

self-attention mechanisms. The mechanism computes attention scores for each word
in a sentence, considering its interactions with every other word. Thus, by assigning
different weights to different words, LLMs can effectively focus on the most relevant
information, facilitating accurate and contextually appropriate text generation.

Step V: Fine-tuning
After the pre-training phase, the LLM can be fine-tuned on specific tasks or domains.

Fine-tuning involves providing the model with task-specific labeled data, allowing it to
learn the intricacies of a particular task. This process helps the LLM specialize in tasks
such as sentiment analysis, Q&A, and so on.

Step VI: Inference
Once the LLM is trained and fine-tuned, it can be used for inference. Inference

involves utilizing the model to generate text or perform specific language-related tasks.
For example, given a prompt or a question, the LLM can generate a coherent response or
provide an answer by leveraging its learned knowledge and contextual understanding.

Step VII: Contextual understanding
LLMs excel at capturing context and generating contextually appropriate responses.

They use the information provided in the input sequence to generate text that considers
the preceding context. The self-attention mechanisms in the transformer architecture
play a crucial role in the LLM’s ability to capture long-range dependencies and
contextual information.

Step VIII: Beam search
During the inference phase, LLMs often employ a technique called beam search to

generate the most likely sequence of tokens. Beam search is a search algorithm that
explores several possible paths in the sequence generation process, keeping track of the
most likely candidates based on a scoring mechanism. This approach helps generate
more coherent and high-quality text outputs.

Step IX: Response generation
LLMs generate responses by predicting the next token in the sequence based on the

input context and the model’s learned knowledge. Generated responses can be diverse,
creative, and contextually relevant, mimicking human-like language generation.

4.3.5.5 Applications of LLMs

Applications of LLMs are classified based on the type of value used.

1. Everyday Applications

	♦ Chatbots & Virtual Assistants: AI-driven assistants like ChatGPT, Google
Assistant, and Siri use large language models to answer queries, provide
recommendations, and automate tasks, enhancing user interaction and
productivity.

	♦ Content Generation: LLMs assist in creating high-quality written content,
including blogs, news articles, social media posts, and marketing materials,

177 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

streamlining the writing process and improving efficiency.

	♦ Translation Services: Machine translation tools like Google Translate
leverage LLMs to enable seamless multilingual communication by accurately
translating text across different languages.

	♦ Code Assistance: AI-powered tools such as GitHub Copilot support
programmers by offering code suggestions, debugging assistance, and auto-
completion, enhancing coding efficiency and reducing development time.

2. Academic & Research Applications

	♦ Automated Essay Writing: AI-powered tools help students draft essays,
reports, and summaries by generating well-structured content, improving
writing efficiency and organization.

	♦ Plagiarism Detection: Advanced algorithms analyze text to identify
copied content, ensuring academic integrity and originality in research and
assignments.

	♦ Data Analysis: AI-driven models process and summarize large datasets,
providing valuable insights for research, decision-making, and business
intelligence.

4.3.5.6 Advantages and Limitations of LLMs

Advantages

	♦ Automation of Tasks: AI-powered models minimize human effort in
text-related tasks by automating processes such as document generation,
summarization, and data extraction.

	♦ Fast and Efficient: Large language models generate content rapidly,
enabling users to produce high-quality text in a fraction of the time required
for manual writing.

	♦ Versatile Applications: LLMs are widely applicable across various fields,
including healthcare, business, and education, where they assist in tasks such
as report generation, customer support, and academic research.

Limitations

	♦ Bias in Data: AI models can inherit biases from their training data, potentially
leading to unfair or skewed outputs that reflect existing prejudices.

	♦ Hallucinations: Large language models may sometimes generate incorrect
or misleading information, presenting false details with confidence, which
can affect reliability.

	♦ High Computational Cost: Training and deploying LLMs require
substantial computational resources, making them expensive to develop and
maintain.

