

SREENARAYANAGURU OPEN UNIVERSITY

Vision

To increase access of potential learners of all categories to higher education, research and training,
and ensure equity through delivery of high quality processes and outcomes fostering inclusive educa-
tional empowerment for social advancement.

Mission

To be benchmarked as a model for conservation and dissemination of knowledge and skill
on blended and virtual mode in education, training and research for normal, continuing, and
adult learners.

Pathway

Access and Quality define Equity.

SREENARAYANAGURU OPEN UNIVERSITY
The State University for Education, Training and Research in Blended Format, Kerala

Problem Solving and Programming in C
Course Code: B21CA02DC

Semester - I

Discipline Core Course
Undergraduate Programme

Bachelor of Computer Applications
Self Learning Material

DOCUMENTATION

Academic Committee

Development of the Content

Edit

Cover Design

Co-ordination

Production

Review

Scrutiny

Design Control

Copyright

Dr. Jennath H. S., Rekha Raj C. T., Shamin S, Suramya Swamidas
P.C., Prabha M.R., Divya Das

Prof. Viji Balakrishnan

Jobin J.

 Dr. I. G. Shibi and Team SLM

April 2024

Content	 : Prof. Viji Balakrishnan
Format		 : Dr. I. G. Shibi
Linguistics 	 : Dr. Subhash Chandran

Dr. Gopakumar C., Dr. Jennath H. S., Shamin S, Suramya
Swamidas P. C.

Azeem Babu T. A.

© Sreenarayanaguru Open University 2024

All rights reserved. No part of this
work may be reproduced in any form,
by mimeograph or any other means,
without permission in writing from
Sreenarayanaguru Open University.
Printed and published on behalf of
Sreenarayanaguru Open University by
Registrar, SGOU, Kollam.
 www.sgou.ac.in

Dr. Aji S. Sreekanth M. S.
P. M. Ameera Mol Dr.Vishnukumar S.
Shamly K. Joseph Deril K. S.
Dr. Jeeva Jose Dr. Bindu N.
Dr. Priya R. Dr. Ajitha R. S.
Dr. Anil Kumar N. Jayaraj

Problem Solving and
Programming in C

Semester - I

Dear

With immense joy and excitement, I extend my heartfelt greetings to all
of you and warmly welcome you to Sreenarayanaguru Open University.

Established in September 2020 as a state-driven initiative, Sreenarayana-
guru Open University is dedicated to advancing higher education through
open and distance learning. Our vision is guided by the principle of “ac-
cess and quality define equity,” laying the foundation for a celebration of
excellence in education. I am delighted to share that we are steadfast in
our commitment to uphold the highest standards and refrain from com-
promising on the quality of education we offer. The university draws its
inspiration from the legacy of Sreenarayana Guru, a revered figure in the
Indian renaissance movement. His name serves as a constant reminder for
us to prioritize quality in all our academic endeavors.

Sreenarayanaguru Open University operates within the practical frame-
work of the widely recognized “blended format.” Acknowledging the
constraints faced by distance learners in accessing traditional classroom
settings, we have curated a pedagogical approach centered on three main
components: Self Learning Material, Classroom Counselling, and Virtual
Modes. This comprehensive blend is poised to deliver dynamic learning
and teaching experiences, maximizing engagement and effectiveness. Our
unwavering commitment to quality ensures excellence across all aspects of
our educational initiatives.

The university aims to offer you an engaging and stimulating educational
environment that fosters active learning. The SLM is designed to offer a
comprehensive and cohesive learning experience, fostering a deep interest
in the study of technological advancements in IT. Careful consideration
has been given to ensure a logical progression of topics, facilitating a clear
understanding of the discipline’s evolution. The curriculum is thoughtfully
crafted to provide ample opportunities for students to navigate through
the current trends in information technology. Furthermore, this course is
designed to provide essential insights into computer hardware, software
classification, and foundational HTML concepts crucial for web develop-
ment.
We assure you that the university student support services will closely
stay with you for the redressal of your grievances during your student-
ship. Feel free to write to us about anything that seems relevant regarding
the academic programme.
Wish you the best.

Regards,
Dr. Jagathy Raj V. P.						 24-04-2024

Dr. Jennath H. S., Rekha Raj C. T., Shamin S, Suramya Swamidas
P.C., Prabha M.R., Divya Das

Content	 : Prof. Viji Balakrishnan
Format		 : Dr. I. G. Shibi
Linguistics 	 : Dr. Subhash Chandran

			 Contents

BASIC PROGRAMMING CONCEPTS			 1
Unit 1		 Problem Solving and Algorithms				 2
Unit 2 		 Introduction to C Programming				 17
Unit 3		 Variables and Data Types					 26
Unit 4		 Operators and Expressions					 38

IO STATEMENTS, CONTROL STRUCTURES,
ARRAYS, AND POINTERS					 56
Unit 1		 Input Output Statements					 57
Unit 2 		 Control Structures and Looping				 67
Unit 3		 Arrays and Strings						 99
Unit 4		 Pointers and Dynamic Memory Allocation		 117

FUNCTIONS, STRUCTURES AND UNION	 137
Unit 1		 Functions						 138
Unit 2		 Recursion						 163
Unit 3		 Call by Value and Call by Reference			 181
Unit 4		 Structures and Union					 196

STORAGE CLASSES, FILES, AND
PREPROCESSORS		 				 234
Unit 1		 Storage Classes						 235
Unit 2		 Managing Files						 248
Unit 3		 Command-line Arguments					 260
Unit 4		 Macros and Preprocessor Directives				 268

LAB MANUAL PART A			 		 285
Experiment 5.1	 Familiarization of Input and Output Statements	 286
Experiment 5.2	 Variables and Datatypes:
			 Familiarizing basic conversions			 290
Experiment 5.3	 Operators and Expressions : Age Calculator		 297
Experiment 5.4	 Control Structures: Familiarization of various
			 Looping Statements					 300
Experiment 5.5	 Arrays Pointers and Recursion			 304
Experiment 5.6	 Structures and Unions					 307

LAB MANUAL PART B			 		 311
Experiment 6.1	 Functions : Recursion, Call by Value and
			 Call by Reference, File Management			 312

MODEL QUESTION PAPER SETS			 319

BLOCK

01
BLOCK
02
BLOCK

03
BLOCK

04
BLOCK

05
BLOCK

06

Basic
Programming
Concepts

BLOCK 1

Problem Solving and
Algorithms

Learning Outcomes

Prerequisites

	♦ understand the concept of problem-solving with computers

	♦ familiarize algorithms and flowcharts

	♦ develop skills in systematic approaches to solve a problem

	♦ understand different types of computer languages

Intelligence is one of the main characteristics that distinguishes humans from all living
beings on the planet. Essential intelligence includes problem-solving and developing
methods to deal with the many problems that arise in daily life.

 Fig 1.1.1 Finding path problem

UNIT 1

After the successful completion of the unit, the learner will be able to:

2 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion

Fig 1.1.1 must be familiar to all of us. Perhaps this was one of the first problems we
encountered in our childhood. Finding the path for the ant was difficult, but it was fun to
do it. In the same way, we come across a lot of situations that require problem-solving
skills.

Problem-solving is an essential skill that is necessary for a human being. In our daily
life, no day goes without involving problem-solving. Purchasing, solving puzzles, or
solving a mathematical problem involves problem-solving skills.

How will you solve a problem? The solution to a problem depends on the data available
to you. For example, how will you decide how much money you want to withdraw from
an ATM?

The decision is made based mainly on three factors:
1.	 The amount you want
2.	 Bank balance and
3.	 The minimum balance that you want to maintain on your account

Computers are designed with an aim to perform what human beings do. Programs are
the instructions given to computers for solving problems. So, what is programming..?

Programming a computer means identifying and enlisting the steps to solve a problem.
One who does this process is called a programmer.

In this unit, let us understand what problem-solving is and its importance in computer
science.

Key Concepts

Problem-solving, algorithm, flowchart, programming language

1.1.1 Problem-solving

In this section, let us discuss the problem-
solving techniques involved in a computer
program. As we know, a computer
is a machine that blindly follows the
instructions given by the user. So it is
necessary to give a sequence of instructions
to the computer to solve a given problem.
This sequence of instructions is known as
a computer program.

The most challenging aspect of com-

puter programming is problem-solving or
breaking down the problem into solutions
involving sequential stages. Let us start
with a mathematical problem to under-
stand the problem-solving methodology:

Example 1.1.1: You are asked to hire a
Gardner for seven days on daily wages.
You have a gold bar in your hand, which is
equally marked at seven points. You need
to give 1/7th of the golden bar each day as
wages. But you are not allowed to cut the
golden bar more than two.

3SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

How will you cut the bar to pay the gar-
dener for seven days? Consider the image
below as the gold bar (ref. Fig 1.1.1a),

which is marked at seven equal points.
Solution is explained in Table 1.1.1

Fig 1.1.1a: Gold Bar

 		

 Steps involved Solution

Analysing the problem Let’s understand the question:

	♦ We need to pay the gardener for seven
days

	♦ Each day he is eligible to get 1/7th of
the golden bar

The number of times that we are allowed to
cut the bar is 2. This means we will have 3
bars of gold at the end

Develop the step by step solu-
tion to the problem(Algorithm)

	♦ First, we will cut 1/7th of the bar (let’s
say b1) to give it on the first day.

	♦ Then cut 2/7th (b2) of the bar; the
remaining (b3) contains 4/7th of the
golden bar.

	♦ Give b2 on the second day and get
back b1

	♦ Give b1 on day 3

	♦ On day 4 give b3 and get b2 and b1
back.

	♦ On day 5 give b1

	♦ On day 6 give b2 and get b1 back.

	♦ On day 7 give b1

Convert the solution to any
computer language (coding)

Implementing the solution

Verify the correctness of the
code (testing and debugging)

Evaluating the solution

Table 1.1.1 Steps involved in problem-solving

4 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

In Table 1.1.1, you have seen how a
mathematical problem is solved and how
the steps are interrelated with computers.

Problem-solving using a computer

In the previous example, we showed
how to solve a mathematical problem.
Now let’s understand how to resolve
computer problems. A computer needs our
instruction to solve any problem.

An instruction is a statement telling
the computer which action should be
performed. There are multiple ways to
solve a problem.

1.1.2 Approaches in problem-
solving

There may be multiple solutions and
techniques available to solve a problem
using computer. Mainly there are two
popular approaches for problem-solving:

1.	 Top-down approach
2.	 Bottom-up approach

1.1.3 Top-Down Approach

The name itself explains the concept. In
the top down approach, we first understand
the whole problem, without going for the
details. Formulate an overall design for the
solution, and then move on to the details
as required.

Let us consider example 1 again. What
did we do to solve the problem? First,
we analyzed the question to understand
it properly. Then we broke down the
question to arrive at the step by step
solution. Once we were clear with the
logic, we implemented the solution. It is a
perfect example of a top-down approach.

1.1.4 Bottom-Up Approach

This approach will find the smallest
module, solve it first, and then integrate
all such modules to get the whole solution.

Manufacturing a car or vehicle can be
considered as a bottom-up approach
where the individual parts of the vehicle
are manufactured individually and then
integrated to make the car. You can take
real-life examples like constructing a
house.

So far, we have seen a problem, how it is
decomposed, and the different approaches
for solving the problem. Now let’s see the
steps involved in problem-solving.

1.1.5 Steps involved in
problem-solving

What did we do first to solve the problem?
We analyse the problem. Why do you
think it is so important to analyze the
problem first?

Let us consider a real-life scenario:
suppose you went to a restaurant and
ordered dosa for your breakfast. The
waiter will bring the dosa on a plate along
with the side dishes, and it is served in a
standard servicing environment.

What was your order? Did you ask for the
side dishes? Did you specify that dosa was
to be served on a plate? Did you ask for a
table and chair?

Not exactly, You got all these facilities
because you were communicating with
humans. When you instruct a human, he/
she assumes other requirements that are
needed to complete the instruction. But
when you instruct a computer, it assumes
nothing. So it is crucial to understand and
define the problem.

5SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The second step of problem-solving is
identifying the step by step solutions to
solve it. There might be more than one
solution available for a problem, but we
need to choose the best solution from
them.

Suppose we have identified the problem
and the solution to it. How will we solve
it using a computer? So, the third step
of problem-solving involves the precise
communication between the human and
the computer. Here we have a challenge
in that, the computer does not understand
human languages. So we need to convert
the instructions into the computer’s
language, this step is known as coding.

The final step of problem-solving is the
Evaluation of the solution. What is
involved in Evaluation? We might make
mistakes while we give instructions to a
computer. Evaluation is the process by
which such mistakes are weeded out;
because we want the results to be correct.
So we need to walk through the solution
and check if all possibilities of the problem
statement are met. This process is known
as testing. The analysis of the step by step
solution to detect flaws, if any, is called
debugging.

Algorithm is a sequence of activities to be processed for getting the desired
output from a given input, which comprises of a set of unambiguous rules and
have a clear stopping point.

	♦ Solve the problem effectively
and error-free

	♦ To obtain a sequential step to
solve the problem

It is important to note here that all
problems of the world cannot be solved.
Several problems have no solution, and
they are referred to as Open Problems.
You can write an algorithm for a problem
if you can solve it. In the next section, we
will learn what an algorithm is.

1.1.6 Algorithm

In the last section, we discussed the
probem-solving technique and here, let’s
discuss algorithms. An algorithm can be
defined as a set of instructions or a step-
by-step process to complete a task or a
problem. Let’s understand the algorithmic
concept through an example.

Let’s say you want to divide 16 by 3. What
are the steps to do it?

1.	 Write down 16 by 3
2.	 Check if 16 comes in the table

of 3
3.	 If not, find the closest number

less than 16 that comes in the

Why is problem-solving critical in comp-
uter science?

	♦ To breakdown and understand
the complex logic of the
problem

table of 3
4.	 We will get 15 (5 × 3 = 15)
5.	 So the quotient is five, and the

remainder is 1 (16-15)

6 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The example above is a simple one. There
may be multiple ways to solve a problem.

An algorithm has three parts:
	♦ the input,
	♦ process(step by step approach

to solve the problem)
	♦ and output.

While writing the algorithm, we have
to use the following symbols:

 		

Symbols Description

+ Addition

- Subtraction

* Multiplication

/ Division

 ← Assignment (example:

A ← B+3 means A = B+3)

Let us understand it better through examples:

Example 1.1.2: Find the perimeter of a square

Table 1.1.2 Arithmetic operators and description

Algorithm:

Input: Let ‘a’ be the length of a side of the square

Output: the calculated perimeter of the square

Process :

Step 1: input the side length ‘a’

Step 2: perimeter ← 4 * a

Step 3: print perimeter

7SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Algorithm:

Input: Let ‘a’ be the first number and ‘b’ be the second number. C will be the
output.

Output: The largest of ‘a’ & ‘b’.

Process :

Step 1: input the numbers ‘a’ and ‘b’.

Step 2: check whether ‘a’ is greater than ‘b’.

	 If yes: C ← a

	 If not: C ← b

Step 3: print C

Example 1.1.4: Write an algorithm to print all odd numbers between 1 to 100

Algorithm:

Input: Let ‘I’ be a number and I ← 0.

Output: Odd numbers between 1 and 100

Process :

Step 1: start

Step 2: I ←1

Step 3: print I

Step 4: I ← I + 2

Step 5: if I < 100, go to step 3

Step 6: End

Did you analyse three examples? Are they the same? Analyse and find the different type
of algorithms.

Example 1.1.3: Write an algorithm to find the largest of two numbers

8 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Algorithm

Step 1: Get the password

Step 2: Check the password

a)	 If matches: unlock
the phone

b)	 If not: print
incorrect
password message
and repeat step 1

Flowchart

Table 1.1.3 An illustrative example of the difference between algorithm and
flowchart

1.1.7 Flowchart

A flowchart is a pictorial/graphical representation of an algorithm. A flowchart uses
different symbols, shapes and arrows to represent the process flow.

The table shown below depicts the algorithm and flowchart of the process for unlocking
a phone. From this illustration, we understand that once the flowchart is made, it is easy
to convert it into any programming language.

9SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Symbol Name Function

Process Indicates any type of internal
operation inside the processor
or memory.

Input/ Output Used for any input/output
operation. Used to obtain value
from the user or to represent
the output data.

Decision Used to ask a question that can
be answered with yes/no or
true/false.

Connector Allows the flowchart to be
drawn without intersecting
lines or without a reverse flow

Predefined
process

Used to invoke a subroutine or
an interrupt program

Terminator Indicates the starting or end
of the program, process or
interrupt program

Flow lines Show direction of flow

1.1.7.1 Symbols used in a flowchart

Table 1.1.4 Symbols used in flowchart

1.1.7.2 Rules for flowcharting
1.	 All the boxes in the flowchart

should be connected with arrows.
2.	 All flowchart should start and

end with a terminal box.
3.	 All flowchart symbols have

only one entry point on the
top. No other entry points are
allowed.

4.	 Exit points of all symbols are
at the bottom except for the
decision symbol.

5.	 The decision symbol has two
exit points: these can be on the
sides or at the bottom.

6.	 The general flow of a flowchart
is from top to bottom. Upward
flow can be shown as long as it

10 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Example 1.1.5 : Draw a flowchart to find the largest of two numbers

doesn’t exceed more than three
symbols.

In the previous section, we discussed
algorithms and flowchart, which is a way

to express the steps we need to follow. It
is the task of a programmer to generate a
program from an algorithm or a flowchart.
A programmer is a person who is an expert
in any programming language.

1.1.8 Evolution of
Programming languages

A programming language is just like any
other language. It has a character set,
vocabulary and grammar. Do you know
which languages are understood by the
computer?

To understand that, first, we need to
understand how a computer works.

A computer is an electronic device that can
only understand the presence or absence
of an electronic signal. The presence of

the signal is denoted as ‘1’, and lack of
signal is indicated as ‘0’. All information
(alphabets, numbers etc.) are represented
in a pattern of 1s and 0s inside a computer
as shown in Fig 1.1.2.

For example, the smallest unit of represe-
nting a signal is referred to as a bit.
Anything inside a computer is represented
as a sequence of bits. This representation
is known as a binary representation.

1.1.8.1 Machine languages

The language that a computer understands
can be called a machine language.

11SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The computer understands only binary
language. Binary has only two characters
(0 and 1). The binary code is very easy
to understand by the computer and
less computation is required. The major
disadvantage of a binary language is the
complexity in representation, which is
challenging to a human. So it is difficult
to make, and hard to find out mistakes
while writing a program in binary.
How can we solve it? We need a system
that can convert natural languages into
binary language. But it is not an easy job
at all. The biggest challenge is the ambiguity
in natural languages. The instructions may
not be obvious or may have multiple
meanings. For example, if someone asks
you about the bank, what would you say?
Here the word “bank” is a little confusing.
It can be a financial institution or a
riverside.

So we need an intermediate language that
should have the following properties:

	♦ Close to English
	♦ The grammar should be stricter
	♦ Reduce ambiguity

The intermediate languages are of two
types

1. Assembly language

2. High-level language

1.1.8.2 Assembly language

Assembly language uses mnemonics,
words or symbolic instructions (ex: ADD
for addition and MUL for multiplication).
It allows complex jobs to run in a
straightforward way. Assembly language
requires less memory. It works fast. But
the language is hardware-oriented and
difficult to interpret. The effort of the
programmer is high, and they need to code
differently for different systems.
1.1.8.3 High-level language

All those we refer to as programming
languages in our general literature are
high level languages. This category of
languages is more like English. It is
programmer-friendly. The high-level lan-
guages are easy to write, maintain and
find the errors(debugging). The high-level
language requires a translator (compiler/
interpreter) to convert the program into
machine level language (Refer fig 1.1.3).
The high-level languages are machine-
independent.

Fig 1.1.2 Data representation in binary

12 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

1.1.9 Translators

The high-level language needs to be translated into machine language. There are two
approaches in doing this translation – one is a compilation and the other is interpreta-
tion.

Fig 1.1.4 Language Translator

 Fig 1.1.3 High-level language, Assembly Language, Machine Language

Compilers

A compiler is a software that translates the
program you write in high level language
to its corresponding machine language.
The compiler analyzes the entire program
as a unit, and translates it as whole and

shows syntax errors with line numbers.
If the program is syntactically correct, it
can be translated to a machine language
program which is ready for execution.

Interpreters

Interpreters also do the same job, translating

13SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Recap

	♦ Problem solving helps to simplify the complex logic of a problem

	♦ Top-down and bottom-up are two approaches used to solve problems

	♦ Four steps involved in problem-solving are:

		 a. Analysing the problem

		 b. Identifying the step by step solution

		 c. Coding

		 d. Evaluation of the solution

	♦ An algorithm is a set of instructions. It can be a procedure or a formula to
solve a problem

	♦ We use some notions to write down the steps in the algorithm.

	♦ A good algorithm must be readable and finite.

	♦ A flowchart is a graphical representation to depict the steps to solve a problem

	♦ A flowchart uses a set of standard symbols to represent various steps

	♦ A flowchart helps to easily understand the logic of complicated and lengthy
problems.

	♦ Computers understand only binary language, the language of 1s and 0s. We
need to express everything in terms of 1s and 0s. This language is termed
machine language.

	♦ Assembly language uses mnemonics for machine operations. The assembler
converts the assembly language program to machine language.

	♦ We write programs in high level language. A translator software converts it
to machine language.

	♦ Compliers read the entire program and make corrections and optimizations
before translation.

	♦ Interpreters perform a line by line translation of the source program.

high level language programs to machine
language programs. Then what makes it
different? Interpreters read each line in
your program and translate them one by
one. If there is any error in one line, it will
translate the next line only after correcting

that line.

The program given for compilation is
termed source program (source code) and
the translated program is called object
program (object code).

14 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Objective Type Questions

1.	 What are the approaches to get a problem solved?
2.	 What is the main purpose of program planning (list maximum two)?
3.	 What is the first step involved in problem-solving?
4.	 What is the technique to find mistakes in a computer program?
5.	 How will you communicate with the computer?
6.	 What is an algorithm?
7.	 A problem can have multiple algorithms. Write whether true or false.
8.	 An algorithm is a special method that a computer can use to solve a problem.

Write whether true or false.
9.	 Which language is used to represent algorithms?
10.	Flowchart depicts the ___ flow in an algorithm
11.	____ symbol used for the decision statements in a flowchart.
12.	Rectangle and parallelogram can be used interchangeably in a flowchart. Is

this true?
13.	Which symbol is used as a connector in a flowchart?
14.	What are the symbols used in binary language?
15.	MOV, ADD are examples of ____ in assembly language.
16.	Compiler is a software for converting machine programs to high level

programs. State whether true or false.
17.	We write programs in English-like languages and a translator converts it for

execution. State whether true or false.

Answers to Objective Type Questions

1.	 Top-down and bottom-up
2.	 Analysing the problem
3.	 i) breakdown and understand the complex logic of the problem

 ii) solve the problem effectively
4.	 Testing and Debugging
5.	 Through coded program
6.	 An algorithm is a step by step instruction to solve a problem
7.	 true

15SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Assignments

1.	 Write an algorithm to print the numbers 1 to 100.
2.	 Write an algorithm to read two numbers and find their sum.
3.	 Write an algorithm to find the most significant value of any three numbers.
4.	 Write an algorithm to find the sum of the first 100 natural numbers.
5.	 Draw the flowchart of the above problems.
6.	 What is an algorithm and flowchart ? Explain different tools used in algorithm

design.
7.	 Explain different steps to solve a problem.
8.	 Explain different types of computer languages.
9.	 Explain language processors in a computer.

8.	 true
9.	 Any language
10.	Sequential
11.	Diamond symbol
12.	No. Rectangle for operational statements and parallelogram for I/O

statements only
13.	Circle
14.	0 and 1
15.	Mnemonics/op-code
16.	False
17.	True

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

16 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Introduction to C Programming

Learning Outcomes

Prerequisites

	♦ make aware of the structure of C programming

	♦ know the execution of C programming

	♦ understand the steps of compiling and running

In Unit 1, we learned how to create algorithms for a variety of problems. Let us take a
step further and write programs in the C programming language. But before we get into
the C programming language, let us first define what a programming language is and
how it functions.

A program is an ordered set of instructions to be executed by a computer to carry out
a particular task. A programming language is a language used to specify this set of
instructions to the computer.

As we all know, computers understand only 0s and 1s, known as machine language or
low-level language. But humans find it challenging to write or understand instructions
based on 0s and 1s. This resulted in developing high-level programming languages
such as Python, C++, Visual Basic, PHP, and Java, which are easier to understand for
humans but not for computers.

Source code refers to a program written in a high-level language. As you might recall
from Unit 1, language translators such as compilers and interpreters must convert
source code into machine language.

UNIT 2

After the successful completion of the unit, the learner will be able to:

Key Concepts

C programming, Execution of C program

17SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion
1.2.1 What is C programming?

Let us start the discussion on a specific
programming language, the C language.
Just like any other language C has its
vocabulary and strict grammar rules. The
compiler will not accept any statement
written in C that does not follow the
syntax rules. The compiler will reject it,
saying that it’s a syntax error.

C is a widely-used general-purpose
programming language that is easy to
learn and use. It is a machine-independent
structured programming language widely
used to create various applications,
operating systems such as Windows, and
other applications such as the Oracle
database, Git, Python interpreter, etc.

Before going further into a discussion of
C, let us look briefly at the history of C. C
is a general-purpose, high-level language
written by Dennis Ritchie in 1972.
Initially, C was developed to document
the early versions of the Unix operating
system. C is machine-independent, so that

the developer need not worry about the
targeted machine.

1.2.2 Popularity of C

Why has C become so popular?

The C language is robust; it has rich
built-in functions, and operators. The
programs written in C are efficient and
fast. C is highly portable. This means you
can run your C program on any machine
with little or zero changes. The C is a
structured language that helps the user
think of a problem in small independent
blocks (the top-down approach discussed
in unit 1).

Before going into specific C features, let
us look at some sample C programs and
see how they work.

Let us Code

We can write a C program in an editor and
save it with an extension of “.c”. Consider
the sample program given below.

Example 1.2.1 :

/*
program to print a message, and the program is saved with the name “goodday.c”
You can save the program with any name with an extension “.c”.
*/

#include < stdio.h >

void main()

{

printf(“Have a Good Day..!”);

}

18 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

When “goodday.c” executed, it will produce the following output

Have a Good Day

Let us have a close look at the program
shown in Example 1.2.1.

1.	 The first section of the program,
that is, line number 1 is
"comment" lines. It usually
includes information like the
name of the program, date,
author etc. The comments can
appear anywhere in a program.
Remember, we can not have
comments inside comments.
But C supports multi-line
comments.

2.	 Line 2 “#include < stdio.h >” is
a preprocessor directive. This
statement has to be included
in all C programs. It informs
the compiler to include the
files present in the standard
input-output library. “stdio.h”
is a header file that consists of
the “printf()” library function,
which we are going to use in
the above program to print
“Hello world.”

3.	 Line 3 is the main function.
Every C program should have
the main function. It denotes
the start of a program.

4.	 Line 4 - Indicates the beginning
of the code block.

5.	 Line 5 - Print everything is given
to the output screen. printf() is
a standard printing function
that has already been defined.
The information contained
inside the parentheses is known
as arguments.

6.	 Line 6 - Indicates the end of the
code block.

Before we get into the details and examples,
there’s one thing to keep in mind. The C
language is case sensitive, which means
it distinguishes between uppercase and
lowercase letters. For example, printf,
PRINTF and PrintF are not the same.

From Example 1.2.1, it is evident that
the c program follows a structure. Let us
discuss the structure of a C program.

1.2.3 Basic structure of a C
program

A ‘C’ program can be considered as a
collection of building blocks. Each C pro-
gram consists of one or more sections, as
shown in fig. 1.2.1.

The documentation section is optional in
a C program. It is better if you include it
while programming. This section contains
comments.

 // → single-line comment

 /*.......................................

 */ → multi-line comment

The compiler completely ignores this
section. This section increases the program
readability and understandability. The
documentation section can include

	♦ Program name
	♦ Author
	♦ Date of development

This section is used for future reference.

19SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

All library files included in the program
are mentioned in the link section. The
compiler is informed about the library files
to be linked with the problem. This pro-
cess is known as linking. All statements
belonging to this section will start with
“ #include<text belong to the section>”.
Where “#” a preprocessor directive.

For example, #include<stdio.h> will link
the program with standard input-output
function.

All the symbolic constants used in the

program are defined in the Definition
section.

Example : #define PI = 3.14

All the variables used in more than one
section are called global variables. All
global variables should be declared before
the main, and it is declared in the Global
declaration. It can be used anywhere
in the program. Declaration of all user-
defined functions is made here.

All C programs must have precisely

Fig 1.2.1 Structure of a C program

20 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

one main function. All programming
statements belonging to the main function
must appear between the opening and
closing braces of main function. Each
statement ends with a ‘;’. The main
section has two parts:

1.	 Declaration part, where the
variables are declared here and
used later.

2.	 Execution part implements
the main logic that solves the
problem

All user-defined functions are defined in
the User-Defined Function Section. A
‘C’ program can have 0 to any number
of user-defined function. It is generally
defined after the main function, but it can

Main function

	♦ The main function is part of every C program

	♦ In C, the following forms of the main function are allowed
	 a. main()
	 b. int main()
	 c. void main()
	 d. main(void)
	 e. void main(void)
	 f. int main(void)

	♦ Users allowed to use exactly one main function.

text editor or IDE (integrated development
environment) to write a c program. C
program has to be saved with an extension
of “.c” (ex: first. c). The program is known
as source program or source code.

There are several phases involved in
executing a C program. These are:

1.	 Creating the program
2.	 Compiling the program
3.	 Linking the program with

functions that are needed from
the c library and

4.	 Executing the program

Figure 1.2.2 depicts the process of compil-
ing and running a C program. Although

be defined anywhere.

1.2.4 Execution of C program

Do you ever wonder how a C program
is executed inside a computer? In this
section, we can discuss the execution of a
c program. First of all, we need to save a c
program on the computer. You can use any

these stages remain the same regardless of
the operating system, system commands
for implementing these procedures and file
naming conventions may alter between
systems.

Let’s have an overview of the compilation
process.

21SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Fig.1.2.2 Compilation overview

Figure 1.2.3 is self-explanatory. The program written in C will be compiled and con-
verted to binary/machine code. Is the binary code sufficient to get the output?

Fig. 1.2.3 Process of compiling and execution of a C program

22 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

1.2.5 Compiling and linking

Let us assume that the name of the source
program is “first.c”. The compilation
process deals with various files and
also produces a number of files. In the
compilation process, we mainly deal with
four important files.

The preprocessor will replace the lines
starting with ‘#’ with the function
definition. In this phase, the source code
will be expanded and an intermediate code
will be generated and the code is saved
with an extension ‘.i’.

The intermediate code will be compiled
by a compiler. It will check for syntax

errors. If there is any error it will produce
an error message and we need to change
the source code to fix the error, and after
that the preprocessor will proceed with the
compilation process. If there is no syntax
error an assembly file will be generated
from the intermediate code with the help
of the compiler.

The assembler will generate an object
code from the assembly file. The linker
will link object code into one file called
the executable file and will link with
system libraries. The loader will load the
file into the main memory. The linker will
link object code with system library to
generate a file called executable file.

Recap

	♦ C is a structured programming language.