178 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Recap

	♦ Generative AI – AI that creates text, images, audio, videos, and code.

	♦ Types of Generative AI Models:

●	 Text-to-Text – Generates text (e.g., ChatGPT, Google Translate).

●	 Text-to-Image – Creates images from descriptions (e.g., DALL•E).

●	 Image-to-Image – Transforms images (e.g., DeepArt).

●	 Image-to-Text – Describes images (e.g., Google Vision AI).

●	 Speech-to-Text – Converts speech into text (e.g., Siri, transcription
tools).

●	 Text-to-Audio – Converts text into speech (e.g., audiobooks, virtual
assistants).

●	 Text-to-Video – Generates videos from text descriptions.

●	 Multimodal AI – Integrates text, images, audio, and video for advanced
applications.

	♦ Large language model : A Large Language Model (LLM) is a deep learning
algorithm designed to handle various Natural Language Processing (NLP)
tasks, such as recognizing, translating, predicting, and generating text.

	♦ Transformer Model :A Transformer model is a deep learning architecture
used in Natural Language Processing (NLP) and other AI applications. It is
designed to efficiently process sequential data, such as text, by understanding
contextual relationships between words.

	♦ Key Features of LLMs : Transformer-Based Architecture, Massive
Training Data, Pre-training & Fine-tuning, Context Awareness, Multimodal
Capabilities, Few-Shot and Zero-Shot Learning

	♦ Key Components of Large Language Models (LLMs) : Embedding Layer,
Feedforward Layers (FFN), Attention Mechanism, Transformer Layers
(Replacing Recurrent Layers)

	♦ Types of Large Language Models : Generic Language Models, Instruction-
Tuned Models, Dialog-Tuned Models

	♦ Working of Large Language Models : Large language models (LLMs) work
through a step-by-step process that involves training and inference. LLMs
undergo a multi-step process through which models learn to understand
language patterns, capture context, and generate text that resembles human-
like language.

	♦ Applications of LLMs :Everyday Applications, Academic & Research
Applications

179 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Objective Type Questions

1.	 Which AI model generates images from text descriptions?

2.	 What type of AI converts spoken language into written text?

3.	 What type of AI converts text into speech?

4.	 Which decade introduced rule-based AI systems?

5.	 Which AI tool provides textual descriptions for images?

6.	 Which AI model transforms an image by applying artistic styles?

7.	 What is the primary function of a Large Language Model (LLM)?

8.	 Which mechanism allows LLMs to focus on relevant parts of the input text?

9.	 An example of a Large Language Model

10.	What is the primary advantage of using transformer layers in LLMs over
traditional recurrent layers?

11.	Which application is commonly powered by Large Language Models?

12.	What is one common challenge associated with Large Language Models?

13.	Which layer in a neural network model helps capture relationships between
words in an input sequence?

14.	Which tasks can be assisted by Large Language Models

15.	What is a major disadvantage of using LLMs in real-world applications?

16.	In which domain is a Large Language Model not commonly used?

Answers to Objective Type Questions

1.	 DALL•E

2.	 Speech-to-Text

3.	 Text-to-Audio

4.	 1950s

5.	 Google Vision AI

6.	 DeepArt

7.	 Text generation

180 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

8.	 Attention mechanism

9.	 ChatGPT

10.	Efficient processing of entire sequences at once

11.	Content generation

12.	High computational cost

13.	Attention layer

14.	Generating social media posts

15.	They often generate hallucinated or incorrect information

16.	Image enhancement

Assignments

1.	 Explain the evolution of Generative AI from rule-based systems to modern
deep learning models. Provide examples to illustrate each stage.

2.	 Describe different types of Generative AI models and their applications.
Give real-world examples for at least three models.

3.	 Explain the concept of Large Language Models (LLMs) and discuss their
main applications in artificial intelligence.

4.	 Compare and contrast the use of transformers and recurrent neural networks
(RNNs) in the context of natural language processing (NLP). What
advantages do transformers offer over RNNs?

5.	 Describe the architecture of a transformer model used in LLMs. Highlight
the role of self-attention and explain how it helps in understanding text
context.

6.	 Discuss the ethical concerns associated with the deployment of Large
Language Models in real-world applications. How can biases in training
data affect the outputs of LLMs?

7.	 What are the primary limitations of Large Language Models? Analyze
issues such as computational cost, model size, and hallucinations (incorrect
information).

8.	 Illustrate the process of fine-tuning a pre-trained LLM on a specific task, such
as sentiment analysis. Discuss the benefits and challenges of this approach.

181 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suggested Reading

1.	 Foster, D. (2022). Generative deep learning (2nd ed.). O'Reilly Media.

2.	 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in
Neural Information Processing Systems, 30, 5998–6008. https://arxiv.org/
abs/1706.03762

3.	 OpenAI. (n.d.). Insights on GPT models and AI advancements. OpenAI.
https://openai.com/blog/

4.	 Google Research, OpenAI, & others. (n.d.). Research papers on NLP.
Various publishers.

Reference

1.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press.

2.	 Chollet, F. (2017). Deep learning with Python. Manning Publications.

3.	 Jurafsky, D., & Martin, J. H. (2023). Speech and language processing.
Pearson.

4.	 Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach
(4th ed.). Pearson.

5.	 Marr, B. (2019). Artificial intelligence in practice: How 50 successful
companies used AI and machine learning to solve problems. Wiley.

182 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Introduction to Recommender
System and Time Series
Analysis

Learning Outcomes

Prerequisites

	♦ define the concept of recommender systems and explain their purpose in
various industries

	♦ identify the different types of recommender systems

	♦ describe the challenges faced by recommender systems

	♦ familiarize with the concept of time series data

	♦ explore the significance of time series analysis in real-world applications

In today's digital age, recommender systems are quietly shaping your everyday
experiences. When you browse an e-commerce platform like Flipkart, the homepage
already seems to “know” what you might want—perhaps it shows backpacks because
you recently searched for laptops. Similarly, when you open YouTube, the homepage is
filled with content that feels tailor-made for you, based on your watch history and likes.
These personalized touches are not random; they are powered by smart algorithms that
understand patterns in your behavior. By learning how recommender systems work,
you can build intelligent tools that can assist users, improve business efficiency, and
even increase user engagement on digital platforms.

UNIT 4

Upon completion of this unit, the learner will be able to :

183 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Keywords

Recommender Systems, Collaborative Filtering, Content-Based Filtering,
Personalization, Data Analysis, Time series analysis

On the other hand, time series analysis plays a crucial role in understanding how
data changes over time. For example, imagine a power company trying to predict the
electricity demand for the next week. It needs to analyze past consumption data to
forecast future requirements. Or consider a hospital monitoring a patient’s heart rate and
blood pressure over several hours—this is time-dependent data that must be carefully
analyzed to detect any warning signs. From climate prediction models to analyzing
trends in social media activity, time series analysis equips us with the tools to draw
insights from the rhythm of time-bound data.

By learning these two exciting topics, you step into the world of intelligent systems
that predict, personalize, and perform essential skills in the age of AI and data science.
You won’t just be using technology; you’ll be building it.

Discussion
4.4.1 Introduction to Recommender Systems

Recommender systems are like helpful guides that suggest things you might like
based on what you’ve enjoyed in the past. For example, when you watch movies on
Netflix or listen to music on Spotify, these systems notice what you like and suggest
other movies or songs you may enjoy. It’s like having a friend who knows your
preferences and always suggests the best options for you.

The main goal of recommender systems is to make your experience more enjoyable
by showing you things that match your interests. Instead of giving you a huge list of
options, which can be overwhelming, they filter through all the choices and offer the
most relevant ones. This way, you’re more likely to find something you like, and it
makes using the platform much easier.