	♦ Every C program must have a main function.

	♦ C follows very strict syntax.

	♦ Every statement in C language must end with a semicolon.

	♦ The programs in high level language are written using an editor.

	♦ All C programs shall be saved with a filename with extention ".c"

	♦ The compiler scans the program, generates error messages if any, and
converts the program to machine code if it is syntactically correct.

Objective Type Questions

1.	 Which is the function that we write in all C programs?
2.	 Where do we declare the variables in C?
3.	 Who developed the C language?
4.	 Why do we need to use comments in programs?
5.	 What will happen when you remove the semicolon from the end of a

statement?

23SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

6.	 What is the extention given for C program file names?
7.	 What is the output of a compiler?
8.	 Where can you find the output of a C program?
9.	 What type of error occurs if you type a wrong statement in C?

Answers to Objective Type Questions

1.	 Main function
2.	 Typically declared at the beginning of a block of code, before any executable

statements. However, at any points within a block of code.
3.	 Dennis Ritchie
4.	 It improves the readability of the program
5.	 It will lead to compilation error
6.	 .c
7.	 Machine level language/ binary code
8.	 Console
9.	 Syntax error

Assignments

1.	 Write a C program to print address in the following form

	 Name	 : First name of a person
	 House Name	 : name
	 Pin code	 : pin code

2.	 Describe the basic structure of the C programming language.
3.	 How to compile a C program?
4.	 What is main() of a c program? Explain its relevance.
5.	 How to quote comments in C programming language.
6.	 Write a C program to print a message.
7.	 How to read and write data in C programming.

24 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

25SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Variables and Data Types

Learning Outcomes

Prerequisites

	♦ understand the Character set in C programming

	♦ study tokens in C Programming

	♦ learn the uses of variables to manipulate data to solve a real-world problem

Communicating with a computer includes using the language that the computer knows.
You know such languages are known as programming languages. We started learning
C language in the previous unit.

Learning the English language and learning the C language are, however, somewhat
similar. For learning English, we must learn the alphabet of the language, then combine
these alphabets to form words, which are then combined to form sentences, and
sentences are then combined to form paragraphs.

Learning C is a lot like learning English, except that it is a lot more easy! Rather than
learning how to write programmes right away, we must first understand what alphabet,
numbers, and special symbols are used in C, how to use them, how constants, variables,
and keywords are created, and how all of these are combined to form an instruction. A
group of instructions in proper sequence, will form a program.

So, let us start learning the basic constructs of C language. You need to learn a bunch
of programming tools in the coming semesters to become a successful programmer.
Many languages, like C++ and Java use almost similar character sets, variable types
and naming rules as that of C. Hence, if you could understand the concepts well here,
your basics will be sound enough to make you an IT professional.

UNIT 3

After the successful completion of the unit, the learner will be able to:

26 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Key Concepts

Character set, Variables, Constants, Data types

Discussion

1.3.1 C character set

As each language has vocabulary and
grammar, and so does C, the character set
can form words, numbers and expressions
depending on the machine on which the
program runs. The C consist of a broad set
of characters called the “ C character set”,
which includes

	♦ Letters: it can be uppercase or
lowercase

	♦ Digits: ranging from 0 to 9

	♦ White space

	 a. Horizontal tab

	 b. Vertical tab

	 c. Blank space

	 d. Newline

The compiler ignores white space unless it
is part of a string constant.

	♦ Special characters:

Special characters used in c is shown in
table 1.3.1

,(comma)	

. (period)	

; (semi-colon)	

: (colon)		

((opening left parenthesis)

) (closing right parenthesis)

“ (double quotation mark)	

! (exclamation mark)	

|(vertical bar)	

/ (forward slash)	

\ (backward slash)	

~ (tilde)	

_ (underscore)	

$ (dollar sign)	

% (percentage/modulus sign)	

{ (opening curly bracket)

} (closing curly bracket)

[(left bracket)

] (right bracket)

? (question mark)

‘ (apostrophe)

& (ampersand)

^ (caret)

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

> (greater than or closing angle bracket)

< (less than or opening angle bracket)

(hash sign)

Table 1.3.1 Special characters used in C

27SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

1.3.2 C tokens

When you read a paragraph, you may
notice punctuation marks and words. What
do you call them? They are called tokens.
In the C program, the smallest individual
units are called tokens. The C tokens are
classified into the following categories.

1.3.3 Keyword and Identifiers

All words in C are classified into
keywords and identifiers. Each keyword
has predefined meaning and use. The

set of keywords are defined when the
compiler is developed. Keywords can not
be used for any other purpose. There are
32 keywords in C, and they are always
written in lowercase. (Refer to table 1.3.2)

Identifiers are user-defined names given
to functions, pointers, variables, arrays
etc. An identifier consists of a sequence of
letters, digits or underscore (_).

Example: number1, num_1, a, b1, Add,
SUB etc.

Table 1.3.2 Keywords in C language

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

 Fig. 1.3.1 C tokens and examples

28 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Rules for naming Identifiers
1.	 The first character should be an

alphabet or an underscore
2.	 It must have only alphabets

digits and underscore
3.	 Keywords cannot be used as an

identifier
4.	 No whitespaces are allowed

1.3.4 Constants

Constants in C are fixed values that
are used in a program and whose value
remains constant during the program’s
execution.

Constants in C can be divided into two
groups:

	♦ Primary Constants
	♦ Secondary Constants

At this stage, we’ll just talk about
Primary Constants, such as Integer, Real,
and Character Constants. Let’s take a
closer look at each of these constants.
Specific rules have been developed for
the construction of these various types of
constants. The following are the rules:

Integer constants

Integers are counting numbers, either

positive or negative. Integer constants
can be expressed in three forms- decimal
Integer, Octal Integer, Hexadecimal
Integer

Decimal Integer
	♦ Consist of digits 0 to 9 with an

option of + or -
	♦ Example: 466, 677, -90, +80
	♦ White spaces, comma,

characters are not allowed in
decimal integers

Hexadecimal integer: Hexadecimal
integers are base-16 numbers.

	♦ Hexadecimal Integers are
preceded with 0x or 0X

	♦ It includes numbers as well as
alphabets from A to F

	♦ A to F represent digits from 10
to 15

	♦ Example: 0x12, 0XA, 0X45

Octal integer: Octal integers are
numbers in base-8 format.

	♦ Consist of any combination of
digits 0 to 7

	♦ Example: 24, 23.

 Fig. 1.3.2 Classification of constants

29SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Real constants

Integer constants are insufficient to
represent continuous quantities, like
temperature, price etc. To represent such
quantities having fractional parts Floating-
point numbers or real numbers are used.

	♦ Example: 12.34, 3.14

Character constants

The character constants are further divided
into:

	♦ Single character constant
	♦ String constant
	♦ Special character constants

Single character constant

It consists of a single character enclosed
inside a pair of single quotes. It is worth

noting that the character ‘8’ isn’t the same
as the number 8.

Example: ‘x’, ‘8’.

String constant

Letters, numbers, special characters, and
blank spaces can all be found in this series
of characters enclosed in double-quotes. It
is worth noting that “G” and ‘G’ are not
the same things; “G” represents a string
because it’s contained in a pair of double
quotes, while ‘G’ represents a single char-
acter. Another example for string constant
is “Hello World”.

Special character constants

C supports special character constants
which use ‘\’ and are used in the output
functions.

Constants Meaning

\a beep sound

\b backspace

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\' single-quote

\" double quote

\\ Backslash

\0 Null

Table 1.3.3 Special character constants

30 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

1.3.5 Variables

We usually do a lot of calculations in any C
program. The results of these calculations’
are saved in the computer’s memory.
The computer’s memory, like human
memory, is made up of millions of cells.
These memory cells store the measured
values. These memory cells (also known
as memory locations) are assigned names
to make retrieving and using these values
easier. The names given to these locations

Fig. 1.3.3 Storing values in memory (Variables)

are called variable names because the
value stored in each location may change.

Let us look at an example to help us
understand.

Take a look at the memory positions in
Figure 1.3.3. Here, 3 is saved in a memory
location and assigned the name x. Then,
we gave the same memory location x a
new value of 5. Since a memory location
can only hold one value at a time, this will
overwrite the previous value 3.

x is defined as a variable since the position
with the name x will hold various values at
different times.

1.3.6 Data types

In our day to day life, we deal with
different types of numbers like positive
numbers, whole numbers, floating-point
numbers etc. What is the meaning of these

The primitive data type is further divided
into five:

	♦ int for integer data
	♦ char for character data
	♦ float for floating-point numbers
	♦ double for double-precision

floating-point numbers
	♦ void

Integer (int) type

A whole number is called an integer. Inte-
ger data types have a range of -32768 to
32767 as their normal range. However, the
range for an integer data type avries based
on machines. It can store whole numbers
without decimals.

An integer is usually 2 or 4 bytes long, and
requires 16 or 32 bits of memory respec-
tively.

types? We classify the data based on their
characteristics.

Similarly, ‘C’ offers a variety of data
types to make it simple for a programmer
to choose the right data type for an
application’s needs. The three data forms
are as follows:

	 a. Primitive data types

	 b. Derived data types

	 c. User-defined data types

31SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The short, long, signed and unsigned are
data type modifiers that can be used with
some primitive data types (eg: int). The
data type modifiers are used to change the
size or length of the data type.

Example: short int, long int

Floating-point (float) type

We can use floating-point data type in C
programmes, just like integers. The key-
word ‘ float represents the floating-point
data form.’ It can store a floating-point
value, which is a number that includes
both a fraction and a decimal component.
A real number with a decimal point is
called a floating-point value. The size of
single precision float data type is 4 bytes,
i.e 32 bits.

Since the integer data form does not store

the decimal part of a value, we may use
float datatype to store it.

Double type

Double data type in C occupies 8 bytes
(64 bits) of memory. It can store double
size than float.

Void type

A void data form has no value and does
not return any value. In ‘C,’ it is often used
to define functions.

Character type

A single character value enclosed in single
quotes is stored in a character data type.
A single byte of memory is needed for
a character data type. The size of both
unsigned and signed char is 1 byte, i.e 8
bits.

Recap

	♦ A token is the smallest unit in a program.

	♦ A keyword is reserved word by language.

	♦ There are a total of 32 keywords.

	♦ Do not use underscore as the starting symbol of a variable.

	♦ No limit on the number of characters in an identifier, but advised to use a
maximum of 31 characters.

	♦ Keywords are not allowed to be used as identifiers.

	♦ Meaningful identifier’s name will improve the readability of the program,
and it will avoid confusions.

	♦ The data storage format in which a variable can store data to perform a given
action is described as a data type in C.

	♦ C supports 5 basic data types.

	♦ Do not combine declaration and execution statements.

32 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Objective Type Questions

1.	 What is the size of an int data type?
2.	 How many keywords are there in C?
3.	 What are the different types of qualifiers that an int can have at the same

time?
4.	 What is the difference between variables and symbolic names?
5.	 A memory location can hold how many values at a time.
6.	 Double can hold how many bits of decimal numbers.

Answers to Objective Type Questions

1.	 2 to 4 bytes depends on the system/compiler
2.	 32
3.	 signed, unsigned, short, unsigned short
4.	 When a variable is declared, an object instance is produced. A symbolic

name is simply defined as a name that may be utilized in a program.
5.	 One
6.	 64

Assignments

1.	 Explain character set in C programming language.
2.	 What is a variable? How to declare and initialize a variable?
3.	 Explain different types of constants in the C programming language.
4.	 Explain C tokens.
5.	 Write a C program to find the area of a circle using constant Pi=3.14.
6.	 What are the different types of qualifiers that an int can have at the same

time?

33SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

34 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Operators and Expressions

Learning Outcomes

Prerequisites

	♦ learn to manipulate data to get the desired output

	♦ understand different Operators in C Programming

	♦ use operators in different programming cases

What is the meaning of the following mathematical statement?

	 12 + 10 = 22

Here two numbers (10 and 12) are added to get a result (22). Here the ‘+’ symbol
indicates the addition operation, and these types of symbols are known as mathematical
operators. In the same way, we need operators to perform operations on the data stored
in a computer. In this section, we are going to discuss the operators and expressions
used in C programming.

You might be familiar with arithmetic operations like addition, subtraction, multipli-
cation and division. While writing mathematical expressions, we use symbols like +,
-, × and ÷ to represent these operations. Similarly, we need to use operator symbols to
represent various operations, when we write programs.

We have seen that computations on numbers are essential to computers. Let us drive
into learning about various types of operators and how to construct mathematical
expressions in C.

UNIT 4

After the successful completion of the unit, the learner will be able to:

Key Concepts

Operators, Operator precedence, Expressions

35SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion
1.4.1 Operators in C

An operator is used to perform specific
mathematical or logical operations on
values. The values that the operators work
on are called operands. Let us consider an
example:

x * 230 → expression

The x * 230 is an expression in C language,
and the variable x and value 230 are the
operands. The ‘*’ (star/asterisk) sign is an
operator. The C programming language
has a large number of built-in operators,
and they are classified into the following
types:

	♦ Arithmetic operators
	♦ Relational operators

	♦ Logical operators
	♦ Bitwise operators
	♦ Assignment operators
	♦ Conditional operators
	♦ Special operators

1.4.2 Arithmetic operator

A mathematical function that accepts two
operands and performs a computation on
them is known as an arithmetic operator.
They are frequent in everyday math, and
most computer languages provide a col-
lection of them that can be employed in
equations to do a variety of sequential
calculations. The C language provides the
basic arithmetic operators, and they are
listed in table 1.4.1.

 		

 Operator Operation Description Example

+ Addition Adds the two
numeric values
on either side of
the operator

#include<stdio.h>
#include<conio.h>
void main()
{
int a=5, b=7;
printf(“the sum =
%d,” a+b);
getch();
}

- Subtraction Subtracts the
operand on the
right from the
operand on the
left

#include<stdio.h>
#include<conio.h>
void main()
{
int a=5, b=7;
printf(“the difference
between %d and %d
 = %d”,b,a b-a);
getch();
}

Table 1.4.1. Arithmetic operators

36 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

* Multiplication Multiplies the two
values on both sides
of the operator

#include<stdio.h>
#include<conio.h>
void main()
{
int a=5, b=7;
printf(“the product =
%d,” a*b);
getch();
}

/ Division Divides the operand
on the left by the
operand on the
right and returns
the quotient

#include<stdio.h>
#include<conio.h>
void main()
{
int a=9, b=2;
printf(“the quotient
= %d,” a/b);
getch();
}

% Modulus Divides the operand
on the left by the
operand on the
right and returns
the remainder

#include<stdio.h>
#include<conio.h>
void main()
{
int a=9, b=2;
printf(“the reminder
= %d,” a%b);
getch();
}

1.4.3 Relational Operator

We frequently compare two quantities and
make decisions based on their relation-
ship. For example, we may compare the
prices of two items or the time taken to
finish certain work and so on. In C, rela-

tional operators are used for comparison.
The values of the operands on either side
of the relational operator are compared to
determine the relationship between them.
The relational operators supported by C
are listed in Table 1.4.2

37SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 		

 Operator Operation Example

== Equal to If the values of two operands are equal, then
the condition is True, otherwise, it is False

!= Not equal to If the values of two operands are not equal,
then the condition is True. Otherwise, it is
False

> Greater than If the value of the left-side operand is greater
than the value of the right side operand, then
the condition is True, otherwise, it is False

< Less than If the value of the left-side operand is less
than the value of the right side operand, then
the condition is True. Otherwise, it is False

>= Greater than or
equal to

If the value of the left-side operand is
greater than or equal to the value of the
right-side operand, then the condition is
True. Otherwise, it is False

<= Less than or
equal to

If the value of the left operand is less than
or equal to the value of the right operand,
then it is True. Otherwise it is False

Table 1.4.2 Relational operators

1.4.4 Assignment operator

The assignment operator changes or assigns the value of the variable to the left of it.

Table 1.4.3 Assignment operator
 		

 Operator Description

= Assigns value from right-side operand to left side variable

+= It adds the value of the right-side operand to the left-side operand
and assigns the result to the left-side operand Note: x += y is the
same as x = x + y

38 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

-= It subtracts the value of the right-side operand from the left-
side operand and assigns the result to the left-side operand
Note: x -= y is the same as x = x - y

*= It multiplies the value of the right-side operand with the value
of the left-side operand and assigns the result to the left-side
operand Note: x *= y is the same as x = x * y

/= It divides the value of the left-side operand by the value of the
right-side operand and assigns the result to the left-side operand
Note: x /= y is the same as x = x / y

%= It performs modulus operation using two operands and assigns
the result to left-side operand Note: x %= y is the same as
x = x % y

Let us consider a simple C program snippet to understand the assignment operators

 int a = 21;

 int c ;

 c = a;

 printf(“Line 1 - = Operator Example, Value of c = %d\n”, c);

 c += a;

 printf(“Line 2 - += Operator Example, Value of c = %d\n”, c);

 c -= a;

 printf(“Line 3 - -= Operator Example, Value of c = %d\n”, c);

 c *= a;

 printf(“Line 4 - *= Operator Example, Value of c = %d\n”, c);

 c /= a;

 printf(“Line 5 - /= Operator Example, Value of c = %d\n”, c);

 c = 200;

 c %= a;

 printf(“Line 6 - %= Operator Example, Value of c = %d\n”, c);

39SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Output:

Line 1 - = Operator Example, Value of c = 21

Line 2 - += Operator Example, Value of c = 42

Line 3 - -= Operator Example, Value of c = 21

Line 4 - *= Operator Example, Value of c = 441

Line 5 - /= Operator Example, Value of c = 21

Line 6 - %= Operator Example, Value of c = 11

Example 1 program (source: internet)

1.4.5 Logical operator

Logical operators are used when we want
to check multiple conditions to make a
decision. The C language supports 3 log-
ical operators. Based on the operands on
either side, the logical operator evaluates
to True or False. Every value is either True
or False logically. Except for 0 (zero),
all values are True by default. The logi-
cal operators used in C are listed in Table
1.4.4.

1.4.6 Increment and decrement
operator

To change the value of an operand by
one, C programming offers two operators:
increment “++” and decrement “--” The
increment operator increases the value by
one, while the decrement operator reduces
it by one. These two operators are unary,
which means they only work with one
operand.

 		

 Operator Operation Description

&& Logical AND If both the operands are true, then
the condition becomes True

|| Logical OR If any of the two operands are
True, then the condition becomes
True

! Logical NOT Used to reverse the logical state of
its operand

Table 1.4.4 Logical operators

40 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 		

 Operator Operation Description Example

++ Increment Operates on a
single value.
Increases the value
of the integer
operand by 1

#include<stdio.h>
#include<conio.h>
void main()
{
int a=9, b;
b = ++a;
printf(“the output of increment
operator = %d”, b);
getch();
}

-- Decrement Operates on a
single value.
Decreases of the
value of the integer
operand by 1

#include<stdio.h>
#include<conio.h>
void main()
{
int a=9, b;
b = --a;
printf(“the output of increment
operator = %d”, b);
getch();
}

Table 1.4.5 Increment or decrement operators

Rules for increment and decrement operator

1.	 Increment and decrement operators are unary operators.
2.	 They need variables as their operand.
3.	 When a variable is used in an expression with a postfix increment or

decrement (eg: a++/a--), the expression is evaluated first using the initial
value of the variable, then update the value of the variable by one.

4.	 When the prefix increment or decrement (eg: ++a/--a) is used with a variable
in an expression, the value of the variable is updated first, and then the
expression is evaluated.

Are you confused with the 3rd and 4th rules? Well, let us understand it through an
example code.

41SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Example 1

Program

int main()

{

 int x = 10, a, y = 10, b;

 a = ++x;

 b = y++;

 printf(“Pre Increment Operation”);

 // Value of a will change

 printf(“\na =%d”, a);

 // Value of x changes before execution of a=++x;

 printf (“\nx = %d” , x);

 printf(“Post Increment Operation”);

 // Value of b will be assigned first, then the value of y will get incremented.

 printf(“\nb =%d”, b);

 // Value of y changes after assigning value to b, b=y++;

 printf (“\ny = %d” , y);

 return 0;

}

Output

Pre Increment Operation

a = 11

x = 11

Post Increment Operation

b =10

y = 11

42 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

1.4.7 Conditional operator

The conditional operator is otherwise known as the ternary operator. It needs three
operands to work on. The syntax of the ternary operator is:

	 expression 1 ? expression 2: expression 3;

	♦ The question mark “?” in the syntax to check the condition.
	♦ The first expression (expression 1) usually returns true or false, which

determines whether (expression 2) will be executed or otherwise (expression
3)

	♦ If (expression 1) is valid, the expression on the left side of “ : ”, i.e. (expression
2), is executed.

	♦ If expression 1 returns false then expression 3 will be executed

For example, consider the following statements

	 v1 = 5;

	 v2 = 20;

	 Result = v1>v2 ? v1 : v2;

The result will be assigned the value of v2 ie, 20

1.4.8 Bitwise operator

Data is manipulated at the bit level with bitwise operators. Shifting bits from right to
left is often performed by these operators. Float and double data types do not support
bitwise operators.

1.4.8.1 The & (bitwise AND)

The & (bitwise AND) in C takes two numbers as operands and does AND on every bit
of two numbers. The result of AND is 1 only if both bits are 1.

The output of bitwise AND is 1 if the corresponding bits of two operands are 1. If either
bit of an operand is 0, the result of the corresponding bit is evaluated to 0.

Let us suppose the bitwise AND operation of two integers 12 and 25.

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bit Operation of 12 and 25

43SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 00001100

& 00011001

 00001000 = 8 (In decimal)

Example Program: Bitwise AND

#include <stdio.h>

int main() {

 int a = 12, b = 25;

 printf(“Result = %d”, a&b);

 return 0;

}

Output

Result = 8

1.4.8.2 The | (bitwise OR)

The | (bitwise OR) in C takes two numbers as operands and does OR on every bit of two
numbers. The result of OR is 1 if any of the two bits is 1.

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise OR Operation of 12 and 25

 00001100

| 00011001

 00011101 = 29 (In decimal)

Example Program: Bitwise OR

#include <stdio.h>

int main() {

44 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 int a = 12, b = 25;

 printf(“Result = %d”, a|b);

 return 0;

}

Output

Result = 29

1.4.8.3 The ^ (bitwise XOR)

The ^ (bitwise XOR) in C takes two numbers as operands and does XOR on every bit
of two numbers. The result of XOR is 1 if the two bits are different.

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise XOR Operation of 12 and 25

 00001100

^ 00011001

 00010101 = 21 (In decimal)

Example Program: Bitwise XOR

#include <stdio.h>

int main() {

 int a = 12, b = 25;

 printf(“Result = %d”, a^b);

 return 0;

}

Output

Result = 21

1.4.8.4 The << (left shift)

The << (left shift) in C takes two numbers, left shifts the bits of the first operand, the
second operand decides the number of places to shift.

45SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

212 = 11010100 (In binary)

212<<1 = 110101000 (In binary) [Left shift by one bit]

212<<0 = 11010100 (Shift by 0)

212<<4 = 110101000000 (In binary) =3392(In decimal)

1.4.8.5 The >> (right shift)

The >> (right shift) in C takes two numbers, right shifts the bits of the first operand, the
second operand decides the number of places to shift.

212 = 11010100 (In binary)

212>>2 = 00110101 (In binary) [Right shift by two bits]

212>>7 = 00000001 (In binary)

212>>8 = 00000000

212>>0 = 11010100 (No Shift)

Example Program for Bitwise Shift Operations

#include <stdio.h>

int main ()

{

 int num = 212, i;

 for (i = 0; i <= 2; ++i)

 {

 printf (“Right shift by %d: %d\n”, i, num >> i);

 }

 printf (“\n”);

 for (i = 0; i <= 2; ++i)

 {

 printf (“Left shift by %d: %d\n”, i, num << i);

 }

 return 0;

}

46 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Output
Right shift by 0: 212
Right shift by 1: 106
Right shift by 2: 53
Left shift by 0: 212
Left shift by 1: 424

Left shift by 2: 848

1.4.8.6 The ~ (bitwise NOT)

The ~ (bitwise NOT) in C takes one number and inverts all bits of it.

35 = 00100011 (In Binary)

Bitwise complement Operation of 35

~ 00100011

 11011100 = 220 (In decimal)

Example Program for Bitwise NOT

#include <stdio.h>

int main ()

{

 printf (“Output = %d\n”, ~35);

 printf (“Output = %d\n”, ~-12);

 return 0;

}

Output

Output = -36

Output = 11

Points to remember while using Bitwise operators

	♦ The left shift and right shift operators should not be used for negative
numbers.

	♦ The bitwise OR of two numbers is just the sum of those two numbers, if
there is no carry involved, otherwise you just add their bitwise AND.

	♦ The bitwise XOR operator is the most useful operator. It is used in many

47SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Operator Operation Truth Table

&

|

^

<<	

>>

Bitwise AND

Bitwise OR

Bitwise exclusive OR

Left shift

Right shift

a b a&b a|b a^b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Table 1.4.6 Bitwise operators

problems. A simple example could be “Given a set of numbers where all
elements occur an even number of times except one number, find the odd
occurring number” This problem can be efficiently solved by just doing
XOR to all numbers.

	♦ The bitwise operators should not be used in place of logical operators.
	♦ The & operator can be used to quickly check if a number is odd or even. The

value of the expression (x & 1) would be non-zero only if x is odd, otherwise
the value would be zero.

	♦ The ~ operator should be used carefully. The result of the ~ operator on
a small number can be a big number if the result is stored in an unsigned
variable. And the result may be a negative number if the result is stored
in a signed variable (assuming that the negative numbers are stored in 2’s
complement form where the leftmost bit is the sign bit)

	♦ The left-shift and right-shift operators are equivalent to multiplication and
division by 2 respectively. As mentioned in point 1, it works only if numbers
are positive.

The bitwise shift operator changes the value of a bit. The left operand specifies the
value to be moved, while the right operand specifies the number of places the value’s
bits must be shifted. The precedence of both operands is the same.

Example:

a = 0001000

b = 2

a << b = 0100000

a >> b = 0000010

48 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 		

 Operator Description Example

sizeof Returns the size of
a variable

sizeof(x) return size of the
variable x

& Returns the address
of a variable

&x; return address of the
variable x

* Pointer to a variable *x; will be a pointer to a
variable x

Table 1.4.7 Special operators

1.4.9 Special operator

The C language supports some special
operators who are listed in table 1.4.7

1.4.10 Expression

A combination of constants, variables, and
operators is known as an expression. An
expression always yields a result. A value
or a standalone variable may also be called
expressions, but a standalone operator
is not. Below are some valid expression
examples:

	 a. Num

	 b. x = a+b

	 c. R = 2*num-3.14

	 d. ++x

	 e. x--

	 f. h = “good morning”

Evaluation of Expression

Let us consider a valid C expression.

x = a + b;

Here x, a, b are valid C variables. When the
statement is encountered, the expression is
evaluated first, and the result will be stored
in x. The blank space around the variables
and operator is optional, which improves
the readability of the program.

1.4.11 Precedence and
Associativity

The precedence of operators is used to
evaluate an expression. When there are
several types of operators in an expres-
sion, the precedence decides which one
should be used first. The higher-priority
operator is evaluated first, followed by the
lower-priority operator. The majority of
the operators we’ve looked at so far are
binary operators. Operators of two oper-
ands are known as binary operators. The
unary operators have higher precedence
than the binary operators since they only
require one operand. The operators of the
same precedence will be evaluated either
from left to right or right to left. depend-
ing on the level. This property is known as
associativity. The operator precedence and
associativity are listed in table 1.4.8

49SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 		

Precedence Operator Description Associativity

1 ++ --

()

[]

.

->

(type){list}

Suffix/postfix increment
and decrement

Function call

Array subscript

Structure and union
member access

Structure and union
member access through
pointer

Compound literal(C99)

Left-to-right

2 ++ --

+ -

! ~

(type)

*

&

sizeof

_Alignof

Prefix increment and
decrement

Unary plus and minus

Logical NOT and bitwise
NOT

Cast

Indirection (dereference)

Address-of

Size-of

Alignment
requirement(C11)

Right-to-left

3 * / % Multiplication, division,
and the remainder

Left-to-right

4 + - Addition and subtraction

50 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

5 << >> Bitwise left shift and right
shift

6 < <=

> >=

For relational operators <
and ≤ respectively

For relational operators >
and ≥ respectively

7 == != For relational = and ≠
respectively

8 & Bitwise AND

9 ^ Bitwise XOR (exclusive
or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 || Logical OR

13 ?: Ternary conditional Right-to-left

14 =

+=, -=

*=, /=, %=

<<=, >>=

&=, ^= ,|=

Simple assignment

Assignment by sum and
difference

Assignment by product,
quotient, and the remainder

Assignment by bitwise left
shift and right shift

Assignment by bitwise
AND, XOR, and OR

15 , Comma Left-to-right

51SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Note:
1.	 Parentheses can be used to override the precedence of operators. The

expression within () is evaluated first.
2.	 For operators with equal precedence, the expression is evaluated from left

to right.

1.4.12 Type conversion

When we perform operations on two different data types in C, the resulting type is
automatically converted to the available higher data type.

Let us understand it through a sample program.

#include<stdio.h>

int main(int argc, char const *argv[])

{

	 int num_1 = 67;

	 int num_2 = 5;

	 float num_3 = 5;

	 /*Division of int with int the result will be int*/

	 printf(“Int with Int division = %d \n”, (num_1 / num_2));

		 /*Division of int with float the result will be float*/

printf(“Int with Float division = %f \n”, (num_1 / num_3));

	 /*Division of int with int type casted with float the result will be float*/

printf(“Int with Int type casted with float division = %f \n”, ((float)num_1 / num_2)
);

	 return 0;

}

Output:

Int with Int division = 13

Int with float division = 13.400000

Int with Int type casted with float division = 13.400000

num_1 and num_2 are integers initialized with values 67 and 5, respectively and num_3
is a floating point variable initialised with 5.

The first printf statement prints the result of integer division num_1/num_2, which is 67
divided by 5 resulting in an integer value 13.

52 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The second printf statement attempts to print the result of an integer value divided by a
float value i.e num_1/num_3 and the resultant data type will be float.

The third printf statement correctly demonstrates type casting by casting num_1 to a
float before division, ensuring the correct float division result. It devides num_1 (67) by
num_2 (5) as floats resulting in the floating point value.

Recap

	♦ There are different types of operations in programming, like arithmetic
operations, logical operations, assignment operations etc.

	♦ In arithmetic operation, divide by zero is undefined, so avoid chances to
make this operation while coding.

	♦ Usage of increment/decrement operator is tricky.

	♦ C allows the use of a few special operators other than the common operators
in practice.

	♦ The expression must end with a semicolon.