Recommender systems are used in many places. For instance, online shopping sites
like Amazon use them to suggest products based on what you’ve bought or looked
at before. This helps you find things that are similar to what you’ve enjoyed in the
past, making shopping quicker and more fun. Streaming platforms like YouTube or
Netflix use them to recommend videos or shows that you might like, based on what
you’ve watched before. It helps you discover new things without spending a lot of time
searching.

These systems aren’t just for entertainment or shopping. They’re also used on social
media to suggest friends or posts you might find interesting, and even in job searches
to match candidates with roles they may be suited for. Recommender systems make life
easier by guiding us toward things we’re most likely to enjoy or find useful, whether it's
entertainment, products, or even jobs.

184 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

4.4.1.1 Types of Recommender Systems

Recommender systems are like helpful guides that suggest things you might enjoy
based on your past actions or the choices of others.

1. Collaborative Filtering
One type of recommender system is Collaborative Filtering. This method works by

looking at what people who have similar tastes to you have liked. For example, if you
and others liked the same set of movies, the system might recommend other movies
that people with similar tastes enjoyed, assuming you’ll like them too. It’s like asking a
friend with similar interests for movie suggestions.

2. Content-Based Filtering
Another type of system is Content-Based Filtering. This one looks at the details

of the items you’ve liked before. For instance, if you often watch action movies, the
system will find other action movies to recommend, based on things like the genre, the
actors, or the director. It’s like finding more of the things you already enjoy, based on
their characteristics.

3. Hybrid Methods
Both Collaborative Filtering and Content-Based Filtering are used in many industries,

such as e-commerce and streaming services. For instance, Netflix uses collaborative
filtering to suggest shows based on what other people liked, while Amazon uses content-
based filtering to recommend products similar to what you’ve bought or browsed. These
systems make it easier to find new products, movies, or songs, offering personalized
recommendations to fit your unique preferences.

4.4.1.2 Working of Recommender Systems

Recommender systems act like helpful guides, suggesting things you might enjoy
based on your actions.

1. Data Collection and Analysis
They start with Data Collection and Analysis, gathering details like your browsing

history, ratings, or purchases. This information is studied to identify patterns, such as
your favorite movie genre or frequently purchased items.

2. Algorithms used in recommender systems
Next, Algorithms come into play. These are the methods used to process the data

and make predictions. Collaborative filtering suggests items based on what others with
similar preferences liked, while content-based filtering focuses on the features of items
you’ve interacted with. Some systems even combine these methods or use advanced
machine learning for better results.

3. Personalization and user preferences
Finally, Personalization and User Preferences ensure that recommendations feel

tailored to you. If you often buy gadgets online, the system will prioritize showing you
new tech products. This personalized touch helps make your experience smoother and
more enjoyable.

185 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

In short, recommender systems collect data, analyze it with smart algorithms, and
personalize suggestions, creating a seamless experience across platforms like shopping
sites and streaming services.

4.4.1.3 Applications of Recommender Systems

Recommender systems make our digital experiences more personalized and
enjoyable. For example, when you use Netflix or Spotify, you often see suggestions for
movies, shows, or songs you might like. This is no accident. Netflix looks at what genres
and shows you watch, while Spotify studies your listening habits to create playlists
like "Discover Weekly." These personalized recommendations help users discover new
favorites and keep them engaged.

Online shopping platforms like Amazon also use recommender systems. If you buy
a smartphone, Amazon might suggest accessories like phone cases or chargers. These
recommendations are based on your browsing and purchase history. This not only
makes shopping easier for you but also helps businesses by showing products you’re
more likely to buy.

News platforms like Google News and Flipboard also rely on recommender systems.
They look at what articles you’ve read and recommend stories that match your interests.
Instead of scrolling through endless headlines, you get a curated feed with news and
content that matters to you.

In short, recommender systems are everywhere, helping us find movies, music,
products, and news that fit our tastes. They make life more convenient and enjoyable
by tailoring our digital experiences to match our preferences.

4.4.1.4 Challenges in Recommender Systems

Recommender systems are incredibly useful, but they also face some unique
challenges.

One of the key problems is the cold start issue, which happens when the system has to
deal with new users or new products. Without enough data about these users or products,
the system struggles to make accurate recommendations. For instance, when you sign
up for a new streaming service, it may take some time before the recommendations feel
personalized because the system doesn’t yet know your preferences.

Another challenge is scalability and computation. Platforms like Amazon and
Netflix handle millions of users and items, making it difficult to process all that data
quickly. Recommender systems need to analyze this huge volume of information and
generate real-time suggestions, which can be computationally demanding. This requires
advanced technology and efficient algorithms to ensure recommendations are not only
accurate but also delivered without delay.

Lastly, recommender systems must address diversity and serendipity. If the system
keeps suggesting the same type of content, users might get bored or feel limited. On
the other hand, if the recommendations are too random, they may not seem relevant.
A good system strikes a balance by offering suggestions that match the user’s interests
while occasionally introducing fresh and unexpected options. For example, a music app

186 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

might recommend songs from different genres to help users discover something new
and exciting.

By tackling these challenges, developers can make recommender systems more
efficient and enjoyable for users. With continuous improvements in technology, these
systems are becoming better at understanding and serving the diverse needs of their
users.

4.4.2 Time Series Analysis
Imagine you're watching a heart monitor in a hospital. The screen shows a continuous

graph of the patient's heartbeat over time. This is a classic example of time series data.
Data points are collected in order, through time.

In machine learning, time series analysis is the art of making sense of such data.
Unlike regular datasets where observations are independent (like a table of student
names and grades), time series data is dependent on time. The value at one moment
often depends on previous values.

Time series analysis is everywhere:

	 Stock markets

	 Weather forecasting

	 Patient monitoring

	 Sales forecasting

	 Traffic predictions

Understanding time series helps us spot patterns, forecast the future, and make
smarter decisions.

4.4.2.1 Key Components of Time Series Data
1.	 Trend – A change that happens slowly over a long time.

Example: Every year, more and more people are using the internet. That’s a
trend showing growth.

2.	 Seasonality – A pattern that repeats at the same time every year or month.
Example: Ice cream sales go up every summer. This happens regularly, so it's
called seasonality.

3.	 Cyclic Patterns – Ups and downs that happen over time but not on a fixed
schedule.
Example: The economy goes through good times (boom) and bad times
(recession). These cycles happen, but not in a regular way.

187 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

4.	 Random Noise – Sudden changes that are unexpected and don’t follow any
pattern.
Example: A store’s sales drop for a day because workers went on strike. This
kind of event is random and hard to predict.

4.4.2.2 Machine Learning Techniques for Time Series Analysis

Several machine learning techniques are used for time series analysis. Traditional
methods include statistical models like Autoregressive Integrated Moving Average
(ARIMA) and Exponential Smoothing. These models capture trends and seasonal
effects to make accurate predictions. More advanced machine learning approaches,
such as Long Short-Term Memory (LSTM) networks and Recurrent Neural Networks
(RNNs), are particularly effective for handling sequential data. These deep learning
models can learn complex temporal dependencies, making them useful for applications
like speech recognition, medical diagnosis, and anomaly detection in cybersecurity.

4.4.2.3 Challenges in Time Series Analysis

A significant challenge in time series analysis is handling missing data and irregular
time intervals. Data may have gaps due to system failures or inconsistent recording.
Techniques such as interpolation and imputation are used to fill in missing values.
Another challenge is dealing with non-stationary data, where statistical properties like
mean and variance change over time. To address this, data transformation methods like
differencing and logarithmic scaling are applied to stabilize the data before analysis.