	♦ Precedence of operators is used to evaluate an expression

	♦ Use parentheses to get higher precedence to an operator/operation

Objective Type Questions

1.	 Which symbol represents a modulus operator?
2.	 What will be the value of the expression “int a = 10 + 4.867;” ?
3.	 What will be the value stored in variable ‘a’, “int a = 3.5 + 4.5;” ?
4.	 Which is the value stored in ‘var’, “float var = 3.5 + 4.5;” ?
5.	 What is the output of the following code snippet ?

int main()

{

 float c = 3.5 + 4.5;

 printf(“%f”, c);

 return 0;

}

53SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

6.	 What is the priority of operators *, / and % in C language?
7.	 Associativity of C Operators *, /, %, +, - and = is.?
8.	 What is the output of the below program?

int main()

{

 int a=0;

 a = 5>2 ? printf(“4”): 3;

 printf(“%d”,a);

 return 0;

}

Answers to Objective Type Questions

1.	 %
2.	 a = 14
3.	 a = 8
4.	 var = 8.0
5.	 8.000000
6.	 All three operators *, / and % are the same. But if all three came in the same

expression without parentheses it will get evaluated from left to right
7.	 Operators *, / and % have Left to Right Associativity. Operators + and - have

Left to Right Associativity. Operator = has Right to Left Associativity
8.	 41. Explanation: 5>2 is true. So expression1 i.e printf(“4”) is executed

printing 4. Function printf() returns 1. So the value is 1.

54 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Assignments

1.	 Explain basic arithmetic operations .
2.	 Explain Logical and bitwise operations
3.	 Write a program to solve a quadratic equation.
4.	 What is an operator and an operand . Explain different types of operators in

C programming.
5.	 Write a program to show working of a simple calculator.
6.	 Explain different relational operators in C programming.
7.	 What is a conditional operator in C programming? Explain with an example.
8.	 Write a C program to find the largest among three numbers using conditional

operator.

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

55SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

IO Statements,
Control Structures,
Arrays, and Pointers

BLOCK 2

56 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

IO Statements,
Control Structures,
Arrays, and Pointers

Input Output Statements

Learning Outcomes

Prerequisites

	♦ get familiarized with input-output functions of C

	♦ make aware of formatted input/output

	♦ apply the concepts to build C programs.

We all are familiar with calculators. In a calculator, we have an option to give numbers
and operations (+, -, /...) and it will display the output on the screen. Can you imagine
a calculator without the keys in it? Well, the calculator won’t serve the purpose and the
desired result will not be available to the user. In this section, we are going to discuss
the function that helps us to give input to a C program and get output from it.

Why do we write programs?

We need to read, write and process data to solve problems. So a computer program
takes data as input and after processing the data it will display the processed data as
output. How does a program get data? In unit 3 we saw the initialization of variables
such as a=3, b=0; and another technique is to get data from the keyboard. Also we need
the output displayed on the screen.

The C programming language includes standard libraries that allow program input and
output. Let us see how input/output operations are performed in C language.

UNIT 1

After the successful completion of the unit, the learner will be able to:

Key Concepts

Formatted and Unformatted Input-Output functions

57SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion
2.1.1 Reading a character
Reading a character from the input unit and writing it to the output unit are the most
basic of all input/output processes. The function getchar() can be used to read a single
character. Only a single character is read at a time by this feature. If you want to read
more than one character, you can use this method in a loop. The getchar takes the
following form:

	 Variable_name = getchar()

For storing the input from getchar() function, the Variable_name must be a char type
variable. When getchar() is encountered, the screen will wait until a key is pressed. Let
us consider the code snippet to understand the concept properly.

char c;

printf(“Do you want to know my name? Type ‘y’ for yes ‘n’ for no”);

c = getchar();

if(c == ‘y’|| c == ‘Y’)

printf(“I’m a Code Bee”);

else

printf(“It’s okay. Your loss”);

Program 2.1.1

In program 2.1.1 if the user input is y/Y “ I’m a Code Bee” will be displayed in the
terminal. If the user inputs n/N then “ It’s okay. You loss” will be displayed on the
screen.

Before using the getchar() function you should be aware of the fact, getchar() accepts
any character through the keyboard.

The getchar() function reads only one character from the terminal. What if you want to
read a sentence? Well, C has another input function gets(). The gets() function reads a
line from stdin into the buffer pointed to by a string. Let us consider a code snippet to
understand the gets() function as given in Program 2.1.2 :

char str[100];

printf(“Enter any value :”);

gets(str);

printf(“\nYou entered: %s”, str);

Program 2.1.2

58 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Output

Enter any value :Good Morning

You entered: Good Morning

2.1.2 Writing a character

putchar() is a function similar to getchar() for writing characters one by one to the
terminal. It has the following syntax:

 putchar(variable_name)
This statement displays the character contained in the variable_name at the terminal.
For example, see the following program 2.1.3.

char a;

a = ‘y’;

putchar(a);

Output screen will display ‘y’

Instead of putchar(), C supports another function called puts() function. Let us
understand the function through a sample program 2.1.4:

program 2.1.3

char str[100];

printf(“Enter a value :”);

gets(str);

printf(“\nYou entered: ”);

puts(str);

Output

Enter a value :Alan Turing

You entered: Alan Turing

Program 2.1.4

Output
y

59SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

2.1.3 Formatted Input

Formatted input means the input data has a particular format. scanf() function is used
to get the formatted input. scanf() is specified in the standard input-output header file
stdio.h, and is used to display output on the screen and take user input, respectively.

The general syntax of the scanf function is

	 scanf(const char *format, ...)

The output of this function is written to the regular output stream stdout, and it is
formatted as specified.

The format can be specified using format specifiers “%s, %d, %c, %f,” for printing or
reading data that are string, integer, character or float respectively. There are a variety
of other formatting methods that can be used depending on the situation will be listed
at the last part of the unit. Let us start with a quick example to help you understand the
concepts (refer Program 2.1.5).

#include<stdio.h>

void main()

{

int a, b, c;

printf(“Please enter any two integer numbers: \n”);

scanf(“%d %d”, &a, &b);

c = a + b;

printf(“The sum of two numbers is: %d”, c);

}

Output

Please enter any two integer numbers:

2

3

The sum of two numbers is: 5

Program 2.1.5

60 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

When you compile the above code, you will be asked to enter a value. When you enter
a value, the entered value will be displayed on the screen. You may be wondering why
%d is used in the scanf() and printf() functions. It’s called the format string, and it tells
the scanf() function what kind of input to expect, and it’s used in printf() to tell the
compiler what kind of output to expect. Details are tabulated in Table 2.1.1.

 		

 Format string Meaning

%d Scan or print an integer assigned
decimal number

%f Scan or print a floating-point number

%c To scan or print a character

%s To scan or print a character string.
The scanning ends at whitespace.

Table 2.1.1 Format Strings

Rules to use scanf

	♦ A type specification is required for each variable to be read.

	♦ The scanf reads characters from the terminal until:

	 a. It encounters a whitespace

	 b. It has read the maximum number of characters

	 c. It reaches the end of the document

If the return value is not 1, an error message is printed to the console and the program
exits with an error code.

2.1.4 Formatted output

So far, we have seen that the printf function is used to print the processed data to the
screen. The printf is a necessary and easy function for the programmer to print data in a
formatted way. How can we change the appearance of output data? Let us consider an
example C program to understand the formatted output (refer Program 2.1.6).

printf(“The color: %s\n”, “blue”);

printf(“First number: %d\n”, 12345);

printf(“Second number: %04d\n”, 25);

61SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Program 2.1.6

Output

The color: blue

First number: 12345

Second number: 0025

Third number: 1234

Float number: 3.14

Hexadecimal: ff

Octal: 377

Unsigned value: 150

Just print the percentage sign %

Let us have a cheat sheet on printf formatting as shown in Table 2.1.2.

printf(“Third number: %i\n”, 1234);

printf(“Float number: %3.2f\n”, 3.14159);

printf(“Hexadecimal: %x\n”, 255);

printf(“Octal: %o\n”, 255);

printf(“Unsigned value: %u\n”, 150);

printf(“Just print the percentage sign %%\n”, 10);

 		

Code Output

printf(“%3d”, 0); 0

printf(“%3d”, 123456789); 123456789

printf(“%3d”, -10); -10

printf(“%3d”, -123456789); -123456789

Table 2.1.2 Formatted Integer

62 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

When used for integers, the %3d specifier indicates a minimum width of three spaces,
which is right-justified by default. Simply add a minus sign (-) after the percent symbol
in printf to left-justify integer performance, as seen in Table 2.1.3.

 		

Code Output

printf(“%-3d”, 0); 0

printf(“%-3d”, 123456789);	 123456789

Table 2.1.3 Left-justify Integer

Formatted floating point numbers with printf are shown in Table 2.1.4.

 		

 Description Code Result

Print one position after
the decimal

printf(“’%.1f’”, 10.3456); ‘10.3’

Two positions after the
decimal

printf(“’%.2f’”, 10.3456); ‘10.35’

Eight-wide, two positions
after the decimal

printf(“’%8.2f’”, 10.3456); ‘ 10.35’

Eight-wide, four positions
after the decimal

printf(“’%8.4f’”, 10.3456); ‘ 10.3456’

Eight-wide, two positions
after the decimal, zero-
filled

printf(“’%08.2f’”, 10.3456); ‘00010.35’

Eight-wide, two positions
after the decimal, left-
justified

printf(“’%-8.2f’”, 10.3456); ‘10.35 ’

Printing a much larger
number with that same
format

printf(“’%-8.2f’”,
101234567.3456);

‘101234567.35’

Table 2.1.4 Numeric Justification

63SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Formatted string using printf is given in Table 2.1.5

 		

 Description Code Result

A simple string printf(“’%s’”, “Hello”); ‘Hello’

A string with a minimum
length

printf(“’%10s’”, “Hello”); ‘ Hello’

Minimum length, left-
justified

printf(“’%-10s’”, “Hello”); ‘Hello ’

Table 2.1.4 Numeric Justification

Recap

	♦ getchar() function reads any character from the input stream

	♦ Standard input-output (stdio. h) header file has printf() and scanf() function

	♦ The format specifier is important for any variable to read or print.

Objective Type Questions

1.	 What is the purpose of scanf()?
2.	 What is the output of the C program?

	 #include <stdio.h>

	 int main()

	 {

 	 printf(“variable! %d”, x);

 	 return 0;

	 }
3.	 What is the output of the program given below?

	 #include <stdio.h>

 int main()

64 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 {

 	 int main = 3;

	 printf(“%d”, main);

 	 return 0;

	 }
4.	 Suppose we input a=1 and b=2 then what is the output of the following code?

	 #include <stdio.h>

	 int main()

	 {

 	 int a, b;

 	 printf(“%d”, scanf(“%d %d”,&a,&b));

 	 return 0;

	 }
5.	 What is the output of the program ?

	 #include <stdio.h>

	 void main()

	 {

 	 printf(“hello\rworld\n”);

 	 printf(“hello\b\b\bworld\n”);

	 }
6.	 what is the output of the statement “printf (“%d” , printf (“hello”));” ?
7.	 Which formatted string is used to scan or print a character string?

Answers to Objective Type Questions

1.	 It reads data from the terminal.
2.	 It gives a compilation error since the x is not declared
3.	 3
4.	 2

65SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

5.	 world

	 heworld
6.	 Hello5
7.	 %s

Assignments

1.	 How to read a character from a console in C programming language.
2.	 Explain putchar() and puts() function in C programming language.
3.	 Write a program in C, read your name, designation, id card number and

write these details.
4.	 Explain formatted input and output in C programming language.
5.	 Write a C program to read a number and print a multiplication table of that

number.
6.	 What are the different header files used for read and write in C programming.

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

66 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Control Structures and Looping

Learning Outcomes

Prerequisites

	♦ study the aspects of condition checking in C Programming.

	♦ make aware of the working of nesting of if Statements.

	♦ know about switch case statements.

	♦ get familiarized with different loop concepts and apply it to programming.

	♦ make aware of break and continue Statements.

	♦ have knowledge in the area of nested loops.

In Figure 2.2.1, shown below, we all are familiar with the maze game. There is only
one entry point and one way to reach the goal, and we may need to find the path
towards the goal. The player has no choice but to follow the path in the maze to
reach the goal.

UNIT 2

After the successful completion of the course, the learner will be able to:

Figure 2.2.1 Maze Game

67SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Is this similar to the concept of sequencing in C? In the unit dealing with the execution
of C programming, we learned the concept of sequence. Sequence means C executes
one statement after another from beginning to the end of the program.

Let us consider the below C program.

/* program to print the difference between
two numbers*/

#include <stdio.h>

#include <conio.h>

void main()

{

int num1, num2, diff;

printf(“Enter the first number\t:\t”);

scanf(“%d”,&num1);

printf(“Enter the second number\t:\t”);

scanf(“%d”, &num2);

diff = num1 - num2

printf(“The difference between %d and
%d is %d”, num1, num2, diff);

getch();

}

Output:

Enter the first number : 8

Enter the second number : 5

The difference between 8 and 5 is 3

Program 2.2.1

This program will be executed in sequence, which means the commands will be exe-
cuted one by one in the order specified in the program. The order in which statements in
a program are executed is referred to as control flow or flow of control. Control systems
can be used to implement control flow. C supports three types of control structures -
sequential, selection and loop or repetition. The sequential control flow is the default
one, just as shown in the program 2.2.1. Let us discuss the selection and loop control
structures.

Key Concepts

if, if-else, switch, for, while, do-while, break, continue

68 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion
2.2.1 Decision making

In our life, there are times when we are under different available choices. Let us say,
you go to brush your teeth and you find that you are out of toothpaste.

You then ask, “do I have any toothpaste?”.

If the answer is no, then you need to add it to your shopping list.

However, if the answer is yes, you would just use the toothpaste.

This is what happens at a point of selection, answering a question based on what it finds.
A selection entails choosing between two or more alternatives. This section discusses
the selection control structures supported by C.

2.2.2 The simple if statement

It is one of the most strong conditional statements in C. The 'if ' statement is in control
of changing a program’s flow of execution. A condition is often used in the if statement.
Before any statement inside the body of 'if ' is executed, the condition is evaluated. The
following is the syntax for the if statement:

Let us say, if we want to show the positive difference between the two numbers ‘num1’
and ‘num2’ in the program 2.2.1. To do so, we will have to change our approach.

The syntax of the if statement is :

if(condition)

	 Statement ;

The syntax of if statement is :

if(condition)

{

	 Statement1 ;

 Statement2 ;

 .

 .

 .

 .

 StatementN ;

}

For single-line statement

 For multi-line statements

69SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

/* program to print the positive difference between two numbers*/

#include <stdio.h>

#include <conio.h>

void main()

{

int num1, num2, diff;

printf(“Enter the first number\t:\t”);

scanf(“%d”,&num1);

printf(“Enter the second number\t:\t”);

scanf(“%d”, & num2);

if(num1 > num2)

diff = num1 - num2

if(num2 > num1)

diff = num2 - num1

printf(“The positive difference between %d and %d is %d”,num1, num2, 	
diff);

getch();

}

Output:

Enter the first number : 5

Enter the second number : 9

The positive difference between 5 and 9 is 4

Program 2.2.2

Examine program 2.2.2 written below, which subtracts the smaller number from the
more significant number to ensure that the difference is always positive. The values for
the two numbers ‘num1’ and ‘num2’, are used to make this decision.

In the program 2.2.2:
1.	 We declare two integer variables num1 and num2 and we accept its value

from the user.
2.	 We found the largest number among them and calculated the difference.

Let’s consider another program:

70 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

/* program to check the answer entered by the user is right or not */

#include <stdio.h>

#include <conio.h>

void main()

{

int key, ans;

key = 12+24;

printf(“what is the sum of 12 and 24\t:\t”);

scanf(“%d”, &ans);

if(ans==key)

printf(“Right answer”);

if (ans!=key)

printf(“wrong answer”);

getch();

}

Program 2.2.3

Could you predict the output of program 2.2.3?

2.2.3 The if-else statement

The if-else statement is a variation of the if statement which allows one to write two
alternate paths. The control condition will determine which path should be taken. The
if-else sentence has the following syntax.

The syntax of if statement is :

if(condition)

	 Statement ;

else

 Statement ;

For single-line statement

71SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Let us consider the flowchart to understand program flow in if-else statement

The syntax of if statement is :
if(condition)
{
	 Statement1 ;
 Statement2 ;
 .
 .
 .
 StatementN ;
}
else
{
	 Statement1 ;
 Statement2 ;
 .
 .
 .
 StatementN ;
}

 For multi-line statements

Fig 2.2.1 if-else flowchart

72 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Let us modify program 2.2.3 with an if-else statement in 2.2.4

/* program to check the answer entered by the user is right or not */

#include <stdio.h>

#include <conio.h>

void main()

{

int key, ans;

key = 12+24;

printf(“what is the sum of 12 and 24\t:\t”);

scanf(“%d”,& ans);

if(ans==key)

printf(“Right answer”);

else

printf(“Wrong answer”);

getch();

}

Program 2.2.4

1.	 Could you predict the output?
2.	 How do program 2.2.3 and program 2.2.4 differs

2.2.4 Nesting of if-else statement

Nested if-else is used when a series of decisions are required. Using one if-else con-
struct within another is known as nesting. Let us write a program to demonstrate how
to use nested if-else statements.

#include<stdio.h>

#include<conio.h>

void main()

73SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

{

	 int num=1;

	 if(num<10)

	 {

		 if(num==1)

		 {

			 printf(“The value is:%d\n”,num);

		 }

		 else

		 {

			 printf(“The value is greater than 1”);

		 }

 }

	 else

	 {

		 printf(“The value is greater than 10”);

	 }

	 getch();

}

Program 2.2.5

Output

The value is: 1

The above code uses nested if-else constructs to check if a number is less or greater than
10 and prints the answer:

1.	 To begin, we have declared a variable num with the value 1. Then we used
the if-else statement.

2.	 The condition given in the outer if-else checks if a number is less than 10. If

74 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

if(condition 1)

{

 statements;

}

else if(condition 2)

{

 statements;

}

else if(condition N)

{

 statements;

}

else

{

 statements;

}

the condition is valid, then the inner loop will be executed. The condition is
valid in this case, so the inner block is processed.

3.	 We have another condition in the inner block that checks whether our
variable has the value 1 or not. If a condition is valid, the if block is executed;
otherwise, the else block is executed. The condition is valid in this case
because the if block is executed, and the value is shown on the output screen.

2.2.5 The if-else if ladder

There are many incidences that call for several conditions to be reviewed, leading to a
plenty of options. In such instances, we can use if-else if to chain the conditions. The
syntax of “if-else if” is shown below:

The number of “else if”, refers to the total number of conditions tested determines
conditions. If the first condition is incorrect, the following condition, and so on, are
verified. If one of the conditions is valid, the indented block that corresponds to it
executes, and the “if statement” ends. If none of the condition holds good, then the last
else block gets executed.

Let us consider a sample c program (refer Program 2.2.6) to understand the if- else if
concept

75SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include<stdio.h>

int main()

{

	 int marks=83;

	 if(marks>75){

		 printf(“First class”);

	 }

	 else if(marks>65){

		 printf(“Second class”);

	 }

	 else if(marks>55){

		 printf(“Third class”);

	 }

	 else{

		 printf(“Fourth class”);

	 }

	 return 0;

}

Program 2.2.6

Here in this program:
1.	 We initialize a variable called marks. We’ve included a variety of criteria in

the 'else if' ladder structure.
2.	 The variable marks’ value will be compared to the first condition, and if it

matches, the sentence associated with it will be written on the output screen.
3.	 If the first condition is found to be incorrect, it is compared to the second

condition.
4.	 This process will continue until the entire expression is evaluated, at which

control will exit the 'else if' ladder and the default statement will be printed.

2.2.6 The switch-case statement

In real life, we are often faced with circumstances in which we must choose from a

76 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

variety of options rather than from one or two. For example, deciding which school
to attend or which hotel to visit, or even more difficult, deciding which profession to
pursue. C programming is the same; the decision we must make is more complex than
simply choosing between two options. Rather than using a sequence of if statements, C
provides a special control statement that helps us to manage certain cases effectively.

A switch, or more accurately a switch-case, is a control statement that helps one to
make a decision from a variety of options. The syntax of the switch-case is shown
below:

switch(expression)

{

	 case value-1:

			 statement(s);

			 break;

	 case value-2:

			 statement(s);

			 break;

	 case value-n:

			 statement(s);

			 break;

	 default:

			 statement(s);

}

The rules of switch casing
	♦ The expression may be either an integer or a character expression.
	♦ Value-1, 2, and n are case labels that are used to mark each case

separately. Remember that case labels should never be the same, as
this can cause a problem when running a program.

	♦ Case labels must end with a colon (:). Each case will associate with a
code block

77SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The control flow that happens in the switch case is shown below

Fig. 2.2.2 Flowchart representation of Switch Statement

	♦ In each case, the break keyword indicates the end of a specific case.
If we don’t put a break in each case, the switch in C will continue to
execute all the cases until the end is reached, even though the particular
case is executed.

	♦ The default case is optional. When the value of test-expression does
not match any of the cases in the switch, the default is executed.

	♦ Otherwise, there is no need to use default in the switch.

78 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Let us understand the switch-case using an example (refer Program 2.2.7)

#include <stdio.h>

#include <conio.h>

void main() {

 int num = 8;

 switch (num) {

 case 7:

 printf(“Value is 7”);

 break;

 case 8:

 printf(“Value is 8”);

 break;

 case 9:

 printf(“Value is 9”);

 break;

 default:

 printf(“Out of range”);

 }

 getch();

 }

Program 2.2.7

Output

Value is 8

Let us understand the program:
1.	 In the previous programme, we explained how to initialize a variable num

with the value 8.

79SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

/* program to print the first five even numbers */

#include<stdio.h>

#include<conio.h>

void main()

{

 printf(“0\n”);

 printf(“2\n”);

 printf(“4\n”);

 printf(“6\n”);

 printf(“8\n”);

}

Program 2.2.8

What do we do if we are given 1000 or 100,000 even numbers to print? It would be
inefficient to write 100,000 “printf” statements. It would be inconvenient and not the
best method for completing the mission.

A better approach is to write a program with a loop or iteration. The algorithm is given
below:

1.	 Take a variable, say, count
2.	 Initialise the value of count to 0

2.	 The value stored in the variable num is compared using a switch construct,
and the block of statements associated with the matched case is executed.

3.	 Since the value stored in variable num is eight in this code, a switch will
run the case with the case label of eight. The control will fall out of the
switch after the case is completed, and the program will be terminated with
a satisfactory result by printing the value on the output screen.

2.2.7 Looping

Sometimes, we may repeat tasks; for example, take the act of hammering a nail. Even
though you may not realize it, you are constantly asking yourself, “is the nail in?”.
When the answer is “no”, you hammer the nail again. You continue to repeat this ques-
tion until the answer is “yes”, and then you stop. This kind of repetition is called a loop
or iteration. Loops allow a programmer to code efficiently, code repetitive tasks instead
of having to write the same actions over and over again.

Let us consider an example program 2.2.8 to understand the loop concept.

80 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.	 Divide the count by two and Check whether the reminder is 0
4.	 If yes, print count
5.	 Increment the value of count (count = count +1)
6.	 Repeat the step 3 to 5 until the count is less than or equal to 100,000.

Looping control allows you to repeatedly run a series of statements in a program,
depending on a condition. A loop’s statements are repeated as long as a logical condition
remains valid. The value of a variable called the loop’s control variable is used to verify
this condition. The loop ends when the condition becomes incorrect. The programmer
must ensure that this condition becomes incorrect at some stage so that there is an
escape condition and the loop does not become infinite. For example, if the condition
count<=100000 were not set, the program would crash.

The C program supports three looping controls: for, while and do-while.

2.2.8 The “for” loop

The for statement iterates over a set of values or a sequence of values. Each object in
the range is passed through the for loop. These values can be numeric, or they can be
elements of a data type like a string or an array, as we will see in later chapters.

The control variable tests whether each of the range’s values have been traversed or
not with each iteration of the loop. The statements inside the loop are not executed
until all of the items in the range have been exhausted; the control is then passed to the
command immediately following the for loop. When using a for loop, the number of
times the loop will run is known ahead of time. Below is a diagram (refer Fig. 2.2.3) of
flowchart representing the execution of a for loop.

Fig. 2.2.3 Flowchart of a Loop Execution

81SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The syntax of for loop is

for (initializationStatement; testExpression; updateStatement)

{

 // statements inside the body of the loop

}

	♦ The initialStatement of the for loop is evaluated only once.
	♦ The testExpression is a Boolean expression that tests and compares the

counter to a fixed value after each iteration, stopping the for loop when false
is returned.

	♦ The updateStatement increases (or decreases) the counter by a set value.

Let us consider a C program (refer 2.2.9) to understand the for loop better

#include<stdio.h>

int main()

{

	 int number;

	 for(number=1;number<=10;number++) //for loop to print 1-10 nos

	 {

		 printf(“%d\n”,number);	 //to print the number

	 }

	 return 0;

}

Output
1
2
3
4
5
6
7
8
9
10

Program 2.2.9

The above program prints the numbers from 1 to 10 using a for loop. Let us understand
how it works?

To store values, we’ve declared an int data type variable.

The variable number was given the value 1 in the for loop’s initialization section. We
stated our condition in the condition section, followed by the increment section.

In for loop initialisation and updation statements are optional. We can initialise before
the loop and also can update value inside the loop.

82 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The numbers are printed on a new line by using '\n' in the console using the print feature
in the body of the loop. After the first iteration, the value will be incremented, and it will
become 2 and the process goes on till the number reaches 10.

2.2.9 The “while” loop

In the previous discussion about “for loop”, we saw that the loop executed a fixed
number of times. What if we do not know how many times we need to repeat the
statements?

For example, suppose you like to listen to music. In that case, every music app has
a loop feature that plays your favorite song over and over until you disable the loop
function by moving on to the next song.

Similarly, the while loop will execute the code block until the while condition is true.
The while loop’s control condition is executed before any of the loop’s statements are
executed. The control condition is evaluated for each iteration, and the loop continues
as long as the condition is valid. When this condition is incorrect, the statements in the
body of the loop are skipped, and control is passed to the statement immediately after
the loop’s body. The body is not executed even once if the while loop’s state is initially
incorrect.

The while loop’s statements must ensure that the condition becomes false at some point;
otherwise, the loop would become infinite, resulting in a logical error in the program
(refer Program 2.2.10).

The syntax of while loop is:

while(condition)

{

	 statement(s);

}

#include<stdio.h>

#include<conio.h>

int main()

Output

1

2

Let us consider a C program

83SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

{

 int num=1; // initializing the variable

 while(num<=10) //while loop with

condition

 {

 printf(“%d\n”,num);

 num++; //incrementing operation

 }

 return 0;

}

3

4

5

6

7

8

9

10

Program 2.2.10

2.2.10 The “do-while” loop

Unlike “for” and “while” loops, which evaluate the loop condition at the top, the
do-while loop in C programming tests the loop condition at the bottom.

For example, if a new restaurant opens in your area, you may want to find out whether or
not the food is to your liking before you decide to become a regular customer. You will
need to visit the restaurant atleast once to try the food, and if it meets your expectations,
you can visit frequently.

The do-while loop is identical to the while loop, but it guarantees that the commands
will be executed at least once.

The syntax of the do-while loop is:

do

{

 statement(s);

} while(condition);

84 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Let us consider a C program

/* program to print the first n even numbers*/

#include<stdio.h>

int main()

{

	 int num=1, limit; //initializing the variable

	 printf(“Enter the limit: “);

	 scanf(“%d”,&limit);

	 do	 //do-while loop

	 {

		 if(num%2==0)

		 {

		 printf(“%d\n”,num);

		 }

		 num++; //incrementing operation

	 }while(num<=limit);

	 return 0;

}

Enter the
limit: 10

2

4

6

8

10

Program 2.2.11

In program number 4 we print the first n odd numbers up to the limit entered by the user.

How is the program able to print the series?
1.	 First we initialize a variable num to 1 and declare a variable limit to get the

user input.
2.	 The scanf() function helps us to get the value from the user and will store it

to variable limit. Then we write a do-while loop.
3.	 In that loop we check whether the reminder is zero when “num” is divided

by 2.
4.	 If so it will print the value of num
5.	 After each increment, the value of num will increase by 1
6.	 This will go on until the value of num becomes equal to the value of limit.

After that loop will be terminated and a statement which is immediately after
the loop will be executed. In this case return 0.

85SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

2.2.11 Break continue and goto

Break statement

To get out of a loop quickly, use the break. When a break statement is found within
a loop or code block, control is immediately removed from the block. The block will
terminate. This can also be used in a control structure for switch cases.

Syntax: break;

Let us understand the control flow of break command using a flow chart (refer Fig
2.2.4)

Fig 2.2.4 Flowchart for Break in Loop

Let us consider a sample program to implement the break in while loop (refer
Program 2.2.12)

#include <stdio.h>

int main()

{

 int num =0

Output

1

2

86 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 while(num<=100)

 {

 printf(“value of variable num is:
%d\n”, num);

 if (num >= 3)

 {

 break;

 }

 num++;

 }

 if(num <=3)

 printf(“break command executed”);

 return 0;

}

Output:

value of variable num is: 0

value of variable num is: 1

value of variable num is: 2

 break command executed

Program 2.2.12

Continue statement

Within loops, the continue expression is used. When a “continue” statement appears
within a loop, control moves to the beginning of the loop for the next iteration, ignoring
the execution of statements inside the loop’s body for the current iteration.

Let us consider a program (refer 2.2.13) for better clarification

Syntax: continue;

#include<stdio.h>

int main()

{

 int nb = 7;

 while (nb > 0)

 {

nb--;

 if (nb == 5)

Output

6

4

3

2

1

0

87SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 continue;

 printf(“%d\n”, nb);

 }

}

Program 2.2.13

In program 2.2.13, you could notice that the value 5 is skipped because continue is used.

C - goto command

When a goto statement is encountered in a C program, the control jumps to the label
specified in the goto statement.

Syntax of the goto statement is.

goto label_name;

	 ..

	 statement(s)

	 ..

label_name: C-statement(s);

The flowchart of the goto statement is shown below

Fig. 2.2.5 Flowchart for goto Statement

88 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Let us understand the goto statement through a c program (refer Program 2.2.14).

#include <stdio.h>

#include <conio.h>

void main()

{

 int sum=0;

 for(int i = 0; i<=10; i++){

	 sum = sum+i;

	 if(i==5){

	 goto addition;

	 }

}

 addition:

 printf(“%d”, sum);

 getch();

}

Output:

15

Program 2.2.14

Goto is an unconditional jump command that alters the flow of control. It can be used
at any point in the program to jump from where it is currently running to another line
of code. It will continue to execute the codes sequentially until it has moved to another
side. It will not be able to return to previous execution lines. However, it is not advised
to use goto statements in a program. The main reasons to avoid the goto command are:

	♦ It makes the program buggy.
	♦ Less readable
	♦ It makes the program logic more complex
	♦ Debugging will be difficult

The use of goto statements can easily be replaced using break and continue statements.

2.2.12 Nested loops

A loop inside a loop is called a nested loop. Let’s consider a clock which is a perfect
example of a nested loop.

89SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Include an image of a clock

Inside a clock, once the second’s needle completes 60 iterations, only the minute handle
move to next. Once the minute handle completes 60 iterations, the hour handle move
to next. Here the second’s loop will be referred to as the inner loop and the hours loop
considered as outer loop.