4.4.2.4 Importance and Future of Time Series Analysis

Despite these challenges, time series analysis plays a crucial role in decision-making
across various industries. Retail businesses use it for demand forecasting to ensure
optimal inventory levels. Healthcare providers analyze patient vitals over time to detect
potential health risks. Transportation services use traffic data to predict congestion
patterns and optimize routes. These applications highlight the importance of time series
analysis in making data-driven decisions.

Recap

	♦ Help users find relevant content based on preferences and behavior.

	♦ Personalize experiences to keep users engaged.

	♦ Used in e-commerce, streaming, and social media.

	♦ Collaborative filtering: Suggests items based on similar users' preferences.

	♦ Content-based filtering: Recommends items with similar features to what a
user liked.

	♦ Hybrid systems: Combine both methods for better recommendations.

188 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

	♦ Collect data like ratings, browsing history, and purchases.

	♦ Use algorithms to analyze data and predict preferences.

	♦ Personalize recommendations to feel relevant and tailored.

	♦ Netflix: Suggests shows based on watch history.

	♦ Spotify: Creates playlists based on listening habits.

	♦ Amazon: Recommends products based on browsing and purchases.

	♦ Suggest articles, videos, and content to keep users engaged.

	♦ Cold start problem: Not enough data for new users or items.

	♦ Scalability challenge: Managing large datasets efficiently.

	♦ Balance familiar and new recommendations to maintain interest.

	♦ Surprise users with relevant, unexpected suggestions.

	♦ Make it easier to find enjoyable content.

	♦ Businesses use them to attract customers and increase sales.

	♦ Enhance user satisfaction and foster loyalty.
Understanding Time Series Data

	♦ A sequence of data recorded at regular intervals (e.g., daily stock prices,
monthly sales).

	♦ Key components:

●	 Trend: Long-term increase or decrease.

●	 Seasonality: Repeating patterns (e.g., higher ice cream sales in
summer).

●	 Cyclic patterns: Irregular, long-term fluctuations.

●	 Random noise: Unpredictable variations.
Machine Learning Techniques for Time Series Analysis

	♦ Traditional methods:

●	 ARIMA and Exponential Smoothing for trend and seasonality.

	♦ Advanced models:

●	 LSTM & RNNs handle complex temporal dependencies.
Used in speech recognition, medical diagnosis, and anomaly detection.

189 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Objective Type Questions

1.	 What is the primary purpose of recommender systems?

2.	 Which method suggests items based on similar user preferences?

3.	 What type of filtering uses item characteristics for recommendations?

4.	 What system combines both collaborative and content-based filtering?

5.	 What data is collected to predict user preferences in recommender systems?

6.	 Which streaming platform uses recommender systems to suggest movies?

7.	 Which music platform creates personalized playlists using recommender
systems?

8.	 What is the problem when there is insufficient data to recommend items?

9.	 What challenge arises with large datasets in recommender systems?

10.	What is the goal of providing unexpected suggestions to users?

11.	What type of data depends on time?

12.	Which field uses time series for predicting weather?

13.	Which machine learning model is used for sequential data and starts with
'L'?

14.	What is the full form of ARIMA?

15.	Which component of time series refers to regular seasonal changes?

16.	What do we call unpredictable variations in time series?

Challenges in Time Series Analysis
Missing data: Gaps due to system failures; handled using interpolation and

imputation.

Non-stationary data: Changing mean/variance; stabilized with differencing and log
scaling.

Importance and Future of Time Series Analysis

	♦ Retail: Demand forecasting for inventory management.

	♦ Healthcare: Patient monitoring for early health risk detection.

	♦ Transportation: Traffic prediction for route optimization.

	♦ Critical for data-driven decision-making across industries.