Let us consider an example (Problem 2.2.15) to understand the concept

#include <stdio.h>

int main()

{

 int i, j;

 int table = 2;

 int max = 5;

 for (i = 1; i <= table; i++)

 { // outer loop

 for (j = 0; j <= max; j++)

 { // inner loop

 printf(“%d x %d = %d\n”, i, j, i*j);

 }

 printf(“\n”); /* blank line between tables
*/

 }

 }

1 x 0 = 0

1 x 1 = 1

1 x 2 = 2

1 x 3 = 3

1 x 4 = 4

1 x 5 = 5

2 x 0 = 0

2 x 1 = 2

2 x 2 = 4

2 x 3 = 6

2 x 4 = 8

2 x 5 = 10

Program 2.2.15

The Program 2.2.15 shows nesting of for loops. It can be extended to any level. Simi-
larly you can do nesting of any loops.

90 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Recap

	♦ Decision making or control statements are used to choose one of many paths
depending on the outcome of the evaluated expression.

	♦ ‘C’ uses if, if-else structures for decision-making statements.

	♦ When several paths must be checked, we can nest if-else statements within
one another.

	♦ When we need to search different options based on the expression’s outcome,
we use the else-if ladder.

	♦ A switch case is a control flow construct in C.

	♦ A switch is used in problems that require you to decide from several choices
for decision.

	♦ A switch must have a test expression that can be executed.

	♦ A break keyword must be used in each event.

	♦ Case labels must be consistent and distinct.

	♦ The default clause is optional.

	♦ Switch statements may be nested one within the other.

	♦ In C, a collection of looping statements is executed a number of times until
the condition is false.

	♦ ‘C’ programming provides us

○	 while

○	 do-while

○	 for loop.

	♦ goto is an unconditional jump command.

	♦ goto will not be able to return to previous execution lines

	♦ break is used to exit from a code block

91SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Objective Type Questions

1.	 What is the output of the following c program ?

	 int main()

	 {

 	 if(10 > 9)

 	 printf(“Singapore\n”);

 	 else if(4%2 == 0)

 printf(“England\n”);

 printf(“Poland”);

 	 return 0;

	 }

2.	 How many choices are possible while using a single if else statement?
3.	 What is the output of the following code snippet?

	 int sum = 14;

	 if (sum < 20)

	 printf(“Under “);

 else

 	 printf(“Over “);

	 printf(“the limit.”);

4.	 What is the output of the code fragment shown below ?

	 int sum = 14;

	 if (sum < 20)

 	 printf(“Under “);

	 else

	 {

 	 printf(“Over “);

 printf(“the limit.”);

	 }

92 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

5.	 What is the output of the code block shown below ?

	 int a=3;

 	 switch(a)

 	 {

 	 case 2: printf(“ZERO “);

 break;

 case default: printf(“RABBIT “);

 	 }

6.	 Predict the output of the code shown below:

	 void main()

	 {

 	 int a;

 	 switch(a)

 	 {

 	 printf(“Apple “);

 	 }

 	 printf(“Banana”);

	 }

7.	 What is the output of the code block ?

	 int main()

	 {

 	 int a;

 	 switch(a);

 	 {

 	 printf(“DEER “);

 	 }

 	 printf(“LION”);

	 }

93SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

8.	 Guess the output of the code block

	 void main()

	 {

 	 static int a=5;

 	 switch(a)

 	 {

 		 case 0: printf(“ZERO”);break;

 		 case 5: printf(“FIVE”);break;

 		 case 10: printf(“DEER”);

 	 }

 	 printf(“LION”);

	 }

9.	 What is the output of the code shown below ?

	 void main()

	 {

 	 char code=’K’;

 switch(code)

 	 {

 		 case ‘A’: printf(“ANT “);break;

 		 case ‘K’: printf(“KING “); break;

 		 default: printf(“NOKING”);

 	 }

 	 printf(“PALACE”);

	 }

10.	Loop controls supported by C are ______________________________
11.	____________ is the syntax of while loop
12.	_____________________is the output of the following C program

94 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

int main()

{

 while(true)

 {

 printf(“RABBIT”);

 break;

 }

 return 0;

}

13. Predict the output of the C program

int main()

{

 int a=5;

 while(a==5)

 {

 printf(“RABBIT”);

 break;

 }

 return 0;

}

14. What is the output of the C program ?

int main()

{

95SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 int a=25;

 while(a <= 27)

 {

 printf(“%d\t”, a);

 a++;

 }

 return 0;

}

15. Predict the output of the following program

int main()

{

 int i;

 for(i=0;i<10;i++);

 printf(“%d”, i);

 return 0;

}

16. Which command is used to exit immediately from the loop?

17. ____________ is the output of the C program

int main()

{

 int a=0, b=0;

96 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 while(++a < 4)

 printf(“%d “, a);

 while(b++ < 4)

 printf(“%d “, b);

 return 0;

}

18. Which command is used for coming out of a code block ?

19. In which command is the destination specified using a label ?

20. ________________ command changes the control flow of code to other
statement without any condition

Answers to Objective Type Questions

1.	 Singapore

	 Poland
2.	 Two
3.	 Under the limit
4.	 Under
5.	 Compilation error/ syntax error; there is no case default, it is ‘default’.
6.	 Banana (Take note of the absence of any CASE or DEFAULT statements.

Even then, the compiler supports it. However, if the CASE statement is not
present, nothing will be printed inside of SWITCH.)

7.	 DEER LION (there is a ‘;’ after switch so printf(“DEER ”) is outside the
switch block.)

8.	 FIVELION
9.	 KING PALACE
10.	For, while and do-while
11.	while(condition){ statement(s);}
12.	Compilation error
13.	RABBIT

97SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

14.	25	 26	 27
15.	10
16.	break
17.	1 2 3 1 2 3 4
18.	break
19.	goto
20.	goto

Assignments

1.	 Explain decision making statements in C programming.
2.	 Write a C program to find the largest among three numbers using nested if.
3.	 Explain switch statement in C program.
4.	 Write a C program to perform basic arithmetic operations using switch

statements based on a user’s choice.
5.	 Explain entry controlled loop and exit controlled loop.
6.	 Write a C program to check whether a given string is palindrome or not.
7.	 Write a C program to check whether a given number is armstrong or not.
8.	 Write a C program to find the factorial of a given number.
9.	 Explain break, continue and go statements in C programming.

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

98 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Arrays and Strings

Learning Outcomes

Prerequisites

	♦ design and use arrays in C program to solve real-world problems

	♦ know about pointers in C Programming

	♦ introduce representation of strings in C Programming

	♦ identify the usage of string with pointers.

	♦ familiarize the concept of built-in string functions.

If you want to go to a place 10km away from your hometown and alone, you will
probably choose a two-wheeler as your mode of transport. Nevertheless, if you are
going with a group of 20 people, two-wheelers would be a wrong choice. A bus or a van
will be more convenient. In the same way, in programming, primitive data types like int
or float may be inadequate. In such situations, we use derived data types that can store
multiple values at a time. In this section, we discuss arrays. “An array is a collective
name given to a group of similar quantities.”

Let’s consider an example:
1.	 #include <stdio.h>
2.	 #include <conio.h>
3.	 void main()
4.	 {
5.	 int x=7;
6.	 x = 12;
7.	 printf(“ x = %d \n”, x);
8.	 getch();
9.	 }

UNIT 3

After the successful completion of the unit, the learner will be able to:

99SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

What will be the output of the above-given program? No doubt, the program will print
the value of x as 12. In line 6, when we assign the value 12, the initial value of x will
be written i.e., 7. int variables cannot hold more than one value at a time. Here we can
use arrays.

As an example, let us say we want to rank 100 students’ percentage marks in ascending
order. We have two choices for storing these marks in memory :

Create 100 variables to hold the percentage marks earned by 100 different students,
with each variable holding one student’s marks.

Construct a single variable (also known as an array) that can store or hold all of the
hundred values.

Surely, the second choice is preferable. One easy explanation for this is that managing
one variable is much simpler than managing 100 different variables. Which means an
array is a group of identical elements. These related elements may all be int, float,
or chars. A string is a collection of characters, while an array of int or float is simply
referred to as an array. Remember that all elements of an array must be of the same
type; for example, an array of 10 numbers cannot contain 5 ints and 5 floats. Arrays are
composed of contiguous memory locations. The first element has the lowest address,
and the last element has the highest.

 Fig 2.3.1 Array

In a C program, the minor individual units are termed as C tokens. C has six types of
tokens. C programs are written using these tokens and the syntax of the language. Six
tokens are namely Keywords, Identifiers, Constants, Strings, Operators, and Special
symbols.

Every C word is considered as either a keyword or an identifier. All keywords have fixed
meanings, and these meanings cannot be changed. Keywords serve as basic building

100 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

blocks for program statements. All keywords must be written in lowercase. Examples
include auto, else, register, break, enum, return, unsigned, char, float, void, case, etc.

Identifiers guide the names of variables, functions, and arrays. These are user-defined
names and comprise a sequence of letters and digits, with a mandate that a letter should
be the first character. Both uppercase and lowercase letters are permitted. However,
lowercase letters are generally used. The underscore character is also permitted in defin-
ing an identifier. Moreover, keywords and white space cannot be used as an identifier.

An operator is a symbol that tells the computer to perform certain mathematical or log-
ical manipulations. Operators are used in programs to manipulate data and variables.
C operators can be classified into a number of categories. They include Arithmetic
operators, Relational operators, Logical operators, etc.

Constants in C refer to fixed values that do not change during the execution of a program.
C mainly supports two types of constants: character constants and numeric constants.
A variable in C is a data name that may be used to store a data value. Unlike constants
that remain unchanged during the execution of a program, a variable may take different
values at different times during execution.

Key Concepts

 One dimensional arrays, Multidimensional arrays, array index

Discussion
2.3.1 Declaration and initialization of arrays

To begin, an array, like other variables, must be declared so that the compiler knows
what kind of array we want and how big it should be. This is what we’ve done in our
programme with the following statement:

datatype arrayName [arraySize];

Example: int arr[10];

In this case, int specifies the variable’s type, just as it does with ordinary variables,
and the word ‘arr’ specifies the variable’s name. The number 10 indicates how many
integer elements will be in our array. This value is commonly referred to as the array’s
“dimension.” The square bracket ([]) indicates to the compiler that we are working
with an array.

Let us see how individual elements in an array can be referred to after it has been

101SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

/* program to find the average of given five numbers*/

#include<stdio.h>

void main()

{

	 int i, avg, num[5] = { 10,20,32,50,26},sum=0;

	 for (i = 0 ; i <5 ; i++)

	 sum = sum + num[i] ; /* read data from an array by using index
value 	 or position value */

	 avg = sum / 5 ;

	 printf (“Average marks = %d\n”, avg) ;

}

declared. Subscript; the number after the array name in brackets, is used to accomplish
this. The position of the element in the array is determined by this number. The array
elements are numbered from zero to n-1.

Let us consider a C program (refer to Program 2.3.1) to understand it

Program 2.3.1

We use the variable i as a subscript to refer to different elements of the array in the
above code. This attribute may have several values, allowing it to apply to the array’s
various elements in turn. The ability to interpret subscripts with variables is what makes
arrays so useful.

Let us see how to enter elements into arrays

#include<stdio.h>

voidmain()

{

int i, num[5];

printf (“Enter any 5 numbers “) ;

for (i = 0 ; i <5 ; i++)

 {

scanf (“%d”, &num[i]) ;

 }

}

102 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

In the above code snippet, the for loop repeats the process of asking the user to input
any number, five times. Since i has a value of 0 the first time around the loop, the scanf(
) function would cause the value typed to be stored in the array element num[0], the
array’s first element. This process will be repeated before i attain the value of 5.

We used the “address of ‘’ operator (&) on the array element num[i], just like we did
on other variables, in the scanf() function (&rate, for example). We are passing the
address of this particular array element to the scanf() function, rather than its value, as
is required by scanf().

The for loop in the following code snippet is similar, except that the body of the loop
now adds each number to a running total stored in a variable called sum. After adding
up all of the numbers, divide the total by 5, the number of students, to get the average.

for (i = 0 ; i <5 ; i++)

sum = sum + num[i] ; /* read data from an array*/

avg = sum / 5 ;

printf (“Average marks = %d\n”, avg) ;

2.3.2 Array elements in memory

Take a look at the array declaration below:

	 int array[5];

When we make this declaration, what happens in the computer memory? 10 bytes are
reserved in memory right away, 2 bytes for each of the five integers. Since the array
isn’t initialised, all of the values in it are garbage.

Regardless of the initial values, all array elements will still be present in contiguous
memory locations. This memory array element arrangement is depicted below.

Include image of array with 5 elements and contiguous memory location

Note: The programmer must ensure that the you can’t exceed the size of the array

2.3.3 Multi-dimensional arrays

In the previous section, we looked at arrays with only one dimension. Arrays of two or
more dimensions are also possible. This session explains how to build and manipulate
multidimensional arrays in C. The following is an example of a multidimensional array
declaration in its most basic form.

Datatype arrayName[size1][size2]...[sizeN];

103SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The two-dimensional array is the most basic type of multidimensional array. A two-di-
mensional array is essentially a list of one-dimensional arrays. The following is the
syntax for a two-dimensional array:

Datatype arrayName[size1][size2];

Let’s consider an example Program 2.3.2 to understand initialization and accessing the
two dimensional array elements

#include <stdio.h>

#include <conio.h>

int main () {

 /* an array with 5 rows and 2 columns*/

 int a[5][2];

 int i, j;

 for (i=0;i<5;i++)

 {

 for (j=0;j<2;j++)

 {

 printf(“Enter a[%d][%d]: “,i,j);

 scanf(“%d”,&arr[i][j]);

 }

 }

 /* output each array element’s value */

 for (i = 0; i < 5; i++) {

 for (j = 0; j < 2; j++) {

 printf(“a[%d][%d] = %d\n”, i,j, a[i][j]);

 }

 }

 getch();

 return 0;

}

Program 2.3.2

104 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The above program has two parts. We read-in the values in the first part using a for loop,
and we print them out in the second part using another for loop. The array elements
were stored row-by-row and accessed row-by-row in our example program. You can
also view the array elements by column. Since array elements are traditionally stored
and accessed row-by-row, we will use the same approach.

The array elements are contained in one continuous chain in memory, whether it’s a
one-dimensional or two-dimensional array.

2.3.4 What are Strings?

The C language provides a capability that enables the user to design a set of similar
data types, called arrays. In the same way a group of integers can be stored in an integer
array, a group of characters can be stored in a character array. Character arrays are
also called strings. Character arrays or strings are used by programming languages to
manipulate text, such as words and sentences.

A string constant is a one-dimensional array of characters terminated by a null (‘\0’).
For example,

	 char name[] = { ‘H’, ‘A’, ‘E’, ‘S’, ‘L’, ‘E’, ‘R’, ‘\0’ } ;

Each character in the array occupies 1 byte of memory and the last character is always
’\0’. What is this character? ‘\0’ is called a null character. However ‘\0’ and ‘0’ are not
the same. The ASCII value of ‘\0’ is 0, whereas the ASCII value of ‘0’ is 48. Figure
2.3.2 below shows the way a character array is stored in memory. Note that the elements
of the character array are stored in contiguous memory locations. The terminating null
(‘\0’) is important because it is the only way the functions that work with a string can
know where the string ends. In fact, a string not terminated by a ‘\0’ is not a string, but
it is just a collection of characters.

 Fig 2.3.2 String as an Array

However, we would often use strings and hence C programming provides a shortcut
for initializing strings. For example, the above example of string termed “HAESLER”
could be initialized as,

char name[] = “HAESLER”;

In this method of declaration ‘\0’ is not necessary. C automatically inserts the null
character.

2.3.5 More about Strings

In what way are character arrays different from numeric arrays? In C, elements in a

105SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

character array be accessed in the same way as the elements of a numeric array? Do
we need to take any special care of ‘\0’? Why do numeric arrays don’t end with a ‘\0’?
Declaring strings is okay, but how do we manipulate them? Let us find answers to the
above questions with the help of a few sample programs.

Manipulating the String or Character Arrays using :

2.3.5.1 Word count

/* Program to demonstrate printing of a string */

#include <stdio.h>

int main()

{

char name[] = “Hellions” ;

int i = 0 ;

while (i <= 7)

{

printf (“%c”, name[i]) ;

i++ ;

}

printf (“\n”) ;

return 0 ;

}

Output:

Hellions

Program 2.3.3

Here in the above program (refer to Program 2.3.3), a character array is initialized, and
then printed out the elements of this array iterating through a while loop. Can we limit
the looping iteration without using the hardbound count of 7?

2.3.5.2 End Delimiter

It is possible as every string or character array always ends with a ‘\0’. The Program
2.3.4 illustrates this conditional check:

106 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

/* Program to demonstrate printing of a string */

#include <stdio.h>
int main()
{
char name[] = “Hellions” ;
int i = 0 ;
while (name[i] ! = '\0')
{
printf (“%c”, name[i]) ;
i++ ;
}
printf (“\n”) ;
return 0 ;
}

Output:

Hellions

Program 2.3.4

The above-given program doesn’t rely on the string length (number of characters in the
string) to print out its contents. Hence it provides a more general solution than the first
example.

The printf() function has got a simple way of printing strings as shown below. Also
printf() doesn’t print the ‘\0’.

#include <stdio.h>

int main()

{

char name[] = “Klinsman” ;

printf (“%s”, name) ;

}

Output:

Klinsman

Program 2.3.5

107SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The %s used in the above printf() statement (Program 2.3.5) is a format specification
for printing out a string. The same specification can be used to receive a string from the
keyboard, as shown below.

#include <stdio.h>

int main()

{

char name[25] ;

printf (“Enter your name “) ;

scanf (“%s”, name) ;

printf (“Hello %s!\n”, name) ;

return 0 ;

}

Output:

Enter your name Debashish

Hello Debashish!

Program 2.3.6

The declaration in the example Program 2.3.6, char name[25] sets aside 25 bytes
under the array name[], whereas the scanf() function fills in the characters typed at
keyboard into this array until the Enter key is hit. Once enter is hit, scanf() places a
’\0’ in the array. Naturally, we should pass the base address of the array to the scanf()
function.

While entering the string using scanf(), we must be cautious about two things:

(a) The length of the string should not exceed the dimension of the character array. This
is because the C compiler doesn’t perform bounds checking on character arrays. Hence,
if you carelessly exceed the bounds, there is always a danger of overwriting something
important, and in that event, you would have nobody to blame but yourselves.

(b) scanf() is not capable of receiving multi-word strings. Therefore, names such as
‘Debashish Roy’ would be unacceptable. The way to get around this limitation is by
using the function gets(). The usage of functions gets() and its counterpart puts() is
shown below.

108 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include <stdio.h>

int main()

{

char name[25] ;

printf (“Enter your full name: “) ;

gets (name) ;

puts (“Hello!”) ;

puts (name) ;

return 0 ;

}

Output:

Enter your full name: Debashish Roy

Hello!

Debashish Roy

Program 2.3.7

In the above Program 2.3.7 puts() displays only one string at a time, hence two puts
() are used in the above program. Also, on displaying a string, puts() places the cursor
on the next line. However, gets() is capable of receiving only one string at a time; the
advantage of gets() is that it can receive a multi-word string. scanf() can be used to
accept multi-word strings by writing it as given below.

char name[25] ;

printf (“Enter your full name “) ;

scanf (“%[^\n]s”, name) ;

Here, [^\n] indicates that scanf() will keep receiving characters into name[] until \n is
encountered.

109SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Fig 2.3.3 String Functions

2.3.6 String Functions

The string functions in C language are built-in functions, which can be used for various
string manipulation operations.

 		

Function Use

strlen Finds length of a string

strlwr Converts a string to lowercase

strupr Converts a string to uppercase

strcat Appends one string at the end of another

strncat Appends first n characters of a string at the end of another

strcpy Copies a string into another

strncpy Copies first n characters of one string into another

strcmp Compares two strings

strncmp Compares first n characters of two strings

strcmpi Compares two strings by ignoring the case

stricmp Compares two strings without regard to case (identical to
strcmpi)

strnicmp Compares first n characters of two strings without regard to
case

strdup Duplicates a string

strchr Finds first occurrence of a given character in a string

strrchr Finds last occurrence of a given character in a string

strstr Finds first occurrence of a given string in another string

strset Sets all characters of string to a given character

strnset Sets first n characters of a string to a given character

strrev Reverses string

110 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include <stdio.h>

#include <string.h>

 int main() {

		 char arr[] = “Bamboozled” ;

		 int len1, len2 ;

		 len1 = strlen (arr) ;

		 len2 = strlen (“Humpty Dumpty”) ;

		 printf (“string = %s length = %d\n”, arr, len1) ;

		 printf (“string = %s length = %d\n”, “Humpty Dumpty”, len2
) ;

		 return 0 ;

}

Output:

string = Bamboozled length = 10

string = Humpty Dumpty length = 13

Program 2.3.8

You may notice that in the first call to the function strlen(), we are passing the base
address of the string, and the function returns the length of the string. While calculating
the length, it doesn’t count ’\0’. In the second call as in the above example,

len2 = strlen (“Humpty Dumpty”) ;

Input to the strlen() function is the address of the string and not the exact string itself.

2.3.6.2 strcpy()

This function copies the contents of one string into another. The base addresses of the

The figure 2.3.3 above shows some commonly used functions along with their purpose.
From the above list given in Fig 2.3.3. more commonly used functions like strlen(),
strcpy(), strcat() and strcmp() will be illustrated below and shows how the library
functions in general handle strings. Let us explore these functions one-by-one.

2.3.6.1 strlen()

This function counts the number of characters present in a string. Its usage is illustrated
in the following program (refer to Program 2.3.8):

111SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

source and target strings should be supplied to this function. An example of strcpy() is
given in the below program (refer to Program 2.3.9)

#include <stdio.h>

#include <string.h>

int main()

{

char source[] = “Sayonara” ;

char target[20] ;

strcpy (target, source) ;

printf (“source string = %s\n”, source) ;

printf (“target string = %s\n”, target) ;

return 0 ;

}

And here is the output...

source string = Sayonara

target string = Sayonara

Program 2.3.9

On supplying the base addresses, strcpy() goes on copying the characters in source
string into the target string till it encounters the end of source string (‘\0’). It is our
responsibility to make sure that the target string’s dimension is big enough to hold the
string being copied into it. Thus, a string gets copied into another, piece-meal, charac-
ter-by character.

2.3.6.3 strcmp()

This function is used to compare two strings. It stands for "string compare". The
function takes two string arguments and compares them character by character until it
finds a difference or reaches the end of one of the strings.

Syntax: strcmp(str1,str2)

The strcmp() function compares string1 with string 2 and returns:

0 if both strings are equal.

112 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

A negative value if string1 is lexicographically less than string2.

A positive value if string1 is lexicographically greater than string2

#include <stdio.h>

#include <string.h>

int main()

{

char str1[] = "rice";

char str2[] = "wheat";

int result = strcmp(str1, str2);

if (result == 0)

{

printf("Strings are equal.\n");

}

else if (result < 0)

{

printf("str1 is less than str2.\n");

}

else

{

printf("str1 is greater than str2.\n");

}

return 0;

}

Output

str1 is less than str2

In the above example, since "rice" comes before "wheat" in lexicographic order, the
output would be "str1 is less than str2.

113SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

2.3.6.4 strcat()

This function is used to concatenate (i.e., append) one string to the end of another
string. It stands for “string concatenation”.

Syntax: strcat(str1,str2)

This function appends a copy of the null-terminated string str2 to the end of the null-
terminated string str1. The str1 argument should be large enough to hold the concatenated
result.The str2 argument remains unchanged.

#include <stdio.h>

#include <string.h>

int main()

{

char str1[50] = "Good ";

const char str2[] = "Morning";

strcat(str1, str2);

printf("Concatenated string: %s\n", str1);

return 0;

}

In this example, str1 is "Good" and str2 is "Morning". After calling strcat(str1,str2), the
contents of str1 become “Good Morning ".

Recap

	♦ An array is a collection of same data type stored in contiguous memory
locations.

	♦ The array’s first element is numbered 0, so the last element is one less than
the array’s length.

	♦ Each element in the array is accessed by its index.

	♦ An array’s form and dimension must be declared before it can be used.

	♦ An array’s bounds are not verified by the compiler.

	♦ Since array elements are stored in contiguous memory locations, pointers
can be used to access them.

	♦ It is possible to construct multidimensional arrays.

114 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Objective Type Questions

1.	 Array is an example of _______ type memory allocation.
2.	 A one dimensional array A has indices 0....75. Each element is a string and

takes up three memory words. The array is stored at location 1120 decimal.
The address of A[49] is ?

3.	 What will be the address of the arr[2][3] if arr is a 2-D long array of 4 rows
and 5 columns and the starting address of the array is 2000?

4.	 What is the maximum number of dimensions an array in C can have?
5.	 Which standard string function will you use to join two words?
6.	 Which standard string function is used for the Copying function?
7.	 The _______ function appends not more than n characters.
8.	 What will strcmp() function do?
9.	 What is a String in C Language?
10.	What is the Format specifier used to print a String or Character array in C?

	♦ A 2-D array is a collection of several 1-D arrays.

	♦ About the concept of strings

	♦ Manipulating strings

	♦ String functions

Answers to Objective Type Questions

1.	 Compile time
2.	 1120 + (49-1) x 3 = 1264
3.	 2052
4.	 Theoretically there are no limits. It purely depends on system memory and

compiler
5.	 strcat()
6.	 strcpy and memcpy
7.	 strncat()
8.	 compare two strings and return an integer value that indicate the relationship

between the 2 strings being compared

115SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Assignments

1.	 Write a simple program to search an element in 1D array.
2.	 How to make the search easy imagine that the array elements are sorted in

order.
3.	 What is an array? Explain its significance in representation of data.
4.	 What are the different ways to declare and initialise an array?
5.	 Explain a multi dimensional array.
6.	 How to represent strings in the C programming language.
7.	 Write a C program to declare an array of 10 elements and find the largest

element in an array.

9.	 String is an array of Characters with null character as the last element of
array

10.	%s

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

116 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Pointers and Dynamic
Memory Allocation

Learning Outcomes

Prerequisites

	♦ understand the need for storing memory addresses

	♦ recall accessing a variable through pointers

	♦ familiarize with malloc(), calloc(), free() and realloc() functions

In memory, every stored data item occupies one or more contiguous memory cells. The
number of memory cells required to store a data item depends on its type (char, int,
double, etc.). Whenever we declare a variable, the system allocates memory location(s)
to hold the value of the variable. Since every byte in memory has a unique address, this
location will also have its own (unique) address.

Consider the statement

int x = 50;

This statement instructs the compiler to allocate a location for the integer variable x,
and put the value 50 in that location. Suppose that the address location allocated is 100.
During the execution of the program, the system always associates the name x with the
address 100. The value 50 can be accessed by using either the name x or the address
100. Since memory addresses are simply numbers, they can be assigned to some vari-
ables which can be stored in memory. Such variables that hold memory addresses are
called pointers. Pointers enable us to access the values of a variable using their memory
address.

UNIT 4

After the successful completion of the unit, the learner will be able to:

Key Concepts

 Pointers, dynamic memory allocation, malloc, calloc, realloc, free	

117SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion

2.4.1 Pointers in C

A pointer is a variable whose value is the address of another variable, i.e., the direct
address of the memory location. Like any variable or constant, you must declare a
pointer before using it to store any variable address. The general form of a pointer
variable declaration is

 	 datatype *ptr

An example pointer “p” that holds the address of an integer variable or holds the address
of a memory whose value can be accessed as integer values through “p”

int *p;

2.4.1.1 Working of pointers

Consider the declaration:

int i=3;

This declaration tells the C compiler to

	♦ Reserve space in memory to hold the integer value.

	♦ Associate the name i with this memory location.

	♦ Store the value 3 at this location.

We may represent i’s location in memory by the memory map shown in Figure 2.4.1

 Fig 2.4.1: Memory map for the declaration int i=3

We see that the computer has selected memory location 65524 as the place to store the
value 3. The memory address 65524 is not a number to be relied upon, because at some
other time the computer may choose a different location for storing the value 3. The
important point is, i’s address in memory is a number. We can print this address through
the following program:

118 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include <stdio.h>

int main()

{

int i = 3 ;

printf (“Address of i = %u\n”, &i) ;

printf (“Value of i = %d\n”, i) ;

return 0 ;

}

The output of the above program would be:

Address of i = 65524

Value of i = 3

Look at the first printf() statement carefully. ‘&’ used in this statement is C’s ‘address
of’ operator. The expression &i returns the address of the variable i, which in this case
happens to be 65524. Since 65524 represents an address, there is no question of a sign
being associated with it. Hence it is printed out using %u, which is a format specifier
for printing an unsigned integer. We have been using the ‘&’ operator all the time in the
scanf() statement.

The other pointer operator available in C is ‘*’, called the ‘value at address’ operator.
It gives the value stored at a particular address. The ‘value at address’ operator is also
called ‘indirection’ operator.

Consider the following program

#include <stdio.h>

int main()

{

int i = 3 ;

printf (“Address of i = %u\n”, &i) ;

printf (“Value of i = %d\n”, i) ;

printf (“Value of i = %d\n”, *(&i)) ;

119SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

return 0 ;

}

The output of the above program would be:

Address of i = 65524

Value of i = 3

Value of i = 3

Note that printing the value of *(&i) is the same as printing the value of i. The
expression &i gives the address of the variable i. This address can be collected in a
variable, by saying,

j = &i ;

But remember that j is not an ordinary variable like any other integer variable. It is a
variable that contains the address of another variable (i in this case). Since j is a vari-
able, the compiler must provide it with space in the memory. Once again, the memory
map shown in Figure 2.4.2 would illustrate the contents of i and j.

 Fig 2.4.2: Memory locations and contents of the variables i and j

As you can see, i’s value is 3 and j’s value is i’s address. But wait, we can’t use j in a
program without declaring it. And since j is a variable that contains the address of i, it
is declared as,

	 int *j ;

This declaration tells the compiler that j will be used to store the address of an integer
value. In other words, j points to an integer. How do we justify the usage of * in the
declaration,

	 int *j ;

Let us go by the meaning of *. It stands for ‘value at address’. Thus, int *j would mean,
the value at the address contained in j is an int.

Here is a program that demonstrates the relationships we have been discussing.

120 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include <stdio.h>

int main()

{

	 int i = 3 ;

	 int *j ;

	 j = &i ;

	 printf (“Address of i = %u\n”, &i) ;

	 printf (“Address of i = %u\n”, j) ;

	 printf (“Address of j = %u\n”, &j) ;

	 printf (“Value of j = %u\n”, j) ;

	 printf (“Value of i = %d\n”, i) ;

	 printf (“Value of i = %d\n”, *(&i)) ;

	 printf (“Value of i = %d\n”, *j) ;

	 return 0 ;

}

The output of the above program would be:

Address of i = 65524

Address of i = 65524

Address of j = 65522

Value of j = 65524

Value of i = 3

Value of i = 3

Value of i = 3

Consider the following declarations.

int *alpha ;

char *ch ;

float *s ;

121SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include <stdio.h>

int main()

{

int i = 3, *j, **k ;

j = &i ;

k = &j ;

printf (“Address of i = %u\n”, &i) ;

printf (“Address of i = %u\n “, j) ;

printf (“Address of i = %u\n “, *k) ;

printf (“Address of j = %u\n “, &j) ;

printf (“Address of j = %u\n “, k) ;

printf (“Address of k = %u\n “, &k) ;

printf (“Value of j = %u\n “, j) ;

printf (“Value of k = %u\n “, k) ;

printf (“Value of i = %d\n “, i) ;

printf (“Value of i = %d\n “, * (&i)) ;

printf (“Value of i = %d\n “, *j) ;

printf (“Value of i = %d\n “, **k) ;

return 0 ;

}

Here, alpha, ch and s are declared as pointer variables, i.e., variables capable of holding
addresses. The declaration float *s does not mean that s is going to contain a float-
ing-point value. What it means is, s is going to contain the address of a floating-point
value. Similarly, char *ch means that ch is going to contain the address of a char value.
Or in other words, the value at the address stored in ch is going to be a char.

Pointer, is a variable that contains the address of another variable. This variable itself
might be another pointer. Thus, we now have a pointer that contains another pointer’s
address. The following example should make this point clear:

Consider the memory locations for variables i, j, and k in the above progam as shown
in Figure 2.4.3.

122 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 Fig 2.4.3: Pointer to pointer example

The output of the above program would be:

Address of i = 65524

Address of i = 65524

Address of i = 65524

Address of j = 65522

Address of j = 65522

Address of k = 65520

Value of j = 65524

Value of k = 65522

Value of i = 3

Value of i = 3

Value of i = 3

Value of i = 3

In the above program i, j and k are declared as

int i, *j, **k ;

Here, i is an ordinary int, j is a pointer to an int (often called an integer

pointer), whereas k is a pointer to an integer pointer.

2.4.2 Dynamic Memory Allocation

Since C is a structured language, it has some fixed rules for programming. One of
them includes changing the size of an array. An array is a collection of items stored at
contiguous memory locations.

Consider the array in Figure 2.4.4. The size of the array is 9. But what if there is a
requirement to change this length (size). If there is a situation where only 5 elements are
needed to be entered in this array. The remaining 4 indices will be just wasting memory
in this array. So there is a requirement to lessen the length (size) of the array from 9 to
5. Take another situation. In this, there is an array of 9 elements with all 9 indices filled.

123SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

But there is a need to enter 3 more elements in this array. In this case, 3 more indices
are required. So the length (size) of the array needs to be changed from 9 to 12. This
procedure is referred to as Dynamic Memory Allocation in C.

Dynamic Memory Allocation can be defined as a procedure in which the size of a data
structure (like an Array) is changed during the runtime. C provides some functions
to achieve these tasks. There are 4 library functions provided by C defined under
<stdlib.h> header file to facilitate dynamic memory allocation in C programming. They
are:

	♦ malloc()

	♦ calloc()

	♦ free()

	♦ realloc()

2.4.2.1 malloc()

The “malloc” or “memory allocation” method in C is used to dynamically allocate a
single large block of memory with the specified size. It returns a pointer of type void
which can be cast into a pointer of any form. It doesn’t initialize memory at execution
time so will have the default garbage value initially.

Syntax:

ptr = (cast-type*) malloc(byte-size)

For Example:

ptr = (int*) malloc(100 * sizeof(int));

Since the size of int is 4 bytes, the above statement will allocate 400 bytes of memory.
The pointer ptr holds the address of the first byte in the allocated memory. If space is
insufficient, allocation fails and returns a NULL pointer.

2.4.2.2 calloc()

“calloc” or “contiguous allocation” method in C is used to dynamically allocate the
specified number of blocks of memory of the specified type. It is very much similar to
malloc() but it is different in two points and they are:

It initializes each block with a default value ‘0’.

It has two parameters or arguments as compared to malloc().

Syntax:

ptr = (cast-type*) calloc(n, element-size);

here, n is the no. of elements and element-size is the size of each element.

For Example:

ptr = (float*) calloc(25, sizeof(float));

124 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

This statement allocates contiguous space in memory for 25 elements each with the size
of the float. If space is insufficient, allocation fails and returns a NULL pointer.

2.4.2.3 free()

“free” method in C is used to dynamically de-allocate the memory. The memory
allocated using functions malloc() and calloc() is not de-allocated on its own. Hence the
free() method is used, whenever the dynamic memory allocation takes place. It helps to
reduce the wastage of memory by freeing it.

Syntax:

free(ptr);

2.4.2.4 realloc()

“realloc” or “re-allocation” method in C is used to dynamically change the memory
allocation of a previously allocated memory. In other words, if the memory previously
allocated with the help of malloc or calloc is insufficient, realloc can be used to dynam-
ically re-allocate memory. re-allocation of memory maintains the already present value
and new blocks will be initialized with the default garbage value.

Syntax:

ptr = realloc(ptr, newSize);

where ptr is reallocated with new size ‘newSize’.

2.4.3 Manipulating Strings using Pointers

A string can be declared using a pointer similar to a character array. We can also use
pointer variable instead of an array variable. The string may be initialised when it is
declared, the string will be stored in memory and string pointer will be assigned with
the address of the first character of the string. The below program uses a pointer to
access the array elements.

#include <stdio.h>

int main()

{

char name[] = “Jennath” ;

char *ptr ;

ptr = name ; /* store base address of string */

125SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Program 2.3.5

We get the base address (address of the zeroth element) of the array by mentioning the
name of the array. This base address is stored in the variable ptr using,

ptr = name ;

Once the base address is obtained in ptr, *ptr would yield the value at this address,
which gets printed promptly through,

printf (“%c”, *ptr) ;

Then, ptr is incremented to point to the next character in the string. This derives from
two facts: array elements are stored in contiguous memory locations and on incre-
menting a pointer, it points to the immediately next location of its type. This process is
carried out until ptr points to the last character in the string, that is, ‘\0’.

In fact, the character array elements can be accessed exactly in the same way as the
elements of an integer array. Thus, all the following notations refer to the same element:

	♦ name[i]- Accesses the character at index i directly
	♦ *(name + i)- Accesses the character at index i using pointer Arithemetic
	♦ *(i + name)- Equivalent to *(name + i)
	♦ i[name]- Equivalent to name[i]- accessing characters using array indexing

syntax

There are a lot of ways as shown above to refer to the elements of a character array.

2.4.4 More on character pointer

Suppose we wish to store “Hello”. We could either store it in a string or we may ask the
C compiler to store it at some memory location and assign the address of the string in a

while (*ptr != ‘\0’)

{

printf (“%c”, *ptr) ;

ptr++ ;

}

printf (“\n”) ;

return 0 ;

}

126 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

char pointer. This is shown below.

char str[] = “Hello” ; // Storing in string (character array)

char *p = “Hello” ; // charcater pointer

There is a huge difference in the usage of these two forms of character arrays. For a
defined String, we cannot assign another string (see the example below) whereas, for a
char pointer we can assign another char pointer. See the example program 2.3.9 for the
above mentioned scenario:

int main()

{

char str1[] = “Hello” ;

char str2[10] ;

char *s = “Good Morning” ;

char *q ;

str2 = str1 ; /* error */

q = s ; /* works */

return 0 ;

}

Program 2.3.9

Also, once a string has been defined, another set of characters cannot be assigned to it.
Unlike strings, such an operation is perfectly valid with char pointers.

int main()

{

char str1[] = “Hello” ;

char *p = “Hello” ;

str1 = “Bye” ; /* error */

p = “Bye” ; /* works */

}

Program 2.3.10

127SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Custom String Function Implementation

The code snippet below (refer to Program 2.3.11) imitiates(custom program) the stan-
dard string library function strlen().

/* A look-alike of the function strlen() */

#include <stdio.h>

int xstrlen (char *str) ;

int main()

{

char arr[] = “Bamboozled” ;

int len1, len2 ;

len1 = xstrlen (arr) ;

len2 = xstrlen (“Humpty Dumpty”) ;

printf (“string = %s, length is %d\n”, arr, len1) ;

printf (“string = %s, length is %d\n”, “Humpty Dumpty”, len2) ;

return 0 ;

}

int xstrlen (char *s)

{

int length = 0 ;

while (*s != ‘\0’)

{

length++ ;

s++ ;

}

return (length) ;

}

128 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Output:

string = Bamboozled, length is 10

string = Humpty Dumpty, length is 13

Program 2.3.11

The function xstrlen() is fairly straightforward and simple. What it does primarily is to
keep counting the characters till the end of the string. Or it keeps counting characters
till the pointer points to the character ‘\0’.

Let us now attempt to mimic strcpy(), via our own string copy function, which we will
call xstrcpy().

#include <stdio.h>

void xstrcpy (char *, char *) ;

int main()

{

char source[] = “Sayonara” ;

char target[20] ;

xstrcpy (target, source) ;

printf (“source string = %s\n”, source) ;

printf (“target string = %s\n”, target) ;

return 0 ;

}

void xstrcpy (char *t, char *s)

{

while (*s != ‘\0’)

{

*t = *s ;

s++ ;

t++ ;

}

129SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

*t = ‘\0’ ;

}

The output of the program is

source string = Sayonara

target string = Sayonara

Note that having copied the entire source string into the target string, it is necessary to
place a ‘\0’ into the target string, to mark its end. If you look at the prototype of strcpy
() standard library function would be

strcpy (char *t, const char *s) ;

Even though we havent used the keyword const in our custom version of xstrcpy(), the
function has worked correctly. So what is the need of the const qualifier? What would
happen if we add the following lines beyond the last statement of xstrcpy()?

s = s - 8 ;

*s = ‘K’ ;

This would change the source string to “Kayonara”. Can we not ensure that the source
string doesn’t change even accidentally in xstrcpy()? We can, by changing the definition
as follows:

void xstrcpy (char *t, const char *s)

{

while (*s != ‘\0’)

{

*t = *s ;

s++ ;

t++ ;

}

*t = ‘\0’ ;

}

By declaring char *s as const, we are declaring that the source string should remain
constant forever. Thus the const qualifier ensures that our program does not inadvertently

130 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

alter a variable that you intended to be a constant. It also reminds anybody reading
the program listing that the variable is not intended to change. Let us understand the
difference between the following two statements:

char str[] = “Quest” ;

char *p = “Quest” ;

Here str acts as a constant pointer to a string, whereas, p acts as a pointer to a constant
string. As a result, observe which operations are permitted, and which are not:

str++ ;		 /* error, constant pointer cannot change */

str = ‘Z’ ;	 / works, because string is not constant */

p++ ;		 /* works, because pointer is not constant */

Recap

	♦ Pointers are variables which hold addresses of other variables.

	♦ A pointer to a pointer is a variable that holds the address of a pointer variable.

	♦ The & operator fetches the address of the variable in memory.

	♦ The * operator lets us access the value present at an address in memory with
an intention of reading it or modifying it.

	♦ Dynamic Memory Allocation: a procedure in which the size of a data
structure is changed during the runtime.

	♦ The “malloc” or “memory allocation” method in C is used to dynamically
allocate a single large block of memory with the specified size.

	♦ “calloc” or “contiguous allocation” method in C is used to dynamically
allocate the specified number of blocks of memory of the specified type.

	♦ “free” method in C is used to dynamically deallocate the memory.

	♦ “realloc” or “re-allocation” method in C is used to dynamically change the
memory allocation of a previously allocated memory.

	♦ Arrays are a kind of data structure that can store a fixed-size sequential
collection of elements of the same type.

➢	 Declaring Arrays : type arrayName [arraySize];

➢	 Initializing Arrays :double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

131SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

➢	 Accessing Array Elements : double salary = balance[9];

	♦ Example program using Array- Declaration, Initialisation, Accessing Stored
values from arrays

	 #include <stdio.h>

 	 int main () {

 	 int n[10]; /* n is an array of 10 integers */

 	 int i,j;

 	 /* initialize elements of array n to 0 */

 	 for (i = 0; i < 10; i++) {

 	 n[i] = i + 100; /* set element at location i to i + 100 */

 	 }

	 /* output each array element’s value */

 	 for (j = 0; j < 10; j++) {

 	 printf(“Element[%d] = %d\n”, j, n[j]);

 	 }

 	 return 0;

	 }
	♦ Notations that refer same element in an array, name[i], *(name + i),

*(i + name) and i[name].

Objective Type Questions

1.	 What is a variable that stores the address of another variable?
2.	 Which operator is used to get value at the address stored in a pointer variable?
3.	 What is the output of the following code?

	 #include <stdio.h>

	 int main() {

 	 int a=3, *b = &a;

 	 printf(“%d”,a*b);

	 }

132 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

4.	 Which operator fetches the address of a variable in memory?
5.	 What is the output of printxy(1,1) in the following code?

	 void printxy(int x, int y)

	 {

	 int *ptr;

 	 x = 0;

 	 ptr = &x;

 	 y = *ptr;

 	 *ptr = 1;

 	 printf(“%d,%d”, x, y);

	 }
6.	 What is the return type of malloc() or calloc()?
7.	 What is the usage of malloc() and calloc()?
8.	 Which method is used to dynamically allocate a single large block of memory

with the specified size?
9.	 Which method in C is used to dynamically allocate the specified number of

blocks of memory of the specified type?
10.	Which method in C is used to dynamically de-allocate the memory.
11.	“realloc” or “re-allocation” method in C is used to dynamically change the

memory allocation of a previously allocated memory.
12.	What is the procedure in which the size of a data structure is changed during

the runtime?
13.	Write the output of the following code:

	 #include <stdio.h>

	 int main () {

 	 char greeting[6] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

 	 printf(“Hi your message is : %s\n”, greeting);

	 return 0;

	 }
14.	Write the output of the following code:

	 #include <stdio.h>

133SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 #include <string.h>

	 int main () {

	 char str1[12] = “Hi”;

 	 char str2[12] = “dear”;

 	 char str3[12];

 	 int len ;

 	 /* copy string1 into string3 */

 	 strcpy(str3, str1);

 	 printf(“strcpy(str3, str1) : %s\n”, str3);

 	 /* concatenates string1 and string2 */

 	 strcat(str1, str2);

 	 printf(“strcat(str1, str2): %s\n”, str1);

 	 /* total length of string1 after concatenation */

 	 len = strlen(str1);

 	 printf(“strlen(str1) : %d\n”, len);

 	 return 0;

	 }

15.	Write the output of the program given below

	 #include <stdio.h>

	 int main () {

 	 int *ptr = NULL;

 	 printf(“The value of ptr is %x\n”, ptr);

 	 return 0;

	 }

134 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Answers to Objective Type Questions

1.	 Pointer
2.	 *
3.	 Invalid operands
4.	 &
5.	 1,0
6.	 Void *
7.	 Dynamic memory allocation
8.	 malloc()
9.	 calloc()
10.	free()
11.	realloc()
12.	Dynamic memory allocation
13.	Hi your message is: Hello
14.	strcpy(str3, str1) : Hi

 strcat(str1, str2): Hidear

 strlen(str1) : 6
15.	The value of ptr is 0

Assignments

1.	 Write a program in C to calculate the sum of n numbers entered by the user.
2.	 Explain pointers in C programming.
3.	 What is dynamic memory allocation in the C programming language?
4.	 Differentiate between the * and & operators with examples in C.
5.	 Explain different string functions in C programming.

135SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

136 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Functions,
Structures
and Union

BLOCK 3

138 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Functions

Learning Outcomes

Prerequisites

	♦ learn modular programming architecture in C

	♦ achieve skills to implement a function

	♦ familiarise nested functions and its usage in C programs

We learned how to write a program in C in the previous blocks. We will now have a
quick look through the concepts.

Data types: We need to declare a variable to store data in memory, and have to specify
the type of data to be represented by the variable, right?, and you know the data types
permitted in C are char, int, float and double.

Input/output statements: We have familiarized ourselves with the use of various
statements to receive data from the user, and, statements to display results on the screen.

Control Structures: The control flow in the program sequence can be managed using
control structures. Now try to remember the use of if-then-else to manage conditional
execution. Also, we know how to frame looping structures using for, while, or do-while
structures.

All the programs we wrote were inside a block named main(), right? We called it the
main function. Did you ever feel it complex to express every statement in a single
main function? When we need to write long programs, consisting of multiple tasks,
the program becomes lengthy, doesn’t it? At times, we need to write the same group of
statements in many portions.

What if we could divide it into separate blocks, instead of enlisting everything under
the main()?

UNIT 1

After the successful completion of the unit, the learner will be able to:

139SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Why do people use assistants while doing a job? It will be easier to get the work done,
right? Think of a mason doing building construction. Let it be a single wall. If he is
to do everything, say mixing the sand, going to take suitable bricks, bringing water,
measuring levels, everything by himself, Will the job be over in time?

What if the supervisor brings an assistant to the scene where the assistant will bring the
suitable brick when the mason asks. If a big one is required, ask him to bring it. If you
need half the size of a brick, ask him, he will break it and bring it. Just specify what you
need, and the assistant will bring it on time.

The scene becomes brighter, doesn’t it? The work goes smoothly now, the service of the
assistant can be used by other masons also, if required!

Here, we were redefining the work of the main mason with assistants, or even other
masons to help him.

Similarly, problems can also be divided into subproblems and solved independently.
Proper execution of the subproblems leads the way to success.

We learned that C is a structured programming language. What do you understand about
structured programming? As the name suggests, it is a programming methodology that
makes use of control flow statements, looping statements, and subprograms. These
features improve the quality and development time of a program. In the previous units,
we learned about control flow statements(if/else) and looping statements(for/while/
do-while). What about subprograms?

In this unit, we have one of the important concepts of structured programming called
subprograms.

Key Concepts

Modular Programming, Subprograms, Library functions, User-defined functions,
Function prototype, Parameters, Function header, Nested functions, Code reusability

Discussion

3.1.1 Modular Programming

We are all familiar with the positivity
and success rate of teamwork. A group of
persons combines individually with their

skill sets to complete a difficult task. In the
following sections, we are going through
a programming methodology known as
modular programming which beautifully
narrates the teamwork of small programs

140 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Fig 3.1.2 Subprograms of calculator

Fig 3.1.1 Modular Programming

within a single large program.

Modular Programming is a kind of
teamwork where a program is divided into
subprograms or modules. Each subprogram
can perform specific functionality. By
combining the subprograms into a single
program, the desired output gets produced.
That is each module that performs a
specific task combines with other modules
to complete the main module (Fig. 3.1.1).

On campus, it is a common practice to
celebrate college day. For the successful
running of this event, generally,
committees will be set up. For example,
the reception committee invites a chief
guest and other delegates, the recreational
committee, the technical-event committee,
and so on. Each committee should be
assigned specific tasks and guidelines
to perform the task. Coordination and
successful running of subcommittees lead

to the success of the entire event.

The above-mentioned strategy is similar to
the modular programming concept, where
each committee resembles subprograms.
The efficient implementation of
subprograms/modules leads to a successful
outcome.

Modular programming is a general pro-
gramming methodology.

For example, consider the most famil-
iar program, the program to implement a
calculator. Basically, there are four opera-
tions- addition, subtraction, multiplication,
and division. Instead of writing a single
module that performs the entire task, we
can move into modular programming by
subdividing the large single program into
four subprograms - addition, subtraction,
multiplication, and division (Fig 3.1.2).

141SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

These subprograms or modules are also
known as functions.

A function is a block of organized,
reusable code that is used to perform a
single, related task.

Functions are roles assigned to do a
specific job. We can see it all around us.
For the proper functioning of a department
in an office, each person will be assigned a
specific job. Each person works indepen-
dently there, but the coordination of
the staff and their functions makes the
department operations easy.	

There are two types of functions in C
programming

	♦ Built-in functions
	♦ User-defined functions

3.1.2 Built-In Functions

Built-in functions are predefined functions
in C. It is always available to the
programmer and is also known as standard
library functions.

The concept of built-in functions is
similar to department sections in an
office. Consider an attestation section; all
persons coming for attestation purposes
will be directed to this section without any

uncertainty. Likewise, built-in functions
have specific jobs and are grouped together
in a common place called header files.

For instance, library functions printf()
and scanf() are associated with header
file stdio.h. Before using the specified
functions within the program, the header
file should be linked to the program. The
characteristics and definitions of built-in
functions are defined within the related
header file.

Syntax : #include<header_filename.h>

ex: #include<stdio.h>

3.1.3 User-Defined Functions

In C programs, users can define their
own functions to perform a specific task.
These are code segments written by the
programmer itself.

Each programming function should have
input and output. The function should con-
tain instructions or statements to process
these inputs to generate the desired output.
Like any other program, the input and
output can be in any form, such as inte-
gers, floating values, characters, arrays,
etc. Different types of functions are shown
in Fig 3.1.3.

Fig 3.1.3 Classification of functions

142 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Before writing a user-defined function,
we have to discuss some of its basic
characteristics.

A user-defined function has three phases

	♦ function declaration

	♦ function definition

	♦ function call

3.1.4 Function Declaration

Remember, before we use a variable in a
program, we must declare it. Similarly, a
function declaration statement is necessary
before using a function.

Note that the purpose of the function
declaration is to identify the function name,
number and type of input parameters (that
is why parameter names are not necessary)
and return type of the function, by the
compiler. Function declaration statements
are also known as function prototypes.

Did you notice the term parameter?
Are you familiar with this? Parameters
are the variables that are used during
a function declaration or definition. To
illustrate parameters, consider the admission
procedure in a school. All the processing
will be done in the office section; after
that, the name list of the admitted

students for each course is forwarded
to the corresponding department. Here,
the parameter or data is the name list
prepared by the office and used by another
department.

A similar concept is applicable to the
concept of functions.

For example, a function to add two integers
can be declared as

 ex: int add (int x, int y);	

The above statement declares a function
with the function name ‘add’, accepts two
parameters of type integer (x and y) and
returns an integer value. 	

It can also be written as,

int add(int, int);

Syntax: return-type function-name (list of
parameters);

3.1.5 Function Definition

After function declaration, the code of
the function has to be defined. Function
definition contains the block of code to
perform a specific task.

The function definition has two parts- The
Function header and the Function body.

int add(int a,int b) 		 // function name - add, input parameters - a and b,

{				 return type of the function - int

int c;

c=a+b;

return(c);			 //output parameter c

}

program 3.1.1

143SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The function header includes the function
name, return type and parameter list.

The Function body is the set of instructions
defined in the function definition.

Consider the function add() as an
example. The function adds two integer
numbers (a,b) and returns another integer
c as output.

In precise, the above code segment
defines a function with function name
add() and the input parameters given are
integer variables a and b. In the function
definition, parameters and the result
assigned variable c are all integer type.

Note: Return type of a function is the type
of the variable returned by the function.

3.1.6 Function call

In the above two sections, we discussed
function declaration and function defi-
nition. However to invoke a function to
perform a specific task, the function call
is needed.

Calling a function means invoking a func-
tion to do a specific task.

eg: add (5,7);

The above function call sends the values 5
and 7 to the function definition. Variables
a and b (function definition) accept these
values and function execution occurs.

Flow of working of a function

#include<stdio.h>

int add(int,int);

int add(int a, int b)

{

int c;

c=a+b;

return(c);

}

void main()

{

int sum;

sum = add(5,7);

printf(“Sum is %d”,sum);

}

program 3.1.2

144 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 Fig 3.1.4 Working of function

How is a function implemented? What
are the components? How are they inter-
connected? All these questions can be
explained using program 3.1.2 and Fig
3.1.4.

When a program execution begins, as we
know, the compiler starts execution from
main (). Execution proceeds till it reaches
the function call statement (Step 1). When
a function is called, program control is
transferred to the function definition (step
2), parameters from the function call are

copied to the function definition, and the
code inside the function gets executed.
After the execution of the return statement
(Step 3) the program control is transferred
to the calling function .

Note: A function can be defined either
before the main() or after the main().

3.1.7 Examples of functions

The following program illustrates the
implementation of function

Example 1: Program to implement a function for addition of 3 integers

#include<stdio.h>

int add (int, int ,int);			 //function declaration

int add (int a, int b,int c)		 //function definition

{

int d;

d=a+b+c;

return(d);

}

void main ()

{

	 int w,x,y,z;

	 printf (“Enter three numbers”);

program 3.1.3

145SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 scanf(“%d%d%d”,&w,&x,&y);

	 z=add(w,x,y);			 //function call

	 printf(“\nThe sum is %d”,z);

}

Output

	 Enter three numbers 1	2 4

	 The sum is 7

The above program defines the function add() which adds three integers and returns an
integer value to the calling function.

Example 2: Program to implement calculator

#include<stdio.h>

float add(float,float);				 //function declaration

float sub(float,float);

float mul(float,float);

float div(float,float);

float add(float num_1, float num_2)		 //function definition

{						

float ans;

ans= num_1 + num_2;

return(ans);

}

float sub(float num_1, float num_2)

{

float ans2= num_1 - num_2;

return(ans2);

}

float mul(float num_1, float num_2)

program 3.1.4

146 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

{

float ans3= num_1 * num_2;

return(ans3);

}

float div(float num_1, float num_2)

{

float ans4= num_1 / num_2;

return(ans4);

}

void main()					 //Program execution begins here

{

float b,c;

float a,s,m,d;

printf(“Calculator\n-------------\n”);

printf(“Enter two numbers to perform operations\n”);

scanf(“%f %f”,&b,&c);

a=add(b,c);						

printf(“The result of addition is %f\n”,a);

s=sub(b,c);

printf(“The result of subtraction is %f\n”,s);

m=mul(b,c);

printf(“The result of multiplication is %f\n”,m);

d=div(b,c);

printf(“The result of division is %f\n”,d);

}

The code defines an operation for addition, subtraction, multiplication and division on
two variables. The functions send two float values to the function definition and execu-
tion occurs there. The results are sent back to the called functions.

147SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Output

Calculator

Enter two numbers to perform operations

2 3

The result of addition is 5.000000

The result of subtraction is -1.000000

The result of multiplication is 6.000000

The result of division is 0.666667

Concept of functions permits to divide a program into simple and smaller tasks. It makes
the code to be called many times and implements the code reusability. For example, a
function to find the sum of marks can also be used by a program to find the grade of
students.

Advantages of using functions

	♦ The complexity of the program gets reduced by division of work

	♦ Dividing a program into subprograms enables easier error handling

	♦ A large program being divided into subprograms makes it easy to update

	♦ Code reusability – Same code segment can be used in different programs

3.1.8 Nested Functions

Syntax:
fun1()
	 {
		 fun2();
	 }

The concept of nested functions can be explained through an example. Previously, we
discussed the function ‘add’ to sum three integers (Example 1). A program that finds
out the average of three numbers has to perform the same sequence of steps additionally
and a division operation.

 Functions defined within other functions are called nested functions

148 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Therefore, the function to find the average can use the function ‘add’ to calculate the
average.

	 int avg(){

			 int k, result;

			 k=add();

			 result=k/3;

			 return(result);

	 	 }	

Function definition of ‘average’ calls the function add () and stores the sum in variable
‘k’. The value of ‘k’ is divided by 3 and assigned as the average in variable ‘result’.

Here, the function add() gets reused to find the average of given numbers.

Example: Program to find the average of 5 marks

#include<stdio.h>

float avg();

int add();

float avg()			 //Nested Function

{

	 int sum=add();		 //function call within a function

	 float avrg=sum/5;

	 return(avrg);

}	

int add()

{

	 int i,a[5],mark=0;

	 printf(“Compute average marks of 5 subjects\n--------------------------
-------------\n”);

	 printf(“Enter marks of 5 subjects\n”);

	 for(i=0;i<5;i++)

	 {

program 3.1.5

149SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

		 scanf(“%d”,&a[i]);

		 mark=mark+a[i];

	 }

	 printf(“Total mark is %d\n”,mark);

	 return(mark);

}

void main()

{

 	 float result;

	 result=avg();

	 printf (“The average of marks is %f”, result);

}

Output

Compute average marks of 5 subjects

Enter marks of 5 subjects

20 30 89 90 50

Total mark is 279

The average of marks is 55.000000

3.1.9 Application Examples

3.1.9.1 Checking whether a number is odd or even using a function.

#include<stdio.h>

int odd_even(int); 			 /* Function Declaration or prototype*/

void main()

{

 int n,flag=0;

program 3.1.6

150 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 printf(“\nGoing to check whether a number is even or odd”);

 printf(“\nEnter the number: “);

 scanf(“%d”,&n);

 flag = odd_even(n);				 /* Function Calling*/		

 if(flag == 0)

 {

 printf(“\nThe number is odd”);

 }

 else

 {

 printf(“\nThe number is even”);

 }

}

int odd_even(int n) 				 /* Function Definition*/

{

 if(n%2 == 0)

 {

 return 1;

 }

 else

 {

 return 0;

 }

}

Output

Going to check whether a number is even or odd

Enter the number: 4

The number is even

151SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Explanation of the program

	♦ Input an integer number for checking odd or even numbers

	♦ Then make a function call to the function odd_even(int n) with an integer
parameter.

	♦ It will direct to the function definition

	♦ In function definition taking the modulus of the number by 2 , if it is giving
zero as input

3.1.9.2 Sorting using function

#include<stdio.h>

void sortarray(int a[], int n); /*function prototype or declaration*/

void main()

{

int a[20],n,i;

printf(“Sort an array of numbers\n---------------------------\n”);

printf(“Enter the size of the array\n”);

scanf(“%d”,&n);

printf(“Enter the array elements\n”);

for(i=0;i<n;i++)

{

scanf(“%d”, &a[i]);

}

sortarray(a,n); /* function calling to function sortarray() */

}

void sortarray(int a[],int n)/*function definition for sorting*/

{

int i,j,temp;

for(i=1;i<n;i++)

{

program 3.1.7

152 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

for(j=0;j<n-i;j++)

{

if(a[j]>a[j+1])

{

temp=a[j];

a[j]=a[j+1];

a[j+1]=temp;

}

}

}

printf(“Elements after sorting\n”);

for(i=0;i<n;i++)

{

printf(“%d\t”,a[i]);

}

}

Output

Sort an array of numbers

Enter the size of the array

5

Enter the array elements

5 3 1 3 4

Elements after sorting

1	 3	 3	 4	 5

3.1.9.3. Find the largest and second largest element in an array
using function

153SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include<stdio.h>

void sortarray(int a[],int n); /*function prototype or declaration*/

void main()

{

 int a[20],n,i;

 	 printf(“Enter the size of the array\n”);

 scanf(“%d”,&n);

 printf(“Enter the array elements\n”);

 for(i=0;i<n;i++)

 scanf(“%d”,&a[i]);

 sortarray(a,n);		 /* function calling to function sortarray() */

 printf(“Largest element is %d \n”,a[n-1]);

 printf(“second largest element is %d \n”,a[n-2]);

 }

void sortarray(int a[],int n)		 /*function definition*/

{

 int i,j,temp;

 for(i=1;i<n;i++)

 {

 for(j=0;j<n-i;j++)

 {

 if(a[j]>a[j+1])

 {

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 }

program 3.1.8

154 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 }

 }

}
Output
Enter the size of the array
5
Enter the array elements
1 6 5 4 3
Largest element is 6
second largest element is 5

3.1.9.4 Matrix addition using functions

 #include <stdio.h>

// function to add two matrix

void add_matrix(int a[10][10], int b[10][10],

 int c[10][10], int row, int column)

{

 for(int i=0; i< row; ++i)

 {

 for(int j=0; j< column; ++j)

 {

 // add & store to matrix C

 c[i][j] = a[i][j] + b[i][j];

 }

 }

}

// function to read matrix

program 3.1.9

155SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

void read_matrix(int matrix[10][10], int row, int column)

{

 for (int i = 0; i < row; ++i)

 {

 for (int j = 0; j < column; ++j)

 {

 scanf(“%d”, &matrix[i][j]);

 }

 }

}

// function to display matrix

void display_matrix(int matrix[10][10], int row, int column)

{

 for (int i = 0; i < row; ++i)

 {

 for (int j = 0; j < column; ++j)

 {

 printf(“%d “, matrix[i][j]);

 }

 printf(“\n”); // new line

 }

}

// main function

int main()

{

 // declare matrix matrix A, B, & C

 int a[10][10]; // first matrix

156 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 int b[10][10]; // second matrix

 int c[10][10]; // resultant matrix

 // read the size of matrices

 int row, column;

 printf(“Enter Row and Column Sizes: “);

 scanf(“%d %d”, &row, &column);

 // read matrix A and B

 printf(“Enter Matrix-1 Elements: \n”);

 read_matrix(a, row, column);

 printf(“Enter Matrix-2 Elements: \n”);

 read_matrix(b, row, column);

 // add both matrix A and B

 add_matrix(a, b, c, row, column);

 // display resultant matrix

 printf(“Resultant Matrix: \n”);

 display_matrix(c, row, column);

 return 0;

}

Output

Enter Row and Column Sizes: 2 3

Enter Matrix-1 Elements:

1 2 3 4 5 6

Enter Matrix-2 Elements:

2 4 6 8 10 12

Resultant Matrix:

3 6 9

12 15 18

157SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.1.9.5 Matrix multiplication using functions

#include<stdio.h>

void multiply(int r1, int c1, int r2, int c2);

int main()

{

 int i,j,k,r1,c1,r2,c2;

 printf(“Enter row and column of first matrix\n”);

 scanf(“%d%d”, &r1, &c1);

 printf(“Enter row and column of second matrix\n”);

 scanf(“%d%d”, &r2, &c2);

 multiply(r1,c1,r2,c2);

 return 0;

}

void multiply(int r1, int c1, int r2, int c2)

{

 int i,j,k;

 float a[10][10], b[10][10], mul[10][10];

 if(c1==r2) // condition check for matrix multiplication.