190 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Answers to Objective Type Questions

1.	 Personalization

2.	 Collaborative

3.	 Content-based

4.	 Hybrid

5.	 Behavior

6.	 Netflix

7.	 Spotify

8.	 Cold start

9.	 Scalability

10.	Serendipity

11.	Time series

12.	Meteorology

13.	LSTM

14.	Autoregressive

15.	Seasonality

16.	Noise

17.	Cyclic

18.	Differencing

19.	Trend

17.	What is the term for data patterns that rise and fall irregularly over time?

18.	What type of data transformation is used to handle non-stationary data?
(Name one)

19.	What type of pattern is shown by rising internet usage every year?

191 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

Suggested Reading

1.	 Aggarwal, C. C. (2016). Recommender systems: The textbook. Springer.

2.	 Ricci, F., Rokach, L., & Shapira, B. (2021). Recommender systems:
Techniques, applications, and challenges. In F. Ricci, L. Rokach, & B.
Shapira (Eds.), Recommender systems handbook (pp. 1–35). Springer.
https://doi.org/10.1007/978-3-030-38712-6_1

3.	 Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and
forecasting (3rd ed.). Springer.

Assignments
1.	 Explain the importance of recommender systems in e-commerce and

streaming platforms. How do they enhance user experience and engagement?

2.	 Analyze the differences between collaborative filtering and content-based
filtering in recommender systems. In what scenarios would each approach
be most effective?

3.	 Discuss the challenges faced by recommender systems, such as the cold start
problem and scalability. How can these challenges be mitigated?

4.	 Evaluate the role of personalization in recommender systems. How
do algorithms ensure that recommendations align with individual user
preferences?

5.	 Explain the four key components of time series data.

Reference

1.	 Gray, J., & Reuter, A. (1993). Transaction processing: Concepts and
techniques. Morgan Kaufmann.

2.	 García-Molina, H., Ullman, J. D., & Widom, J. (2008). Database systems:
The complete book (2nd ed.). Pearson.

192 SGOU - FYUGP - MD Course - SLM - Machine Learning for All

SG
O
U

SREENARAYANAGURU OPEN UNIVERSITY

QP CODE: ………						 Reg. No	 : ………...............
								 Name		 : ………………...

FYUGP SECOND SEMESTER EXAMINATION

MULTI DISCIPLINERY COURSE
COURSE: SGB24CA102MD MACHINE LEARNING

2025-26 - Admission Onwards

Time: 2 Hours 		 Max Marks: 45

SECTION A

Answer any five of the following questions in one word or sentence. 	
(5x1=5)

1.	 What is the term for the ability of a system to improve its performance over time in
Machine Learning?

2.	 What is the main drawback of the hold-out validation method?

3.	 What is the function of the activation function in a perceptron?

4.	 What does the weight in a neural network represent?

5.	 If a dataset contains many outliers, which partitioning method is more robust?

6.	 Which computer vision task involves identifying the category of an object in an image?

7.	 Identify the term used for repeated patterns in a time series.

8.	 Name the technique that reduces the number of input variables in a dataset?

SECTION B

Answer any five of the following questions in one or two sentences. 	
(5x2=10)

 Give one real-world example each for classification and regression in supervised learning.

9.	 Explain the difference between linear and logistic regression.

10.	Mention two advantages of a Multi-Layer Perceptron (MLP).

SET-1

SG
O
U

11.	What is the purpose of stratified k-fold cross-validation?

12.	What is the “Markov property” in Markov Decision Processes (MDPs)?

13.	How does K-means clustering determine the grouping of data points?

14.	Why is dimensionality reduction important in machine learning?

15.	How do Large Language Models (LLMs) like GPT generate coherent text?

SECTION C

Answer any five of the following questions in one paragraph.	
 (4x5=20)

16.	What is clustering and association in unsupervised learning? Explain with suitable exam-
ples.

17.	What is a Support Vector Machine (SVM)? Explain how it works.

18.	Discuss how dropout and early stopping help in reducing overfitting.

19.	Describe the working principle of a recommender system. Also list the various types of
recommender systems.

20.	Give a brief outline to agglomerative clustering.

21.	Define the step-by-step procedure of tokenization.

SECTION D

Answer any one of the following questions in 300 words.	 (1x10=10)