 {

 printf(“Enter elements of first matrix:\n”);

 for(i=0;i< r1;i++)

 {

 for(j=0;j< c1;j++)

 {

 printf(“a[%d][%d]=”,i,j);

 scanf(“%f”, &a[i][j]);

 }

 }

program 3.1.10

158 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 printf(“Enter elements of second matrix:\n”);

 for(i=0;i< r2;i++)

 {

 for(j=0;j< c2;j++)

 {

 printf(“b[%d][%d]=”,i,j);

 scanf(“%f”, &b[i][j]);

 }

 }

 for(i=0;i< r1;i++)

 {

 for(j=0;j< c2;j++)

 {

 mul[i][j] = 0;

 for(k=0;k< r2;k++)

 {

 mul[i][j] = mul[i][j] + a[i][k]*b[k][j];

 }

 }

 }

 printf(“Multiplied matrix is:\n”);

 for(i=0;i< r1;i++)

 {

 for(j=0;j< c2;j++)

 {

 printf(“%f\t”, mul[i][j]);

 }

 printf(“\n”);

 }

159SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 }

 else

 {

 printf(“Dimension do not match for multiplication.”);

 }

}

Output:
Enter row and column of first matrix

2 3

Enter row and column of second matrix

3 2

Enter elements of first matrix:

a[0][0]=1

a[0][1]=2

a[0][2]=3

a[1][0]=4

a[1][1]=3

a[1][2]=2

Enter elements of second matrix:

b[0][0]=1

b[0][1]=2

b[1][0]=3

b[1][1]=4

b[2][0]=5

b[2][1]=6

Multiplied matrix is:

22.000000	 28.000000	

23.000000	 32.000000	

160 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Recap

	♦ In a nutshell, functions are self-contained program segments. Library
functions are built-in functions placed in a common place called the C
standard library.

	♦ User-defined function is provided by the developer of the program.

	♦ In user-defined functions, when a function call occurs, the program control
is transferred to the called function (function definition). The called function
performs its specific task.

	♦ When the function end is reached, the control will return to the calling
function.

	♦ Defining a function within another function increases the rate of code
reusability, and also it implements efficient space utilization.

	♦ Nesting of functions does not limit to a number of functions or types of
data. However, the data passing techniques and visibility of data matter in
implementation.

Objective Type Questions

1.	 What is the default return type of function definition?
2.	 Which is the keyword used to send output obtained in a function to a called

function?
3.	 What is the output of the following code?

	 void main()

		 {

			 void f1(),f2();

			 f2();

		 }

	 void f1()

		 {

		 printf(“5”);

		 }

	 void f2()

161SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

		 {

		 printf(“3”);

		 f1();

		 }
4.	 What is the output of the following function?

	 void show() {

	 printf(“abc”);

 	 show();

	 }

	 void main() {

 	 printf(“pqr”);

 	 return 10;

	 } 	
5.	 What are the two types of functions in C?
6.	 Every C program should contain which function?
7.	 What is the output of the following C program?

	 #include<stdio.h>

	 int main() {

 	 int a = 20;

 	 printf(“HELLO “);

 	 return 1;

 	 printf(“WORLD”);

 	 return 1;

	 }

Answers to Objective Type Questions

1.	 int
2.	 return

162 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.	 35
4.	 pqr program finished with exit code
5.	 Built-in functions and user-defined functions
6.	 main
7.	 HELLO

Assignments

1.	 Write functions for subtraction and division for integer and float type
variables

2.	 Write a program to find the factorial of a number using function.
3.	 Write a program to print the Fibonacci series using function.
4.	 Write the program to implement calculator using function (Use switch to

accept a choice and perform a single operation based on the choice)
5.	 Discuss some real-time applications of nested functions.
6.	 Write a program to create a progress report of a student using nested

functions. (total marks, average, grade)
7.	 Explain different types of functions in C programming.
8.	 How to declare and define a function in the C programming language.
9.	 Write a C programme to find sum and difference of two numbers using sum()

and sub() functions.
10.	Write a C programme to find the largest and smallest of two numbers using

large() and small() functions

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

163SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Recursion

Learning Outcomes

Prerequisites

	♦ achieve skills to implement recursive functions

	♦ familiarise the operation of arrays on functions

	♦ learn the working of pointers on arrays and functions

If a problem is too complex, we can adopt a method to break it down into simpler ones
and combine the results. We do it in real life constantly.

Consider you have bus tickets of Rs. 12/- that you took in the previous month and now
you need to count how much you have spent on. Since the number is large, you might
ask for the help of your two friends and divide the tickets into three. When you finish
counting, you add up the individual outcomes and get the final result.

In the above method, a complex task has been broken down into simple problems. Sim-
ilarly, in programming, a single problem can be solved by dividing the problem into
subparts and combining the results iteratively.

The method of breaking down a larger problem into subproblems and solving is imple-
mented in C language by the use of functions, which we have studied already. The
concept of storing similar data types in a single variable name – array, is also familiar
to you.

UNIT 2

After the successful completion of unit, the learner will be able to:

164 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion
3.2.1 Recursion

Generally, a function is called by another function. Have you thought about a function
that calls itself? A function that calls itself is known as a recursive function and the
process of calling a recursive function is known as recursion.

How does recursion work?	

	 void function_1()

		 {

		 function_1();

		 }

	 void main()

	 {

	 function_1();	

	 }

A typical recursive function will work as shown above. In main(), ‘function_1’ is
called and the control goes to the function definition. Inside the function definition, the
function is again called and the procedure repeats. Have you noted any issues? When
will it end? Recursive calls execute indefinitely until some condition is encountered to
prevent it. To stop infinite recursion, an explicit condition should be specified within the
function itself. An exit condition should be defined to stop the repeated function call,
otherwise, it will enter into an infinite loop.

Recursion can be applied to programs like Fibonacci series, factorial, sum of n numbers,
etc. The following is an example to find out the factorial of a number using a recursive
function.

Factorial of n= 1*2*3*……*n

The same statement can be represented as

Factorial of n= n*(n-1)*(n-2)*….*2*1

e.g.: 7! = 7*6*5*4*3*2*1 			

The above steps can be represented in a recursive formula,

7! = 7*6!

 n! = n*(n-1)!

Note that the factorial of a negative number doesn’t exist, the factorial of 0 is 1. Now

165SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

let us move to the implementation of recursive program to find factorial of a number,

	 int fact(int n)

		 {

			 if(n>1)			

			 {					

				 return(n*fact(n-1));//Recursive call

			 }

			 else

			 {

				 return (1);	 // exit - condition
			 }

		 }

Statement n*fact(n-1) performs the recursive operation on function call. When the
value of n is 3, the recursive call becomes return (3*fact(3-1)); ,which is equivalent to

	 return(3*fact(2)); . ---------------------------(1)

To find the value of fact(2), the function is again called with 2 as an argument. The else
block is executed and becomes return(2*fact(2-1);, which is equivalent to

 	 return(2*fact(1));---------------------------(2)

To find out the factorial of 1, the function is again called with 1 as an argument. Now the
condition in the if statement gets executed and will return 1 as the value. Then equation
(2) becomes return(2*1) and it returns value 2 to equation (1). The equation (1) will
become return(3*2) which is equal to 6. The execution of the function is delayed till
it reaches 1 which is the termination condition. When the function gets the last return
value, it returns to the previous function calls.

The execution of the above program is shown in Fig. 3.2.1.

 5* fact(4)

 5*4*fact(3)

 20*3*fact(2)

 60*2*fact(1)

 120*1=120

Fig: 3.2.1 Working of function evaluation

166 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Example: Program to print Fibonacci series up to nth term.

#include<stdio.h>

int fibonacci(int);

int fibonacci(int k)

{

 if(k <= 1)

 	 return k;

 else

 return (fibonacci(k-1) + fibonacci(k-2));

}

 int main() {

 int n, i;

 printf(“\nDisplay first n Fibonacci numbers”);

 printf(“\nEnter n:”);

 scanf(“%d”, &n);

 printf(“\nFirst %d Fibonacci numbers are: “, n);

 for(i = 0;i<n;i++) {

 printf(“%d “,fibonacci(i));

 }

}

Output

Display first n Fibonacci numbers

Enter n:7

First 7 Fibonacci numbers are: 0 1 1 2 3 5 8

167SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

In the Fibonacci series, the next number is generated by adding the previous two
numbers. That is, 2 is generated by adding (1+1), 3 by adding (1+2), and so on. In the
above program, function fib() is called iteratively till output is obtained. In the function
definition, if the value of the parameter is zero or one, then the value of parameter itself
is returned. Otherwise, recursively call the function fib() with values (n-1) and (n-2).

For input 6,

		 fib(0) prints 0	

		 fib(1) prints 1

		 fib(2) performs fib(1)+fib(0) and prints 1

		 fib(3) performs fib(2)+fib(1) and prints 2 and so on.

Recursive functions cannot be implemented on all functions, but only to problems that
can be solved iteratively.

3.2.2 Types of Recursions

Recursive functions can be classified on the basis of whether the function calls itself
directly or indirectly.

	♦ Direct Recursion

	♦ Indirect Recursion

Direct Recursion

When a function explicitly calls itself, it is called a direct recursive function. Function
implementations (Factorial, Fibonacci) that we discussed previously are examples for
direct recursion.

e.g.: - 	void fib(int k)

	 {

	 if(k <= 1)

 		 return k;

	 else

		 return(fib(n-1)+fib(n-2));

	 }

Here, the function fib() calls itself for all values greater than zero.

Indirect Recursion

In this method, the function invokes another function which again causes the original

168 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

function to be called again.

Example:

int func1(int n)

{

if(n==0)

return 0;

else

return(func2(n-1));				

}

int func2(int n2)

{

return (func1(n2-1));

}

In the above example, func1() calls func2(), which again calls func1(). It is called indi-
rectly recursive or mutually recursive.

Example: Program to print numbers from 1 to 20 using indirect recursion.

#include<stdio.h>

int n = 1,N=20;

int fun_1()

{

 if (n <= N)

 {

 printf(“%d\t”, n);

 n++;

169SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 fun_2();

 }

 else

 return(0);

}

int fun_2()

{

 if (n <= N)

 {

 printf(“%d\t”, n);

 n++;

 fun_1();

 }

 else

 return(0);

}

void main()

{

 fun_1();

}

The program illustrates the execution of an indirect function in which fun_1()
calls fun_2() and fun_2() calls fun_1() recursively till the condition gets satisfied.

Output

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	
12	 13 14	 15	 16	 17	 18	 19	 20	

170 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.2.3 Tail recursion

It is a type of direct recursion. If the recursive call is the last statement in the function,
then it is called tail recursion. After the recursive call, the recursive function performs
nothing.

Example:

void fib(int k)

{

	 if(k=0)

		 return 0;

	 else if(k=1)

		 return 1;

	 else

		 return(fib(n-1)+fib(n-2))

}

3.2.4	 Comparison between Recursion and Iteration
 		

Recursion Iteration

Always applied to a function Always applied to a set of instructions
which are repeatedly executed.

A function calls itself repeatedly Loop repeatedly executes until the
controlling condition becomes false

Terminates when a base condition is
encountered

Terminates when the loop condition
fails

Slower in execution Faster in execution

Shorter code Lengthier code

171SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.2.5 	Advantages & Disadvantages of Recursion

Advantages

	♦ Recursive problems are solved easily

	♦ Lesser code for complex problems

Disadvantages

	♦ Difficult to understand

	♦ Execution speed decreases because of repeated function call

3.2.6 Arrays in Functions

We have already discussed the concepts of functions and arrays separately in previous
units. Do you think it is possible to pass an array to a function? Yes, it is possible to
pass an array in function... How can it be done? Is it similar to normal variables? The
following sections discuss the implementation of arrays in functions.

Passing One-Dimensional Array to function

An entire array can be passed to a function by passing the array name without any
subscripts and the size of an array, as arguments.

	 Syntax : function_name (array_name, size);

Consider a function to find the sum of marks.

			 sum(marks, arr-len);

In function call sum(), the array name is sent as a parameter to the function definition
(array name itself points to the base address of an array). The corresponding function
header is

			 int sum(int m[], size);

The function sum is defined to take two arguments- the array name and size of the
array. The bracket pair informs the compiler that the argument m is an array. Function
declaration for the above function is as follows.

int sum(int [], int);

Let us see how the entire program can be implemented.

#include<stdio.h>

int sum (int [], int);

void main()

172 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

{

	 int result;

	 int marks[5]={38,42,35,45,48};

	 result=sum(marks,5);//base address sends as parameter

	 printf (“The result is %d”,result);	

}

int sum(int m[],int size)

{

 int i,totalmarks=0;

 for(i=0;i<size;i++)

 totalmarks+=m[i];

 return(totalmarks);

}

Output

The result is 208

The program consists of main and sum functions. main() reads the elements of the
array "marks," and calls the function "sum" to print the sum of the array elements.
The function is called by passing the array name and size. In the function definition,
the formal parameter m must be an array type; the size of the array does not need to be
specified in the subscripts. In a function prototype, it must show that the argument is
an array.

It should be noted that when an entire array is passed to a function, the address details
of the array elements are actually passed to the function, not the contents of the array.
So any changes in array elements in the function are also reflected in the original array
in the calling function.

Another method to pass an array to a function is using pointers. The base address of the
array is sent to a pointer variable in the function.

Consider an integer array,

int a[3]={3,6,9};

173SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

int *p;		 //Declaration of an integer pointer variable

p=a;		 // assigns the base address of the array to the pointer variable

Now the pointer variable ‘p’ points to the base address of the array.

printf(“%d”, *p);		 //output 3

printf(“%d”,*(p+1));	 //output 6

Now, let us go to an example program to implement a function using pointers in arrays.
The following program finds the sum of 5 marks stored in an array.

#include<stdio.h>

int sum (int *,int);		 //function declaration

void main()

{

	 int result,*p;

	 int marks[5]={38,42,35,45,48};

	 p=marks;//assigning base address to a pointer variable

	 result=sum(p,5);	 //base address sends as parameter

	 printf (“The result is %d”,result);	

}

int sum(int *m,int size)		 //function definition		

{

 int i,totalmarks=0;

 for(i=0;i<size;i++)

 totalmarks+=m[i];

 return(totalmarks);

}

In the above program, function call sends base address and size of the array as
parameters. At the same time, the function header defines a pointer variable (*p) that
accepts the base address as a formal argument. Function declaration specifies int * to
denote a pointer variable as an argument.

174 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.2.7 Two-Dimensional arrays

	 Fig 3.2.2 illustrates the representation of the following 2-D array.

	 e.g.: int a[2][3]= {{1,2,3},{4,5,6}};

 Fig: 3.2.2 2-D Array representation

2-D arrays can be passed to a function by specifying the array name, row and column
size. While specifying an array in functions, we must indicate that the array has two
dimensions by indicating two sets of brackets, the first dimension need not have to be
specified, and the second dimension should be given. See below given example pro-
grams.

The program given below prints 2-D matrix elements using function

#include<stdio.h>

int n;

void print(int a[][n],int,int);	 //function declaration

void main()

{

	 int a[10][10],r,c,i,j;

	 printf(“Enter row and column size:”);

	 scanf(“%d %d”,&r,&c);

	 printf(“Enter matrix elements:”);

	 for(i=0;i<r;i++)

	 for(j=0;j<c;j++)

		 scanf(“%d”,&a[i][j]);

	 print(a,r,c);				 //function call

}

175SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

void print(int arr[][10],int i,int j)//function definition

{

	 int c,d;

	 for(c=0;c<i;c++)

	 {

	 for(d=0;d<j;d++)

	 {

	 printf(“%d\t”,arr[c][d]);

	 }

	 printf(“\n”);

	 }

}

Output

Enter row and column size:2 3

Enter matrix elements:1 2 3 4 5 6

1	 2	 3	

4	 5	 6	

176 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Recap

	♦ Recursion means the function is repeating or recurring its own execution.

	♦ A function is called recursive if a statement within the body of a function
calls the the same function.

	♦ A recursive function performs a task by dividing it into subtasks.

	♦ It is a method of solving a complex problem where the solution depends on
sub solutions of smaller instances of the same problem.

	♦ Recursion makes the program elegant.

	♦ Recursive problems can also be solved by loop statements.

	♦ Recursive code is shorter than iterative code.

	♦ An array can be passed to a function by sending the array name(without
subscripts) and size.

	♦ Any changes made to an array passed as arguments reflect to the function
call.

	♦ For two-dimensional arrays, the function call specifies the array name(
without subscripts), and row and column sizes.

	♦ In function definition using arrays, along with rows and column sizes, the
arguments should contain an array name with two pair of brackets

	♦ Function declaration and function header should be similar

Objective Type Questions

1.	 What will be the output?

	 void main()

	 {

		 printf(“Hai”);

		 main();

		 return 0;

	 }

177SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

2.	 What will happen if an exit condition is absent in a recursive function?
3.	 Iteration requires less system memory than recursion. State True or False.
4.	 When is a function called direct recursive?
5.	 What is the core difference between iteration and recursion?
6.	 What will be the output?

	 void fun_1(int*);

	 void main()

	 {

 	 int i = 12, *p = &i;

 	 fun_1(p++);

 	 }

	 void fun_1(int *p)

	 {

	 printf(“%d\n”, *p);

 }

7.	 What are the outputs?

	 void fun(int *);

 	 void main()

 	 {

 	 int i = 100, *p = &i;

 	 fun(&i);

	 printf(“%d”, *p);

 	 }

 void fun(int *p)

 	 {

 	 int j = 2;

 	 p = &j;

178 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 printf(“%d “, *p);

 }
8.	 What is the maximum number of arguments that can be passed in a single

function?
9.	 What will be the output?

void display(int*);

 void display(int *p)

 {

 int i = 0;

for(i = 0;i < 5; i++)

printf(“%d\t”, p[i]);

 }

 void main()

 {

 int a[5] = {6, 5, 3};

 display(&a);

 }

 10. What will be the output?

void fun(int p, int q)

 {

printf(“%d %d\n”, p, q);

 }

 void main()

 {

 int a = 6, b = 5;

179SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 fun(a);

 }

11. What will be the output?

void change(int[]);

void main()

{

 int a[3] = {50,55,56};

 change(a);

printf(“%d %d”, *a, a[0]);

}

void change(int a[])

{

a[0] = 86;

}

Answers to Objective Type Questions

1.	 Prints hai infinite number of times	 (Here main() function is called
repeatedly without any exit condition)

2.	 Runs infinity and run into out of memory error
3.	 True
4.	 If it calls the same function recursively
5.	 Iteration will repetatively executes code block until the conditions is unmet,

but recursion, the function calls itself in its body to solve the problem.
6.	 12		 (Hint: p points to i)
7.	 2	 100
8.	 No limits in number of arguments

180 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Assignments

1.	 Write a program to print n natural numbers using recursion.
2.	 Write a program to find the sum of n numbers using recursion.
3.	 Write a program to print the Fibonacci series up to a number using recursion.
4.	 Write a program to read two 1-D arrays and display their sum using a

function.
5.	 Rewrite the above program using pointers.
6.	 Write a program to read two matrices and display the sum using a function.
7.	 Write a program to read two strings and concatenate without using the library

function. (Use user-defined functions)
8.	 What is recursion? Write significance of recursion in programming?
9.	 Write a C program to find factorials of a number using recursive functions.
10.	Explain different types of recursion in C programming.
11.	How to pass an array in a function.
12.	Write a note comparing recursion and iteration in programming.
13.	Write a C program to print fibonacci series using recursive functions.

9.	 6	 5	 3	 0	 0	 (Hint: array indexing)
10.	Compile-time error	 (Hint : too few arguments to function 'fun')
11.	 86	 86 (Hint : Uses call by reference, hence changes reflected)

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

181SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Call by Value and Call by
Reference

Learning Outcomes

Prerequisites

	♦ understand core concepts of data passing to functions

	♦ understand parameter sharing methods

	♦ learn to identify local and global variables

Data passing is the practice of transfering or sharing data used by one entity to other
entity. Data can be of any type like contact numbers, addresses, location information,
documents etc. It is a common procedure to share data by using various methods. In
an office, approaches like direct sharing (person to person), emails, WhatsApp, written
documents etc. are used as methods for data passing.

 Fig 4.3.1 Data Sharing

In C, Modular Programming is an interesting concept and functions are a kind of top-
down approach in modular programming. A large program is divided into subprograms
called functions. In the previous unit, we learned about the concept of function, the
basic components of a function, and flow of function execution etc.

Have you thought of how data from the calling function are shared or passed to the sub-
routine? In this unit, we are going to understand how data is shared between functions,
and various methods of data passing while dealing with functions.

UNIT 3

After the successful completion of the unit, the learner will be able to:

182 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion

Key Concepts

Parameters/Arguments, Actual parameters, Formal Parameters, Local variables, Global
Variables, Parameter Passing, Call by Value, Call by Reference

3.3.1 Basics of Parameter passing

In C, functions exchange information through parameters. In a function, variables
present in the function call are passed to the function definition and vice versa. These
variables are called parameters.

Arguments are actual values of the variables that get passed to the function.

To illustrate the difference between parameters and arguments, let us go to a real-time
example;

When sending an e-mail, the mail sent is the parameter, and the content specified within
the mail is the argument.

Likewise, consider a function add() which adds two integers and returns an integer
value;

int add (int x, int y)

{

 int z = x + y;

 return (z);

}

void main ()

{

 int c;

 c = add (3, 7);

 printf(“%d”,c);

}

Output: 10

183SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

In the above code , values 3 and 7 are the arguments and variables x and y are the
parameters.

Function call invokes the function definition and passes the values to the parameters in
the function header. This is known as parameter passing.

There are two types of parameters in C

	♦ Formal Parameters: The variables that appear in the function definition
are formal parameters.

	♦ Actual Parameters: The variables corresponding to the formal parameters
that appear in the function call are actual parameters.

Consider the following example program,

#include<stdio.h>

int add(int ,int);

int add(int x,int y) 	// x and y are formal parameters

{

 int z;

 z=x+y;

 return(z);					

}									

void main()								

{										

 int c,a,b;	 								

 printf(“Enter two integer values\n”);					

 scanf(“%d %d”,&a,&b);							

 c=add(a,b);	 //Here, a and b are the actual parameters		

 printf(“The sum is %d”,c);					

}
Output		 					

Enter two integer values

2 	 3

The sum is 5

184 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Refer Fig 3.3.2 to understand the Call by Value method.

 Fig 3.3.2 Call by Value method

Actual parameters are in the function call statement and when a function is called, the
control will transfer to the function definition. The value of actual parameters is copied
to the parameters present in the function definition and are called formal parameters.

In the above program, variables a and b are actual parameters and x and y are formal
parameters

Local variables and Global variables

Based on accessibility, variables can be classified into two- Local and Global variables.

Local variables are declared within a function and are accessible to that function only.
Global variables are defined outside a function and are accessible to all functions in a
program.

Let us discuss this concept of global variables and local variables with the help of some
examples.

#include<stdio.h>

int num=5;

void main()

185SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

In the above program, variable num is globally defined. Since it is global, the variable
is accessible throughout the program.

Consider another code segment,

#include<stdio.h>
int num= 5;
void main()
{
 int num= 2;
 printf(“The value of num is %d”, num);
}

Output

The value of num is 2

In the above program, variable ‘num’ is assigned with two different values, one outside
main() and one within main().

Output

The value of num is 2

The value assigned within the main function gets printed because the variable ‘num’ is
local to main().

Consider another example,

{

printf(“The value of num is %d”,num);

}

Output

The value of num is 5

186 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include<stdio.h>

int num_1=5;			 //Global variables

int num_2=12;			

void main()

{

 int num_1= 2;		 //local variable

 printf(“Value of num_1 is %d”,num_1);

 printf(“\nValue of num_2 is %d”,num_2);

}

Output

Value of num_1 is 2

Value of num_2 is 12

Thinking!!Why did this happen?

In the program, num_1 is declared both outside (globally) and inside the function(locally).
When trying to print the variable within the function, the local value gets printed.

In the case of num_2, it is not locally declared. Therefore, the global value is obtained
as output. In the absence of local variables, we get global variables.

Example: Program to demonstrate the use of local variables and global variables

#include<stdio.h>

int num_1=5;			 //Global variables

int num_2=12;	

int incr(int);	

void main()

{

 int num_1= 2;		 //local variables

 int x,z;

 int decr(int);

187SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 printf(“\nValue of num_1 is %d”,num_1);

 printf(“\nValue of num_2 is %d”,num_2);

 z=incr(num_2);

 printf(“\nIncremented value of num_2 is %d”,z);

 x=decr(num_1);

 printf(“\nDecremented value of num_1 is %d”,x);

}

int incr(int a)		 // variable a is local to incr()

{

	 a++;

	 return(a);

}

int decr(int b)	 //variable b is local to decr()

{

	 b--;

	 return(b);

}

Output

Value of num_1 is 2

Value of num_2 is 12

Incremented value of num_2 is 13

Decremented value of num_1 is 1

3.3.2 Parameter Passing methods

Parameter passing entails information sharing. In our daily life, data can be passed
using different strategies. Sharing information with employees in an organization can
be done through emails, memos, notices, shared folders, etc. Each method follows
different techniques and impacts implementation.

188 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

In C programming, variables can share information using assignment operators (a=b;).
Likewise, variables in a function can pass information from the called function to the
calling function and vice versa. Data sharing in functions can be done through different
methods.

There are two techniques in C to send values to function definition from function call,
from actual parameters to formal parameters.

	♦ Pass by value

	♦ Pass by reference

3.3.2.1 Pass by Value/ Call by value

This is the simplest and default method for parameter passing. In this method, the value
of the actual parameter is copied to the formal parameters.

In all programming examples we discussed in previous sections, we were using call by
value method for parameter passing.

Let us discuss a code segment to explain the call by value method.

#include<stdio.h>

void incr(int x,int y)

{

 x+=y;									

 printf(“\nThe value of x in function incr is %d”,x);

}								 			
 		

void main()

{

 int a,b;								 		
	

 printf(“Enter two values\n”);			 	

 scanf(“%d %d”,&a,&b);					 	

 printf(“\nThe value of a in main is %d”,a);	

 incr(a,b);

}

189SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Output

Enter two values

2 3

The value of a in main is 2

The value of x in function incr is 5

Fig 3.3.3 Call by Value

Here, values of variables ‘a’ and ’b’ are copied to ‘x’ and ’y’(Fig 3.3.3). Function code
executes on formal variables ‘x’ and ‘y’ and all changes are made on these variables.
Hence, any change made in the formal parameter will not get reflected in the actual
parameters.

3.3.2.2 Pass by reference/Call by reference

Passing of parameters in functions involves sending input parameters to functions and
receiving output parameters from functions. One method for parameter passing is call
by value, where the values of actual parameters are copied to formal parameters. Mean-
while, the change in actual parameter values will not get reflected in formal parameters.

In call by reference method, passing arguments to a function definition passing
the address of an argument into the formal parameter

In this method, the changes in values of formal parameters are reflected to the actual
parameters. For this, the address of actual parameters is being sent to the formal
parameters.

190 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Consider the following example to demonstrate this,
a=20;
b= 32;
function call -
reset (&a, &b);		 //address of the parameters are sent
function definition -
void reset (int *x, int *y)	 //address copied to pointer variables	
{
	 *x=34;
	 *y=38;			
}	

 Fig: 3.3.4 Call by Reference

Both the parameters (a and x) are pointed to the same memory location. Therefore,
changes in the value of memory get reflected in the other pointed variables (Fig 3.3.4).
ie, changes made in variables x and y are also reflected in formal parameters, a and b.
Now the value of a became 34 and b became 38.

191SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Example: Program to swap two numbers

#include<stdio.h>

void swap(int *,int*);				 // function declaration

void main()

{

 int x,y;						

 printf(“Enter two numbers: “);						

 scanf(“%d %d”,&x,&y);						 		
	

 printf(“\nBefore swapping x and y %d %d”,x,y);

 swap(&x,&y);			 //function call	 		

 printf(“\nAfter swapping x and y %d %d”,x,y);		

}

void swap(int *a,int *b)		 //function definition	

{										
 	

 int t;										
		

 t=*a;		

 *a=*b;

 *b=t;					

}

Output

Enter two numbers: 2 3

Before swapping x and y 2 3

After swapping x and y 3 2

swap (int*, int*) declares a function that accepts pointer variables as parameters. In the
main function, swap (&x,&y) calls the function named swap with arguments address
of x and y. Function definition accepts these memory addresses as contents in formal
arguments(*a,*b). Addresses get swapped, meanwhile, the contents of the addresses
are also exchanged (Fig. 3.3.5).

192 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Call by reference changes the contents of both actual arguments and formal arguments,
whereas in the call by value, the contents of formal arguments are not changed.

 Fig. 3.3.5 Call by reference method

Recap

	♦ In a nutshell, an element declared within a function is local to that function.

	♦ The value of the variable is accessible within that function only. Such
variables are called local variables.

	♦ Global variables are globally defined and are accessible to all functions
within a program.

	♦ Local variables are created during the execution of a function and its scope
ends when the function terminates.

	♦ Global variables are created when the program starts execution and come to
an end when the program terminates.

	♦ When a variable is locally and globally defined, the global variable gets
shadowed. If it is not defined locally, global values are used.

	♦ Execution of functions requires proper data transfer. Call by value and call
by reference are two methods for data sharing.

	♦ The first method copies the value of arguments from function call to function
definition, whereas the second method passes a reference of the arguments
from the called function to the calling function.

193SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	♦ In the call-by-reference method, any changes made to the reference variable
are passed to the actual arguments.

	♦ Normal functions can return a single value; meanwhile, using call by
reference method, a function can return multiple values.

Objective Type Questions

1.	 Arguments passed to a function are called ____ arguments
2.	 State True or False. In a function, the number and type of arguments should

be the same when sending and receiving.
3.	 If a local variable with the same name as a global variable exists, which one

will be used?
4.	 The default parameter passing technique is ____
5.	 What will be the output?

		 void main()

		 {

		 auto int x;

		 print(“%d”,x);

		 }

6.	 void fctn(int c)

	 {

c=90;

}

void main()

{

	 int d=60;

	 fctn(d);

}

 What will be the value of variable ‘d’ after execution?

194 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

7.	 For the above code, the value of ‘c’ will be ___.
8.	 int # it is used in which method?
9.	 State True/False. Call by Value cannot change the value of actual parameters
10.	What is the Output of the following code segment?

#include<stdio.h>

void incr(int *var)

	 {

		 *var=*var+1

	 }

void main()

{

		 int q=23;

		 incr(&q);

		 printf(“The value of variable after function call is %d”,&q);	

}

Answers to Objective Type Questions

1.	 Actual arguments
2.	 True
3.	 Local variable (Preference is given to the local variable within the function,

global variable is shadowed.)
4.	 Call by Value
5.	 Some random number will be generated
6.	 60 //pass by value method.
7.	 90
8.	 Pass by reference
9.	 True
10.	24

195SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Assignments

1.	 Write a program to print the square and factorial of a number using functions.
(use switch..case to select option)

2.	 Write a program to print n prime numbers using function (Pass ‘n’ as an
argument)

3.	 List out the advantages and disadvantages of Pass by value and Pass by
reference method.

4.	 Write a program to swap two numbers with function using both methods and
discuss what changes will reflect in both program outputs.

5.	 Explain global variable and local variable.
6.	 Write a program to illustrate pass by value method and pass by reference

method.
7.	 What is a parameter in a function declaration? What are the different types

of parameters? Explain parameter passing mechanism in C programming.
8.	 Explain call by value method and call by reference method with examples.
9.	 Write a c program to find the largest among two numbers using call by value

method and call by value reference method.

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

196 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Structures and Union

Learning Outcomes

Prerequisites

	♦ familiarize the way to write programs using structure

	♦ discuss the concept of Nested structures

	♦ introduce concepts of functions in structures

	♦ define structure and union

	♦ introduce the concept of implementing structure pointers to functions.

	♦ introduce the concept of implementing union in a program

People handle a variety of data for different purposes. Each data belongs to different
categories. These data can have the same or different properties. For example, data can
take the form of a name, date, number etc.

In C language, data can be integers, characters, strings, floating point numbers and so
on. In previous units, we discussed array handling, which stores only same type of data
items.

For some applications, this might not be enough. For example, consider the address
data of an organization. The address contains values like house number, street name, pin
number, state etc. How to represent this kind of data? Real-time applications contain
various types of data.

In this unit, we are familiarizing a new user-defined data type called structure which treats
related data items which fall under different data types as a single entity. Modularity
in programming is inevitable in all programming languages. Dividing a program into
modules or subfunctions increases the code reusability, efficiency and readability.

UNIT 4

After the successful completion of the unit, the learner will be able to:

197SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

This unit also discusses how the concept of functions is carried out in programs with
different types of data.

‘Structure’ has many advantages and at the same time, it has some disadvantages too,
especially in terms of memory allocation and utilization.

All of us are familiar with prepaid taxis and shared taxis. In prepaid taxis, you pay in
advance for the cab, depending on the distance. But shared taxis take passengers on a
fixed or semi-fixed route without a schedule.

The concept of structures is similar to prepaid taxis. When we create a structure vari-
able, memory is allocated for all the member variables defined. Even if you are a single
person traveling, the taxi seats are reserved for you. Likewise, memory is allocated for
all the member variables, even if it is not used.

Do you know any method to overcome this?

The concept of union suggests solutions for disadvantages in structure, even though it
inherits many properties of structure implementation.

Discussion

Key Concepts

User-defined data types, Structure, Nested Structure, Structure Pointers, Union, Union
of Structures, Enumerated data type, Type casting

3.4.1 Concept of Structure	

C programming allows defining variables that include several data items of the same
type, however the structure is another user-defined data type which allows to include
data items of different types. Structures are used for the record of data. For example,
a student record not only consists of a name, it also includes roll_no, marks, class,
grade etc. Data types like int, and float, char, arrays are not sufficient for handling data
items like this. Structure is a user defined data type which can hold data items of
different types under a single name.

3.4.2 Define a structure

Structure is a heterogeneous collection of elements. Keyword ‘struct’ is used to define
a structure. The struct statement defines a new data type, with more than one element.

198 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Syntax – struct struture name

			 {

				 data-type member_element1;

				 data-type member_element2;

				 ……………………………………………….

			 } structure variables(optional);

Note that, structure variables are optional and can initialize later and a struct
definition should end with a semicolon.

		 e.g : struct student

			 {

				 char name[10];

				 int class;

				 int roll_no;

				 int marks[6];

				 float percent;

			 }s1,s2;

Data items included in a structure definition are known as member variables or member
elements. The above code defines a structure student with 5 member variables, one
character array, two integer variables, one integer array and one float variable. In C, two
methods are there to create structure variables. It can be declared either with the struc-
ture definition or like a basic data type declaration. The first method is demonstrated
above, where structure variables (s1,s2) are defined along with the structure definition.

It can be also created using the keyword ‘struct’ and structure name like a basic data
type from the calling function. Refer to the code below where struct vaiables are defined
inside main function

e.g: 	 struct student

	 {

		 char name[10];

		 int class;

199SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

		 int roll_no;

	 float percentage;

};

void main()

{

	 struct student s1,s2;

}

3.4.3 Structure elements in memory

When a structure is defined, no memory is allocated. We need to create structure
variables to allocate the memory of a given structure type. The data elements of a
structure are always stored in contiguous memory locations.

For example, for the above structure, memory allocation is as follows (in older versions,
the size of an int was 2 bytes, but now it is 4 bytes. However, here we are considering
size of an integer as 2 bytes).	

Fig: 3.4.1 Memory allocation for student structure

	♦ Structure member elements are stored in contiguous memory locations (Fig
3.4.1).

	♦ Size of a structure variable is the sum of size of data elements. For example,
in student structure, size of structure = size(name) + size(class) + size(roll_
no) + size (percent) = 10 + 2 + 2 + 4 = 18 bytes

3.4.4 Accessing data members

Members of a structure can be accessed using two operators.

	♦ Dot(.) operator is the member access operator, to normally access member
variables.

	♦ Arrow(->) operator to access member variables using pointers.

	♦ Both operators are used to refer to individual data elements of a structure.

200 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

●	 Accessing member variables using member access operator dot (.)

Member access operator(.) works as a connector between the structure variable and
member variables.

Syntax: structure variable name.member variable name

e.g.: s1.name

This statement access name of a student of s1

Structure members are initialized as follows,

			 s1.name=”Ram”;	

The above statement assigns value ‘Ram’ to the name of student of s1

Another method is designated initialization,	

struct student s1={name =”Ram”, class = 11, roll no=13, mark = 32, 26, 42, Percent =
30.00};

This method allows you to specify which elements of a structure are to be initialized by
the values. All members that are not initialized are zero-initialized. On the other hand,
all data elements can be assigned in a single assignment.

e.g. : struct student s = {“Ram”,11,13,79.3};

Remember, in the above initialization method, the values assigned should be in order
with respect to the structure definition.

Example: Program to store data of a student using structure.

#include<stdio.h>

#include<string.h>

struct student			 //structure definition

{

	 char name[10];		 //member variables

	 int class;

	 int roll_no;

	 int marks [5];

} stud;				 // structure variable stud

void main()

{	

201SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 int i;

	 printf(“\nEnter name: “);

	 scanf(“%s”,stud.name);

	 printf(“\nEnter class: “);

	 scanf(“%d”,&stud.class);

	 printf(“\nEnter roll number: “);

	 scanf(“%d”,&stud.roll_no);

	 printf(“Enter marks of 5 subjects: “);

	 for(i=0; i<5;i++)

	 {

		 scanf(“%d”,&stud.marks[i]);

	 }

	 printf(“Student Details \n”);

 printf(“Name:%s\nClass:%d\nRollnumber:%d”,stud.name,stud.class,

stud.roll_no);

 printf(“\nMarks\n”);

	 for(i=0;i<5;i++)

	 {

		 printf(“%d\t”,stud.marks[i]);

	 }

}

Output

Enter name: Tom

Enter class: 10

Enter roll number: 21

Enter marks of 5 subjects: 78 89 90 97 90

Student Details

202 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Name:Tom

Class:10

Rollnumber:21

Marks

78	 89	 90	 97	 90

Note: Structure definition can also be included within the main() function.

●	 Accessing member variable using arrow operator (->)

Member variables are also accessed using the arrow operator(->). The arrow operator
is commonly used with a pointer to a structure variable.

How do pointers work through structures? What are the differences made compared to
the conventional method!!

3.4.5	 Pointers to Structure

A structure variable groups variables of different types under a single name. Each
structure variable is associated with a block of memory which contains the entire data
defined within the structure definition. Pointer makes a reference to the address of the
memory location that stores a structure variable. Pointer which points to the address of
the memory block that stores a structure is known as a Structure pointer.

e.g:-struct stud

		 {

		 char name[10];

		 int roll_no;

		 }s;

	 void main()

		 {

		 struct stud *ptr= &s;	 //ptr is a structure pointer points to

the structure variable S

		 }

Now ‘ptr’ points to the structure variable ‘s’. Memory representation of a structure
pointer is demonstrated in Fig 3.4.2.

203SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 Fig. 3.4.2 Structure pointer

The following program implements the previous program of student details using
pointers.

#include<stdio.h>

struct student {		 //structure definition

 char name[10];		 //member variables

 int class;

 int roll_no;

 int marks [5];

} stud;

void main()

{

 int i;

 struct student *p = &stud;	 //initialization of structure pointer

 printf(“Enter name\n”);

 scanf(“%s”,&p->name);

 printf(“\nEnter class\n”);

 scanf(“%d”,&p->class);

 printf(“\nEnter roll number\n”);

 scanf(“%d”,&p->roll_no);

 printf(“Enter marks of 6 subjects\n”);

204 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 for(i=0; i<6; i++) {

 scanf(“%d”,&p->marks[i]);

 }

 printf(“Student Details \n”);

 printf(“Name:%s\t Class : %d\tRollnumber%d\n”, p->name, p->class,p-

>roll_no);

 printf(“Marks\n”);

 for(i=0; i<6; i++) {

 printf(“%d\t”,p->marks[i]);

 }

}

Output

Enter name

Tom

Enter class

10

Enter roll number

21

Enter marks of 6 subjects

89 98 56 78 56 87

Student Details

Name:Tom	 Class : 10	 Rollnumber21

Marks

89	 98	 56	 78	 56	 87

In this example, the address of stud is stored in pointer p, p=&stud. Then you can access
members of the stud using pointer p.

205SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.4.6 Array of Structure

In application level programming, it is not enough to operate a single record using
structure. In a class, there are a number of students and each student has their own details.
Likewise, employee details in an organization include details of many employees. In
the above example, data of a single student is manipulated. In real applications, groups
of students and records have to be manipulated. Array of structure is a finite collection
of structure variables of same type. In array of structures, each element of an array is
of type "structure".

An array of structure is declared as follows:

e.g :-	 struct student

				 {

				 char name[10];

				 int class;

				 int roll_no;

				 int marks[6];

				 float percent;

				 }stud[10];		 //array of 10 students

stud[10] creates a collection of student variables, stud[0],stud[1],….stud[9], each
storing different data. Each student structure variable holds associated data members
and can be accessed through dot(.) operator with array index .

An individual element is referred to as,

		 stud [0].name=”Ram”;	

stud[0].class= 12;	

It assigns values to member variables "name" and "class" of the first student in the
structure array, stud[0]

To generalize, the assignment operation can be done as follows,

		 stud[i].class=12;

The above statement assigns the value to class for i-th students in the structure array.
The program given below read details of a set of students in a class.

#include<stdio.h>

#include<string.h>

struct student

206 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

{				 //structure definition

 char name[10];		 //member variables

 int class;

 int roll_no;

 int marks[6];

 int totalmarks;

} stud[40];			 // structure variable for 40 students

void main ()

{

 int i, num, j;

 printf (“Enter number of students\n”);

 scanf (“%d”, &num);

 for (i = 0; i < num; i++)

 {

 printf("Enter details of student%d", i+1);

 printf (“Enter name\n”);

 scanf (“%s”, stud[i].name);

 printf (“\nEnter class\n”);

 scanf (“%d”, &stud[i].class);

 printf (“\nEnter roll number\n”);

 scanf (“%d”, &stud[i].roll_no);

 printf (“\nEnter marks of 6 subjects\n”);

 for (j = 0; j < 6; j++)

	 {

	 scanf (“%d”, &stud[i].marks[j]);

	 stud[i].totalmarks += stud[i].marks[j];

	 }

 }

207SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 for (i = 0; i < num; i++)

 {

 printf("Details of student %d", i+1)

 printf (“\nName:%s\tClass:%d\tRoll no:%d\tTotal marks:%d\t”,

	 stud[i].name, stud[i].class, stud[i].roll_no,

	 stud[i].totalmarks);

 }

}

Output

Enter number of students

2

Enter details of student 1

Enter name

Tom

Enter class

10

Enter roll number

21

Enter marks of 6 subjects

90 99 98 97 96 96

Enter details of student 2

Enter name

Jerry

Enter class

10

Enter roll number

22

Enter marks of 6 subjects

90 89 87 96 95 86

208 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Details of Student 1

Name:Tom	 Class:10	 Roll no:21	 Total marks:576

Details of Student 2

Name:Jerry	 Class:10	 Roll no:22	 Total marks:543	

Assignment operator can assign or copy the value of a structure variable to another
structure variable which is of the same type. The following expressions demonstrate
different methods to copy value of structure variables to another.

	 struct student s1,s2;

	 s1.age = s2.age;		 // age of s2 gets copied to age of s1

	 strcpy(s1.address,s2.address);

	 s1=s2;			 //copying all elements to another variable

3.4.7 Nested Structures

A structure may consist of structures inside it and is known as nested structure. For
example, consider an employee record which has data members name, employee id,
address, phone number. The attribute address has subparts like house number, street
number, city, state, pin code. Therefore, addresses have to be stored in separate
structures. Nested structures are also known as embedded structures. We can define the
employee record as follows.

struct employee

 	{

		 char name[20];

		 int emp_id;

		 struct address			 //Nested structure definition

		 {

			 int house_no;

			 int street_no;

			 char city[10];

			 char state[10];

			 int pin_no;

		 }ads ;

209SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

		 int phone_no;

 } emp;

The members of the nested structure can be accessed using dot(.) operator.

Syntax: outer structure variable.inner structure variable.member element;

e.g:-emp.ads.pin_no=691302;

The following code shows the implementation of employee record using nested struc-
ture.

#include <stdio.h>

struct employee

{

		 char name[20];

		 int emp_id;

		 struct address		 //Nested structure definition

		 {

			 int house_no;

			 int street_no;

 		 char city[10];

 		 char state[10];

 		 int pin_no;

		 }ads ;

		 int phone_no;

 } emp;

void main()

{

 printf(“Enter name:”);

 scanf(“%s”,emp.name);

210 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 printf(“Enter employee id:”);

	 scanf(“%d”,&emp.emp_id);

	 printf(“Enter address\n”);

	 printf(“Enter house number:”);

	 scanf(“%d”,&emp.ads.house_no);

	 printf(“Enter street number:”);

	 scanf(“%d”,&emp.ads.street_no);

	 printf(“Enter city:”);

	 scanf(“%s”,&emp.ads.city);

	 printf(“Enter State:”);

	 scanf(“%s”,&emp.ads.state);

	 printf(“Enter pin number:”);

	 scanf(“%d”,&emp.ads.pin_no);

	 printf(“The entered details are\n”);

	 printf(“Name :%s\n id: %d\nAddress :\n House NO : %d\n Street no :
%d\nCity : %s \nState : %s\n Pin no %d”, emp.name, emp.emp_id, emp.ads.
house_no,emp.ads.street_no,emp.ads.city, emp.ads.state,emp.ads.pin_no);

}

Output

Enter name:Tom

Enter employee id:21

Enter address

Enter house number:2

Enter street number:5

Enter city:Kollam

Enter State:Kerala

Enter pin number:691001

The entered details are

211SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Name :Tom

 id: 21

Address :

 House NO : 2

 Street no : 5

City : Kollam

State : Kerala

 Pin no 691001

Employee record comprises data name, employee id and address, where address covers
multiple fields like house number, street number, city etc. Structure definition for
‘employee’ is defined as a nested structure which contains structure ‘address’ within it.
‘emp.member_variable’ accesses the structure data members which are directly defined
within the structure, whereas, ‘emp.ads.member_variable’ accesses the nested structure
members which are defined in structure address nested in structure employee.

3.4.8 Passing Structures in Functions

To pass a structure to a function, a structure variable is passed as a parameter to the
function.

The following function displays the student details and the function gets the student
variable stud as formal parameter. Same structure type variable s receives the argument
and performs the operations.

Consider the student structure defined below,

struct student					

{

			 char name[10];			

			 int class;

			 int roll_no;

			 int marks[6];

}stud;

212 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

void print(struct student); 	 // function declaration

void print(struct student s)	 // function definition

{

int i;

printf (“Student Details \n”);

printf(“Name:%s\t Class : %d\tRollnumber%d\n”, s.name,

	 s.class,s.roll_no);

printf(“Marks\n”);

for(i=0;i<6;i++)

	 {

		 printf(“%d\t”,stud.marks[i]);

	 }

}			

void main()

{	

	 int i;

	 printf(“Enter name\n”);

	 scanf(“%s”,stud.name);

	 printf(“\nEnter class\n”);

	 scanf(“%d”,&stud.class);

	 printf(“\nEnter roll number\n”);

	 scanf(“%d”,&stud.roll_no);

	 printf(“Enter marks of 6 subjects\n”);

	 for(i=0;i<6;i++)

	 {

		 scanf(“%d\n”,&stud.marks[i]);

	 }

	 print(stud);		 //function call

}

Note that, Structure type is necessary in function declaration. Individual Structure
elements can also be passed to functions.

213SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.4.9 Concepts of Union

Union is a user-defined data type that is used to store different types of data elements. A
union can define many members, but only one member can contain a value at any given
time. Union provides an efficient way of using memory by storing different data types
in the same memory location.

3.4.10 Define a Union

The syntax to define a union follows the same as that of structure, but the keyword
‘union’ is used in place of the struct.

Syntax:	 union u_name

			 {

				 member definitions;

			 } union variables;

	

In union definition, u_name tag is optional and member definitions are normal variable
definitions. You can specify one or more union variables before the final semicolon, but
it is optional. If the union variable is not specified with the definition, it can be defined
separately within the main() function.

	 e.g.: union dimen

 		 {

			 int x;				

			 char c;							

			 float f;				

 		 } d;

	 or

	 union dimen d;

This declares variable d of type union dimen. The union contains three members each
with a different data type. But only one can be used at a time due to the fact that only
one location is allocated for a union variable, irrespective of its size. This is a major
difference between structure and union in terms of storage. We know, in structures, each
member has its own memory location, but all the members of the union share the same
memory location.

Memory allocation for union type occurs at the time of union variable creation. For
a single variable (here ‘d’), the same memory location can be used to store multiple
types of data (Fig 3.4.1). For the above union definition, the size of d=4 (largest size

214 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

among the data members). This is because, in the above example, the maximum space
is occupied by float value. The memory occupied by the union is large enough to hold
the largest member of the union. (in older versions, the size of an int was 2 bytes, but
now it is 4 bytes. However, here we are considering size of an integer as 2 bytes)

 Fig 3.4.1 Memory Allocation in Union

The compiler allocates storage that is large enough to hold the largest variable type
specified in union. Fig 3.4.1 shows how all the members share the same address. This
implies that, even if a union may contain many elements of different data types, it can
handle only one member at a time.

3.4.11 Accessing Union Members

Like structure, member access dot(.) operator is used by the union data type to access
data elements.

	 e.g.: 	 d.x=5;

		 d.f=8.3;

During accessing, we must ensure that we are accessing the member whose value is
currently stored. Union can store only the last entered data, it overwrites the previously
stored information. This is because the maximum memory allocated is the size of the
largest data type of member variables.

Let us discuss the features of union with the following code,

#include<stdio.h>

#include<string.h>

215SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

union student

{

	 int roll_no;

	 char name[20];

}s;

void main()

{

 	 s.roll_no=101;

	 printf(“Student Roll number : %d\n”, s.roll_no);

 	 strcpy(s.name, “Sam”);

	 printf(“Student name : %s\n”, s.name);

	 printf(“Size of union variable s is %d”,sizeof(s));

 	 printf(“\nRoll number after name assignment%d”,s.roll_no);

}

Output

Student Roll number : 101

Student name : Sam

Size of union variable s is 20

Roll number after name assignment <garbage value>

In the above program, the memory space of the roll number in the final print statement
got replaced by the data element name, hence some garbage value gets printed. So,
when a different member is assigned with a new value, the new value supersedes the
previous allocated member’s value.

Union members can be initialized only with a value of the same type as the first union
member. For example, the following declaration is valid.

union student roll_no={12};

But the declaration, union student roll_no={12.00} is invalid because the type of first
member is int.

216 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Example: Program to illustrate memory allocation for union members.

#include<stdio.h>

union u

{

 int i;

 char c[2];

};

void main()

{

 union u u1;

 u1.i=1024;

 printf(“u1.i=%d\n”,u1.i);

 printf(“u1.c[0]=%d\n”,u1.c[0]);

 printf(“u1.c[1]=%d\n”,u1.c[1]);

 u1.c[1]=5;

 printf(“u1.c[0]=%d\n”,u1.c[0]);

 printf(“u1.c[1]=%d\n”,u1.c[1]);

 printf(“u1.i=%d\n”,u1.i);

}

Output

u1.i=1024

u1.c[0]=0

u1.c[1]=4

u1.c[0]=0

u1.c[1]=5

u1.i=1280

217SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Representation of the above data is shown in Fig. 3.4.2. The union occupies 2 bytes in
memory. Here, int has 2 bytes of memory. The same memory locations used for u1.c[0]
and u1.c[1] are used by u1.i also. Initially, u1.i is assigned with an integer value 1024,
a 2-byte number. The binary equivalent of 1024 is 0000 0100 0000 0000. From Fig
3.4.2, it is clear that the last eight bits are also occupied by u1.c[0] and the first eight are
occupied by u1.c[1]. Therefore, u1.c[0]=0 and u1.c[1]= 4. Next, u1.c[1] is reassigned
with value 5(binary equivalent- 0101). Therefore, the content of u1.i also changed to
0000 0101 0000 0000(equal to 1280).

Fig. 3.4.2 . Union data in memory

The representation of structure for the above data is demonstrated in Fig 3.4.3

struct s

{

int i;

char c[2];

}s;

Fig. 3.4.3 Structure data in memory

It occupies 4 bytes in memory, 2 bytes for s.i and 2 bytes for s.c[0] and s.c[1].

3.4.12 Union of Structures

Similar to nested structures, union and structures can be implemented in nested form.
The notation to access union and structure members which are in nested form remains

218 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

the same as for the nested structures. The following program is an example of structures
nested in a union.

struct s

{

	 int i;

	 char c[2];

};

struct t

{

	 int j;

	 char d[2];

};

union u	 //union with structure members

{

	 struct s s1;

	 struct t t1;

};

In the above program, two structure variables s1 and t1 are defined as members within
a union. Assigning value for a struct variable also assigns a value for the next structure
because both are variables of a union type.

union u u1;

u1.s1.i=5;

u1.t1.d[0]=’w’;

u1.t1.d[1]=’r’;

printf(“\n%d”,u1.s1.i);		 //Output	 5

printf(“\n%d”,u1.t1.j);		 //Output	 5

printf(“\n%c”,u1.t1.d[0]);		 //Output	 w

printf(“\n%c”,u1.t1.d[1]);		 //Output	 r

printf(“\n%c”,u1.s1.c[0]);		 //Output	 w

printf(“\n%c”,u1.s1.c[1]);		 //Output	 r

219SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Fig. 3.4.4 shows the memory allocation of structure variables defined above(here int
size is 2 bytes).

Fig. 3.4.4 Sharing of memory locations by structure variables defined in
union

The following statement reassigns the location d[0] with c[0]. Memory allocation after
this reassignment is shown in Fig. 3.4.5

u1.s1.c[0]=’y’;

printf(“\n%c”,u1.s1.c[0]); 	 //Output y

printf(“\n%c”,u1.t1.d[0]);	 //Output y

Fig. 3.4.5 Memory reallocation of structure variables defined in union

220 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.4.13 Pointers to Union
In C, pointers to union are similar to the concept of pointers in structure. It can also
access the members using the arrow(->) operator.

The program code given below shows how a union type pointer variable is created and
the base address of the union variable is assigned with union variable ‘d’. Arrow oper-
ator(->) is used with a pointer variable to access member variables of union.

#include<stdio.h>

union dimen

{

 int x;

 float y;

} ;

void main()

{

 union dimen d;

 d.x=10;

 union dimen *p;

 p=&d;	 // union variable base address is assigned to same type pointer
variable

 printf(“%d %f”,p->x,p->y);

}

Output

10 0.000000

3.4.14 Advantages of Union in application programs

Consider an application that stores information about employees in an organization.
The information includes items like name, employee id, age, and division. Suppose
division is classified into two- technical and non-technical.

	 if (division == technical)

		 department

221SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

		 credit card number

	 if (division == non-technical)

		 date of contract

		 vehicle number

The representation of the above data in a structure is as follows

struct emp

{

char name[2];

int emp_id;

int age;

char div[15];

int yoc;

int ccn;

char dept;

char vn[10];			

};

The structure definition meets all the requirements of an employee record, but there
are some disadvantages. Depending on the division, each employee uses different data.
All sets of fields would never be used. It would result in a wastage of memory with
every structure variable because all structure variables would have all four fields. This
disadvantage can be eliminated by using a union in place of structure.

	 struct div1

		 {

			 int ccn;

			 char dept;

		 };

	 struct div2

		 {	

			 int yoc;

			 char vn[10];		

		 };

222 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 union division

		 {

			 struct div1 d1;

			 struct div2 d2;

		 };

	 struct emp

		 {

			 char name[2];

			 int emp_id;

			 int age;

			 char div[15];	

		 };

The above code gets rid of the disadvantage that we mentioned previously. It defines
employee details in memory based on the requirement only and reduces wastage of
memory.

 		

 No Structure Union

1 Keyword ‘struct’ is used Keyword ‘union’ is used

2 Allocates memory for each
element

Allocates memory on the size of an
element with the largest size

3 Size of structure variable is
equal to the size of the sum of
the size of all data elements

Size of union is equal to the size of
largest data element

4 Value assignment on one
variable will not affect other
variables

Value assignment on one variable
changes content on other variables

5 Each element can be accessed
at a time

Only one element can be accessed
at a time

6 All elements can be
initialized at once

Only one element can be initialized

3.4.15 Comparison between Structure and Union

223SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.4.16 More user-defined data types

3.4.16.1 Enumerated Data Type

Enumerated data type is a user-defined data type. It assigns names to integral constants
and the names are given to make the program easy to read and understand.

Keyword ‘enum’ is used to define and use an enumerated data type.

Syntax: enum identifier {value1, value2,…., valuen};	

The ‘identifier’ is a user-defined enumerated data type which is used to declare variables
which are enclosed within the braces (known as enumeration constants).

e.g.: enum days{mon, tues, wed, thurs, fri, sat, sun};

After enum definition, we can declare variables of enum type as below:

Syntax: enum identifier v1, v2...;

e.g: enum days day1, day2;

Default values can also be assigned by the compiler beginning with 0 to all the enum
constants. The default value of the enumerated data type starts from 0, and then increments
continuously. It is also possible to assign values to defined constants explicitly.

Assign Values to the Variables

day1=mon;

day2=tues;

Let us discuss it in more detail

e.g.: enum boolean{fal, tru}; //Default Values starts from 0

printf (“\n Boolean values assigned are %d %d”, fal,tru);

Boolean values assigned are		 0 	 1

e.g.:enum day{sun=1,mon,tues,wed,thurs,fri,sat};

//initial value assigned is 1

printf (“\nThe value of enum day is %d\t %d\t %d\t %d\t %d\t %d\t %d\t”,sun,mon,tu
es,wed,thurs,fri,sat);

enum day d1,d2;

d1=sun;

d2=mon;

printf(“\n Value of d1 and d2 is %d,%d”, d1,d2);

224 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

The constant sun is assigned with value 1. The remaining constants are assigned values
that increase continuously by 1.

The value of enum day is 	 1	 2	 3 	 4	 5	 6	 7

Value of d1 and d2 is 1, 2

e.g.:enum name {sam,ram,jan=5,prin,hyran,quin=23,ann};

//assigned with different values

printf(“\nThe value of names given are %d\t %d\t %d\t %d\t %d\t %d\t %d\t”,
sam,ram,jan,prin,hyran,quin,ann);

The value of names given are	 0	 1	 5	 6	 7	 23 	24

In enum data type, values not given in the original declaration cannot be used. Size
of the enum variable is the size of the integer. The definition and declaration of enum
variables can be done in a single statement.

	 enum day{sun, mon,…., sat} day1, day2;

Advantages of Enumerated data type

	♦ Enumerated constants can be generated automatically.

	♦ Errors can be easily detected.

	♦ Programs become more readable and understandable.

3.4.16.2 Type definition

Type definition allows users to define an identifier that would represent an existing data
type. Keyword ‘typedef’ can be used to define a new name to an existing data type.

Syntax – typedef data_type identifier;

Where data_type refers to an existing data type and identifier is the new name which is
meaningful given to the data_type. The existing data_type can be of any type including
the user-defined ones.

e.g: typedef int marks;

Now the identifier marks can be used as type int.

		 marks m1=5;

printf(“%d”,m1);

User-defined data types can also be defined using ‘typedef’. For example, using typedef
with structure, you can define a new data type and use that data type to define structure
variables.

e.g.: struct student

225SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

{

	 char name[10];

	 int roll_no;

} ;

typedef struct student stud;

stud s;

 or

typedef struct student

{

 char name[10];

 int roll_no;

}stud;

stud s;

3.4.16.3 Type Conversion

Through type conversion, variables of one type can be changed to another.

Two types of type conversions are there

	♦ Implicit Type Conversion

	♦ Explicit Type Conversion

Implicit type conversions are done by the compiler automatically.

Consider the following program code,

		 int x=12,s;

		 car c=’a’;

		 s=x+c;

		 printf(“Value after addition is %d”,s);

In the above example, character type variable ‘c’ (a) is added with integer type variable
‘x’(12) and the result is assigned to integer variable ‘s’. ASCII value of ‘a’ (97) is
added. The compiler automatically converts character type to ASCII before the addition
operation. Such conversions are called implicit type conversions.

226 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Output

Value after addition is 109

Type conversions done by users explicitly are called explicit Type conversions.

e.g.: - float x=8.3;

int a= (int)x+2;//explicit conversion

printf(“Value of a is %d”,a); // output 10

Explicit type conversions are also called typecasting because the user can cast a data
type to another.