22.	Explain supervised learning, unsupervised learning, and reinforcement learning with key
features and examples.

23.	Prepare a detailed note on position encoding including its different supporting techniques
and working procedures.

SG
O
U

SECTION A

Answer any five of the following questions in one word or sentence. 	
(5x1=5)

1.	 Which type of learning uses labeled data?

2.	 Which type of machine learning algorithm is K-Means?

3.	 What is the basic unit of a neural network?

4.	 What does SVM stand for in machine learning?

5.	 Which hierarchical clustering method begins with one large cluster and divides it into
smaller clusters?

6.	 What type of learning does RL rely on?

7.	 What is the process of breaking a sentence into smaller parts?

8.	 What is the main task of a Large Language Model ?

SECTION-B

Answer any five of the following questions in one or two sentences. 	
(5x2=10)

9.	 What is Machine Learning? Give one application.

10.	What is reinforcement learning? Give one example.

11.	What is a perceptron in neural networks?

12.	State any two difference between linear and logistic regression.

13.	Describe the role of a dendrogram in hierarchical clustering.

SREENARAYANAGURU OPEN UNIVERSITY

QP CODE: ………						 Reg. No	 : ………...............
								 Name		 : ………………...

FYUGP SECOND SEMESTER EXAMINATION

MULTI DISCIPLINERY COURSE
COURSE: SGB24CA102MD - MACHINE LEARNING

2025-26 - Admission Onwards

Time: 2 Hours 		 Max Marks: 45

SET-2

SG
O
U

14.	Describe the key components of a Markov Decision Process

15.	List any two types of tokenization used in NLP.

16.	What are the key components of time series data?

SECTION C

Answer any five of the following questions in one paragraph.	
 (4x5=20)

17.	What is an ROC curve? Explain how it is used to evaluate model performance.

18.	Explain the differences between Linear Regression and Logistic Regression

19.	What are the different clustering techniques and how does each one operate?

20.	Explain the role of key components in Reinforcement Learning?

21.	What are the various types of generative AI models?

22.	Explain the different types of recommender systems and how they work.

SECTION D

Answer any one of the following questions in 300 words.	
(1x10=10)

23.	Compare the Naïve Bayes, Decision Tree, and Support Vector Machine (SVM) classifica-
tion algorithms with suitable diagrams.

24.	Discuss the significance of Natural Language Processing (NLP) and Computer Vision
in the field of Artificial Intelligence. Explain the key components and techniques of both
NLP and Computer Vision, and analyze their real-world applications.

SG
O
U

kÀ-Æ-I-e-m-i-m-e-m-K-o-X-w

þ-þ

h-n-Z-y-b-mÂ k-z-X-{-´-c-m-I-W-w

h-n-i-z-]-u-c-c-m-b-n a-m-d-W-w

{-K-l-{-]-k-m-Z-a-m-b-v-- h-n-f-§-W-w

K-p-c-p-{-]-I-m-i-t-a \-b-n-¡-t-W

I-q-c-n-c-p-«-nÂ \-n-¶-p R-§-s-f

k-q-c-y-h-o-Y-n-b-nÂ s-X-f-n-¡-W-w

k-v-t-\-l-Z-o-]-v-X-n-b-m-b-v---- h-n-f-§-W-w

\-o-X-n-s-s-h-P-b-´-n]-m-d-W-w

i-m-k-v-{-X-h-y-m-]-v-X-n-s-b-¶-p-t-a-I-W-w

P-m-X-n-t-`-Z-a-m-s-I a-m-d-W-w

t-_-m-[-c-i-v-a-n-b-nÂ X-n-f-§-p-h-m³

Ú-m-\-t-I-{-µ-t-a P-z-e-n-¡-t-W

I-p-c-o-¸-p-g- {-i-o-I-p-a-mÀ

SREENARAYANAGURU OPEN UNIVERSITY

SG
O
U

SG
O
U

SG
O
U