Recap

	♦ Structure is a user-defined data type.

	♦ It is a collection of one or more variables, maybe of different data types,
assembled under a single name.

	♦ Structure variables are real-time entities and member variables are data
associated with it.

	♦ Direct handling of data is not possible in structures; therefore, special
operators (. and ->) are used to access data members.

	♦ Concept of pointer to structure makes data handling efficient and simple.

	♦ Array of structures allows us to store many data records of similar type.

	♦ Array is a finite collection of similar variables.

	♦ Nested structure is defining structure inside another structure.

	♦ It is possible to pass and return structure variables as arguments to functions.

	♦ Unions are derived data types; the way structure is.

	♦ Union is used to collect a number of different types of items together.

	♦ Union allows a method for a section of memory to be managed as a variable
of one type on one occasion, and as a different variable, of different type on
another occasion.

	♦ Union performs better in terms of memory utilization compared to the
'Structure.'

	♦ It is likely to define any built-in or user-defined data types inside a union
based on the requirement.

227SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	♦ The size of a union variable at any instance is equal to the size of largest
element among all the elements in the union.

	♦ At any time, only one member of the union can occupy the memory.

	♦ Enumerated data types consist of a set of named values called enumerators.

	♦ Enum variables are usually identifiers that behave like integral constants.

	♦ Explicit and implicit value assignment is possible.

	♦ typedef create meaningful data type names which increases the readability
of the program

	♦ Typecasting is a technique by which you can change the data type of a
variable, regardless of how it was originally defined.

Objective Type Questions

1.	 struct student

		 {

		 char name[10];

		 int class;

		 int roll_no;

 };

 void main()

 {

	 structure student.class=10;

	 print(“%d”,student.class);

 }

 What will be the output?
2.	 State whether True or False. Structure elements are stored in contiguous

memory locations

228 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

3.	 What is another term for user-defined data type?
4.	 How can you find out the size of a structure?
5.	 Function cannot be a structure member. State True/False
6.	 State True or False. It is possible to create an array of structure
7.	 What is the size of the given union?

union rect

 {

 int x;

 char a[10];

 };

8.	 #include<stdio.h>

 union rect

	 {

		 int x;

		 int y;

 } ;

void main()

{

union rect r=30;

printf(“%d %d”,r.x,r.y);

}

 What will be the output?

9.	 What will be the output of the following code

	 #include <stdio.h>

229SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

union student

{

	 int no=5 ;

	 char name[20];

};

void main()

{

 union student u;

u.no = 8;

printf(“hello”);

}

10.	 Which element determines the size of union?
11.	 What is the output?

void main(){

union {int i1; int i2;} myVar;

myVar.i2 =100;

printf(“%d %d”,myVar.i1, myVar.i2);

}
12.	 Consider the following statements

struct stu

{

	 int a[5];

	 union

	 {

230 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

		 float x,

		 double y;

	 }u;

}s;

Suppose that int, float, double occupy 2, 4, 8 bytes rep. What do you think about the
memory requirement?

13.	#include<stdio.h>

enum san

{

		 a,b,c

};

enum san g;

void main()

{

		 g++;

		 printf(“%d”,g);

}

What will be the output?

14.	What will be the output of the following code?

	 void main()

		 {

			 typedef int a;

			 a i=4,j=8,k;

			 k=(i*2)/2+j;

231SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

			 printf(“%d”,k);

		 }

15.	What is the size of array1 in the following code?

		 typedef char x[10];

		 x array1[4];
16.	Which type conversion is called automatic type conversion?
17.	What will be the output?

		 void main()

	 {

			 int i = 10;

			 char j = ‘m’;

			 i = i + j;

			 float k = i + 1.0;

			 printf(“i = %d, k = %f”, i,k);

		 }

Answers to Objective Type Questions

1.	 Compilation error (structure instead of struct) and structure variable not
defined

2.	 True
3.	 Aggregate data type or derived data type
4.	 Sum of the size of all data elements
5.	 True
6.	 True
7.	 10(Hint: Largest member variable)
8.	 Compile-time error	 (rect r = 30 - invalid initializer, should have been

rect r.x={30})

232 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

9.	 Compile-time error	 (Hint :int no=5;)
10.	size of the biggest member in the union
11.	100	 100	 (Hint: share same memory)
12.	18(Hint: 8 for y and 10 for a[5])
13.	1(Hint: Default value starts from 0)
14.	12(Hint:a is equivalent to int)
15.	40//(Hint:10*4)
16.	Implicit type conversion
17.	119	 120.000000	 (Hint: Type casting)

Assignments

1.	 Write a program to read details of N students (Name, Class, Marks of 5
subjects), calculate the percentage of marks and display the details.

2.	 Write a program to find the area of a rectangle using structures with pointers.
3.	 Write a program to implement a book with its associated properties using

structure.
4.	 Write a program to implement employee record for a group of employees

(Nested structure and array of structures)
5.	 Write a program to implement a library (book name, publisher, price, author,

date of publishing) using an array of structures.
6.	 Discuss the advantages and disadvantages of structure.
7.	 Write a program to implement a student record using union. Discuss what

are the changes noted in the same program using structure.
8.	 Write programs for employee records using both structure and union and

compare the features.
9.	 Write a program to display months using the concept of enumerated data

type.
10.	Compare type conversion and type casting.
11.	What is a structure? How to declare and define structure? How to create

structure variables?
12.	How to access elements of structures in C programming.
13.	Create a structure Student with field student name, id number, course, address

and date of birth. Write a C program to read and display students' details.
14.	Compare array and structure.
15.	Explain nested arrays with examples.

233SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

16.	Create a structure Employee with following fields name, id, address and date
of birth.

17.	Create another structure within the employee, DateOfBirth with following
fields date, month and year.

18.	Explain pointers in structure .
19.	How to pass structure in a function?Explain with an example.

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

Storage Classes,
Files, and
Preprocessors

BLOCK 4

234 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

235SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Storage Classes

Learning Outcomes

Prerequisites

	♦ understand the concepts of the scope of elements in a program

	♦ learn different storage classes in C

	♦ achieve skills to implement efficient programs using bitwise operators.

Generally, in the declaration of every variable, we need to specify the data type and
variable name.

e.g.: int x;

In addition to data type and name, the above statement specifies the size of the variable,
and the amount of memory allocated. These properties are applicable to functions also.
Functions also have a data type, name, return type, etc. Actually, the properties of
elements of a program do not limit to these.

For example, consider you are admitted to a college which is under a university. At the
time of admission, you will definitely get an admission number and identity card. The
identification card includes details like student name, class, course, admission number,
college name, year of validity, etc. Using the identity card, you can access college
facilities like a library, gymnasium, canteen, etc.

Is it possible for you to access the same facilities in another college under the same
university using the same id for you?

Obviously, No. Why?

You have not been admitted to that college. The id card is allotted for the college that
you are admitted to. Even if you are part of a university, your accessibility for the
above-mentioned facilities is limited to your college. After all, the validity of the id card
expires after years of study. You can’t access the college facilities, even if you have the

UNIT 1

After the successful completion of the unit, the learner will be able to:

236 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

same id card. Similarly, what about the issue of certificates? Is it done by the college
or the university? For all students under this university, it is done by the university
itself.	

Do you know these are related to program elements like variables and functions?

When we declare variables in a C program, they also have properties like limitations in
accessibility, life span, etc.

How are program elements operated on these properties?

 How is it implemented and managed?

 What are the uses of such features?

The solutions to all these queries are in storage classes.

Discussion

Key Concepts

Scope, lifetime, visibility, storage classes

4.1.1	 Storage Classes

To fully define a variable, you need to mention not only its type but also its storage
class. A variable’s storage class provides the following information,

Where the variable would be stored.

What will be the initial value(default) assigned (if the initial value not given)

Lifespan of the variable (How long the variable would exist in memory)

Scope of the variable.

Consider the code given below,

#include<stdio.h>

int square(int num)

{

 int s;

	 printf(“\nThe passed value is %d\n”,n);

	 s=num*num;

	 return(s);

237SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

}

void main()

{

	 int n, result;

	 printf(“Enter number\n”);

	 scanf(“%d”,&n);

	 result= n*n;

	 printf(“\nSquare of the number is %d”, result);

}

When we compile the program, there will be an error as n is declared only in the main
function and not in the square function

The scope of a variable is within that part of the program code in which it can be used.
In the above program, the scope of variable ‘n’ is within the main function because it is
declared within that function. It is not possible to use that variable outside the function.
This is known as local scope.

The concept of availability or accessibility of variables or functions are referred to as
their scope and lifetime. Scope of an element in a program denotes a region in a program
where an element can be accessed after its declaration. Scope defines the visibility of
an identifier in a program. Visibility refers to the accessibility of a variable from the
memory.

If the variable is declared before the main function and not within any other function,
the scope of the variable is through the entire program. That is, the variables can be
used at any place in the program. This scope is known as a global scope.

The life of a variable declared within a function ends with the last statement of the
function. The variables used as formal arguments and variables declared within a
function have local scope.

Similar to variables, functions also have scope. Functions can be used within the
function where it is declared. Then the function is said to have a local scope. If it is
declared before the main function and not within any other function, it has a global
scope. A function which is declared inside the body of another function is called a local
function. A function which is declared outside the body of any other function is called
a global function.

Storage Classes define the scope and lifetime of a variable or a function. It helps to trace
the existence of a variable during the runtime of a program.

238 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

4.1.2 Types of Storage classes

In C, four types of storage classes are there. They are

	♦ Automatic

	♦ Static

	♦ Register

	♦ External

4.1.2.1 Automatic

Automatic variables are declared inside a function in which they are to be used.
Variables under the automatic storage class are local variables or internal variables.
That is, the visibility and scope are limited within the block in which they are defined.
These variables are created when the function is called and is deleted automatically
when the function is exited. Keyword ‘auto’ is used to define it.

e.g.: auto int age;

Automatic storage class is the default storage class for all elements defined within a
function or block, hence it is rarely used in C programs. By default, auto variables are
initialized with some garbage value.

int i=3, j;	 // by default under category auto variable

In the above statement, variable ‘i’ is initialized with value 3 and no initialization value
for variable j. Hence it would be initialized with some garbage value. Memory allocated
gets free after the completion of the execution of the corresponding block.

Example : Program to demonstrate ‘auto’ variables.

#include <stdio.h>

void display();

void display()

{

int b;		 //default auto variable

printf(“\nIn function value of b is \n%d”,b);

}

void main()

{

239SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 		 auto int a,b=5; //Auto variables

 		 char c; //default auto variables

 		 int d; //default auto variables

 		 printf(“%d\t%d\t%c\t%d”,a,b,c,d);

 		 display();

}

In the above program, variable b is declared both in main() and display(). The
values taken by variable b are different in these functions. In main(), it is initial-
ized with value 5, and in display(), it is not initialized, hence a garbage value is
assigned. The compiler treats variable b in two blocks as totally different vari-
ables since they are defined in different blocks. Variables a, c, and d are automatic
variables and are initialized with some garbage value. Remember to initialize the
automatic variables properly, otherwise, you will get unexpected results.

Output

0	 5	 <garbage>	 0

In function value of b is

22017

4.1.2.2 Static

Static variables are single-valued local variables and they preserve the value through-
out the entire program. These variables are declared once and exist at the end of the
program. Keyword ‘static’ is used.

e.g.: static int yearofb=1990;

A static variable can be an internal or external type depending on the place of decla-
ration. Internal static variables have scope till the end of the function in which it is
defined. So it is similar to auto variables, but remains in existence throughout the pro-
gram. Hence static internal variables can retain values between functions. An external
static variable is declared outside all functions and is accessible to all the functions
in the program. Default value of a static variable is 0. In its lifetime, it is initialized a
single time.

240 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Example: Program to demonstrate static variables.

#include<stdio.h>

void add ()

{

 static int a = 5;		 //static variables

 int b = 11;			 // auto variables

 printf (“%d %d \n”, a, b);

 a++;

 b++;

}

void main ()

{

 int i;

 for (i = 0; i < 3; i++)

 {

 add ();

 }

}

Output

5	 11

6	 11

7	 11

The above program consists of two functions main() and add(). The function add()
gets called from main() three times. In add(), variable ‘a’ is static and variable ‘b’ is
automatic. Static variable a is initialized to 5 and it is never initialized again. During
the first function call, a is incremented to 6 (a is static and the value remains). For the
next function call, the process repeats. In the static storage class, the statement static int
a=1 is executed only once, irrespective of how many times the same function is called.

241SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include <stdio.h>

void main ()

{

 register int a;		 // The initial default value of a is 0.

 printf (“%d”, a);

}

Output

0 	

A variable in the register storage class can be accessed faster than any other storage
class. It is better to use a register storage class for variables used at many places in a
program.(e.g: variables in the loop). The number of CPU registers is limited and may
be reserved for some other task. Therefore, it cannot be sure that the value of a register
variable would be stored in a CPU register.

4.1.2.4. External

External Variables are declared outside of all functions which makes it access to all
functions in the program. They are alive and active throughout the entire program.
These variables are also known as global variables. Value change in an external variable
gets reflected in all functions within the program and it can be changed in any block.
Keyword ‘extern’ is used.

e.g.: extern average=45;

For auto variable b, when each time add() is called, it is re-initialized to 11. In effect, no
matter how many times add() is called, b is initialized to 11 every time.

4.1.2.3 Register

Register variables are the same as auto variables, but the difference is that these variables
are usually stored in processor registers which makes faster accessibility. Since register
access is much faster than memory access, the frequently accessed data kept in registers
make the program execution faster. If a processor did not find available free register,
then the content is stored in memory. Keyword ‘register’ is used.

e.g: register int pixel=2;

Default initial values of the register variable is 0. Scope and visibility of the variable
are limited to the function or block.

242 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Default initial value of external variables is zero.

Example: Program to demonstrate extern variables

#include <stdio.h>

extern int a;			 //extern variables

int a = 10;

void display ();

void main ()

{

 int a = 5;			 //local variable

 printf (“In main function %d”, a);

 display ();

}

void display ()

{

 printf (“\nIn display function %d”, a);

}

In the above program, variable a is declared a global variable initially. Within
main() function, it is again declared and is considered as local to that function.
When function display() is trying to access variable a, control goes to global vari-
able, not to the local variable. This is because local variable a is local to main()
and is not accessible outside main().

Output

In main function 5

In display function 10

243SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 		
 Storage

Class
Storage
Specifier Scope Life Initial

Value

Automatic Auto Within block End of block Garbage

Static Static Within block End of program Zero

Register Register Within block End of block Garbage

External Extern Entire program Entire program Zero

Table 4.1.1 Comparison of various storage classes

Recap

	♦ A variable’s storage class provides the following information:

○	 Where the variable would be stored.

○	 What will be the initial value assigned

○	 Lifespan of the variable

○	 Scope of the variable.

	♦ Automatic storage class - visibility and scope are limited within the block in
which variables are defined

	♦ Static storage class - variables are declared once and exist till at the end of
the program

	♦ Register storage class - variables are usually stored in processor registers

	♦ External storage class - declared outside of all functions which makes access
to all functions in the program

244 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Objective Type Questions

1.	 What will be the output?

void main()

{

int x=10;

static int y=x;

if(x==y)

printf(“\n Equal”);

else

printf(“\n Unequal”);

}
2.	 State True or false. Static storage class cannot be used with function

parameters.
3.	 What will be the output?

		 #include<stdio.h>

		 static int wt;

		 int num;

		 void main()

		 {

			 printf(“%d\t”,wt);

			 printf(“%d”,num);		

 }
4.	 What will be the output?

245SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 void main()

		 {

			 register num1=7;

			 {

				 register num1=10;

				 register num2=20;

				 printf(“%d\n %d\n”,num1,num2);

 }

 printf(“%d”,num1);

		 }
5.	 What is the output of the following program?

 #include <stdio.h>

void main()

{

 	 register int i = 10;

	 int *ptr = &i;

 	 printf(“%d”, *ptr);

 }
6.	 What is the scope of the extern class specifier?
7.	 What will be the output?

	 void main()

		 {

246 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

			 auto int x=10;

			 {

				 auto int x=20;

				 printf(“%d\t”,x);

			 }

			 printf(“%d”,x);

		 }
8.	 What will be the output?

	 void main()

		 {

			 register x=10;

			 printf(“%d”&x);

		 }

Answers to Objective Type Questions

1.	 Compile time error (Hint: static variables can hold only constant literals)
2.	 True
3.	 0	 0	 (Hint: Default values)
4.	 10	 20	 7
5.	 Compile-time error	 (Hint: Address of register variable i requested)
6.	 Global Multiple files
7.	 20	 10
8.	 compile-time error

	 (Hint: register is part of the CPU and accessing it using & is not possible)

247SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Assignments

1.	 Write programs to add three numbers using different storage classes and
discuss the changes noted during usage of different storage classes

2.	 Explain the differences between automatic, static, register, and external
storage classes in C, providing examples for each.

3.	 Write a C program that demonstrates the usage of automatic variables and
discusses their scope and lifetime within the program.

4.	 Develop a C program showcasing the usage of static variables and analyze
how their values are preserved throughout the program’s execution.

5.	 Create a C program illustrating the usage of register variables and discuss
their benefits in terms of program optimization.

6.	 Write a C program demonstrating the usage of external variables and explain
how they can be accessed across different functions within the program.

7.	 Explain the purpose and functionality of bitwise operators in C, including
AND, OR, XOR, left shift, right shift, and NOT.

8.	 Develop a C program that implements bitwise operations such as AND, OR,
and XOR on two given integers, providing the output for each operation

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

248 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Managing Files

Learning Outcomes

Prerequisites

	♦ understand various types of files

	♦ learn file handling functions and their implementation

	♦ achieve skills to manage files using C programming

In the previous units, we learned of programs implemented on the assumption that
input to a program originates from the standard input device. Usually, it is not enough
to just display the data on the screen.

Consider a program to read student details from the keyboard using the concept of
structure. By using such a program, we can read and display the student details. Does
the job get completed? What do you think? Obviously, No. In an academic institution,
when we enter student details, then they should be stored in permanent storage space
for future purposes. Similarly, many real-life problems involve a large amount of data
and in such cases console I/O operations are insufficient. In such situations, it becomes
necessary to store the data in a manner that can be seen later and exhibited either in part
or whole.

How can data be read from a disk? How can data be stored on a disk?

A common solution is data on disk. It is a more flexible approach where data can be
stored on the disk and read whenever needed. It employs the concept of files to store
data. A file is a common storage unit in a computer. All of us are familiar with different
types of files; for example, documents, worksheets, PowerPoints, etc. Is it possible to
operate files through C programs? Have you heard anything about this? Does C lan-
guage provide any direct input-output functions for this?

UNIT 2

After the successful completion of the unit, the learner will be able to:

249SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion

Key Concepts

FILE, file pointer, fopen, fclose

4.2.1 Data Organization in Files

Files are a collection of data. It can store data permanently without data loss. Two types
of files are there -Text files (character streams) and binary files (binary data). We are
mostly concerned with character data. In text files, data are in human-readable form. It
includes numbers, alphabets, and other special symbols. In binary files, data is stored in
the form of a sequence of bytes.

Data organized in a file can be manipulated easily through C file operations and in-built
functions.

4.2.2 File Operations

C supports a set of functions	 that have the ability to perform basic file operations,
which are the following:

1.	 Creating a new file
2.	 Opening an existing file
3.	 Closing a file
4.	 Reading from a file
5.	 Writing to a file
6.	 Seeking specific location in a file

While storing data in a file, the following things should be specified about the file

	♦ Filename

	♦ Data Structure

	♦ Purpose

The Filename is a string of characters that should be a valid file name for the Operating
System. It usually contains two parts – a primary name and an extension (optional).
For example, add.c, computer.docx, program, etc. Data structure of the file is defined
as FILE which is the pointer type. All files should be declared as type FILE before use.
While opening the file the purpose of opening the file should also be specified .

4.2.3 Creating and opening a file

Before doing any operation in a file, we must create it. To create a new file and to open
an existing file fopen() function is used.

250 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 		

Mode Explanation

 r opens an existing text file for reading operation. If the file does not exist,
the function returns a NULL

w opens a text file for a write operation. If the file specified does not exist
a new file is created with the same file name.

a opens a text file to append data. If the file specified does not exist a new
file is created with the same file name

r+ opens a text file for both read and write operations

w+ opens a text file for both read and write operation. If the file specified
does not exist a new file is created with the same file name

a+ opens a text file for both read and write operation. If the file specified
does not exist a new file is created with the same file name. Read
operation will start from the beginning, but writing content will append
to the existing content.

Table 4.2.1: Modes of opening files in C

Syntax: 	 FILE *fp;

		 fp= fopen(“file1”,”mode”);

The initial statement declares a data type called FILE and a pointer variable fp to file
type. File pointer can hold an address of a C structure which stores the type of file
operation, memory location of current read and write operations. The second statement
opens the file named file1 and assigns an identifier to fp. It also specifies the purpose
or mode of opening the file. “mode” denotes access mode and can take one of the
following values.

Various modes of opening files are shown in Table 4.2.1.

Filename and mode are strings; therefore they should enclose in double quotes. For
binary files, instead of the above mentioned modes rb, wb, ab, rb+, wb+, ab+ are used
respectively.

fopen() performs three important steps when a file is opened.

Initially, it searches for the file to be opened.

Then it loads the file from the disk into a buffer (a temporary storage place in memory).

Then the character pointer points to the corresponding character in the buffer.

251SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

4.2.4 Closing a file

The file should be closed after completing its operation. fclose() function is used to
close files. This ensures that all information associated with the file is flushed out from
the buffers.

	 Syntax :fclose(file_ptr); 	

This statement would close the file associated with the FILE pointer file_ptr. The
fclose() function returns a zero on success. If there is an error in closing the file EOF
will be returned. fclose() function releases all memory used for the file.

4.2.5 Reading and writing to a file

Once a file is opened, reading from or writing to a file is accomplished using standard
I/O functions.

A. fprintf() and fscanf() functions

These functions are similar to printf() and scanf(), but for file-handling functions, a file
pointer is required to handle files. fprintf() sends formatted output to the file stream.

	 Syntax :	 fprintf(fp, “control string”,list);

			 fscanf(fp, “control string”,list);

where ‘fp’ is a file pointer, control string contains input-output specifications for the
items in the list, the list may contain variables, constants and strings.

		 e.g: fscanf(fptr,”%s %d”,name,roll_no);

 fprintf(fptr,”Name %s Roll number%d”, name,roll_no);

 Example: Program to read data from a file.

#include <stdio.h>

#include <stdlib.h>

void main()

{

 	 int num;

 	 FILE *fptr;		 // file pointer 			

	 if ((fptr = fopen(“C:\\program.txt”,”r”)) == NULL)

 	 /*Program exit if the file pointer returns null*/

 	 {

 		 printf(“Error! opening file”);

 		 exit(1);

 	 }

 	 fscanf(fptr,”%d”, &num);//reads data from file program.c

 	 printf(“Value of n=%d”, num);

 	 fclose(fptr);

}

The program displays the contents of the file program.txt on the screen. Before a read
or writing information, we must open the file. To open the file fopen() is called. File
pointer fptr points to the file program.txt. If the file opening fails, fopen() returns a
NULL. Function call exit() terminates the execution of the program. Data is read using
the function fscanf() from the file. While reading from a file, it should be careful to use
the same format specifications. After completing the read operation, the file has to be
closed to flush out the associated buffers. The program reads numbers from program.txt
and displays it in the output window.

252 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Example2: Program to write student details into a file.

#include <stdio.h>

#include<stdlib.h>

void main()

{

 		 char name[50];

 		 int marks, i, num;

 		 printf(“Enter number of students: “);

 		 scanf(“%d”, &num);

 		 FILE *fptr;

 		 fptr = fopen(“C:\\studentdetails.txt”, “w”);

253SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 		 if(fptr == NULL)

 		 {

 		 printf(“Error!”);

 		 exit(1);

 		 }

 		 for(i = 0; i< num; ++i)

 		 {

 		 printf(“For student%d\nEnter name: “, i+1);

 		 scanf(“%s”, name);		 //reads data from keyboard

 		 printf(“Enter marks: “);

 		 scanf(“%d”, &marks);

 		 fprintf(fptr,”\nName:%s\nMarks=%d\n”,name,marks); //write
data to file.

		

 	 }

 	 	 fclose(fptr);

}

The program read data from the keyboard using scanf function . If the file opening fails,
fopen() returns a NULL. Function call exit() terminates the execution of the program.
Data is written into the file using fprintf function. While reading from a file, it should
be careful to use the same format specifications. After completing read operation the file
have to be closed to flush out the associated buffers. The program reads name and marks
from the keyboard and store it in order into the file.

B. putc() and getc() functions

The functions getc() and putc() can handle one character at a time. fputc() writes a char-
acter to the file pointed to by the file pointer. If a file is opened in write mode with file
pointer fptr, then the statement

putc(c,fptr);

Writes the character contained in the character variable c to the associated file.

Function getc() is used to read a character from a file that has been opened in read
mode.

254 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 c=getc(fptr);

The above statement would read a character from the file with file pointer fptr. The
getc() function will return EOF (End of File), when end of file has been reached. For
both the functions, the file pointer moves by one character position.

Example: Write a program to read strings from the keyboard and write it into a
file

#include<stdio.h>

#include<stdlib.h>

void main()

{

	 FILE *fptr;

	 char c;

	 fptr=fopen(“program.c”,”w”);//open file write mode

	 while((c=getchar())!=EOF)	

 	 //read character from keyboard

	 	putc(c,fptr); //write character by character to file

	 fclose(fptr);

	 fptr=fopen(“program.c”,”r”);	 //reopen the file

 	

while((c=getc(fptr))!=EOF)

 	 //read character from keyboard

	 	printf(“%c”,c);	 //printing on screen

	 fclose(fptr);

}

The above program enters the input data via the keyboard and writes it into the file,
character by character. When EOF is reached, the file ‘program.c’ is closed. The file
is again opened for reading. Then the contents are read, character by character, and
displayed on the screen. Read operation terminates when getc encounters the EOF
character.

255SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

C. getw and putw functions

The getw and putw are similar to the getc and putc functions and are used to read and
write integer values. When we deal with only integer data, these functions can be used.
The format of getw and putw are following

	 Syntax:	 putw(integer, fptr);

			 getw(fptr);

4.2.6	 Random Access to Files

There are situations when accessing only a particular part of a file. This can be achieved
by the following functions.

fseek()

fseek() is used to move a file pointer to a specific position within a file.

Syntax : fseek(file_ptr, offset, position);

where file_ptr is the pointer to the file concerned, ‘offset’ is the number of bytes to offset
from ‘position’, and ‘position’ denotes the position from where the offset is added.
’position’ has three values as shown in Table 4.2.1.

 		

Value Purpose

0 Starting of the file

1 Current position

2 End of file

Table 4.2.1: Value of position in fseek()

e.g.: fseek(FILE *fp, 10, 1);

The statement moves from the current position of the file pointer by moving 10 posi-
tions. When the operation is successful fseek returns zero, otherwise returns a non-zero
value.

Example: Program to illustrate the execution of fseek()

#include<stdio.h>

void main ()

256 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

{

 	 FILE *fp;

 	 fp = fopen(“file1.txt”,”w+”);

	 // Content of file

 	 fputs(“This is structural design methodology”, fp);

 	 //seeking 8th position from beginning

 	 fseek(fp, 8, 0);	

 	 // writes the content from 7th position

 	 fputs(“ C Programming Language”, fp);

 	 fclose(fp);

 }

The above program opens the file file1.txt in read and write mode. The content of the
file seeks the 8th position from the beginning and replaces the actual content with “C
Programming Language”. The content of the file will change to “This is C Programming
Language.”

ftell()	 	

ftell takes a file pointer and return a number that corresponds to the current position.	
	

		 Syntax : num =ftell(file_ptr);		 	

Variable num gives the relative offset of the current position. The function returns the
position as type long int which is an offset from the beginning of the file.

rewind()

Function rewind() takes a file pointer and resets the position to the beginning of the file.

	 	 Syntax: rewind(file_ptr);

		 num=ftell(file_ptr);

The statements would assign value 0 to num because the file position has been set to
the start of the file. Whenever a file is for input-output operations, a rewind is done
implicitly.

257SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Recap

	♦ A file is a group of related data stored in secondary storage.

	♦ C supports a set of in-built functions to perform basic file operations.

	♦ All files should be declared as type FILE before use.

	♦ A file pointer is a pointer to the data type FILE and contains all the information
about the file.

	♦ File operations and mode of operations are key concepts in file management.

	♦ Commonly used in-built file handling functions are fscanf(), getc(), getw()
for input operations. Its counterpart functions are fprintf(), fputc() and putw()
for output operations.

	♦ Input-output operations in files can be done on a character basis, line basis
or record basis.

	♦ These operations are done using a buffer which improves efficiency.

	♦ Buffers have limitations in size.

Objective Type Questions

1.	 Which keyword is used to store a file pointer?
2.	 Give an example of a formatted file output function.
3.	 For truncation which mode is specified?
4.	 Which file mode is used for updating?
5.	 Why is it necessary to close a file during the execution of the program?
6.	 What is the data type of FILE in C?
7.	 Which component is appended to the mode string for binary files?
8.	 What is the value of EOF in C?
9.	 State True or False. Data of a file is stored on a hard disk.
10.	In which form are data in text files stored?

258 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Answers to Objective Type Questions

1.	 FILE
2.	 fprintf
3.	 W
4.	 a (append mode or write mode)	
5.	 Ensure all the buffers and all links to the file are broken.
6.	 opaque data type (Hint: Implementation is hidden)
7.	 b
8.	 -1
9.	 True
10.	ASCII code

Assignments

1.	 Develop a program to write employee’s details into a file and display it on
screen.

2.	 Write a program to append content from the last position of the file using fseek().
3.	 Write a program to write student details into a file and read from it.
4.	 Write a program to count the characters, spaces and newlines in a file.
5.	 Explain various input/output functions used in file operation.
6.	 What is EOF. Explain with an example.
7.	 Write a C program to create a new file and write "Hello, World!" into it.
8.	 Implement a C program to read the contents of a text file named "input.txt" and

display it on the screen. Make sure to handle errors appropriately.
9.	 Write a C program to append additional text to an existing file named "data.txt"

using file handling functions.
10.	Develop a C program to read integers from a file named "numbers.txt", calculate

their sum, and display the result on the screen.
11.	Create a C program to count the occurrences of a specific character (e.g., 'a') in

a text file named "textfile.txt". Display the count on the screen.
12.	Implement a C program to copy the contents of one file into another file.
13.	Write a C program to read student details (name, roll number, and marks) from

the user and write them into a file named "student_details.txt".
14.	Develop a C program to read the contents of a file named "paragraph.txt", count

the number of words, and display the count on the screen. Remember to handle
errors gracefully.

259SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

260 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Command-line Arguments

Learning Outcomes

Prerequisites

	♦ understand the concepts of argument passing to main()

	♦ learn argc and argv parameters in C

	♦ achieve skills to implement efficient programs using Command-line
arguments.

Arguments or parameters are used to pass values to a function. It is very useful for
giving different values to a function.

The functions differ based on the number and type of parameters.

Parameters are of two types:

	♦ Actual parameter

	♦ Formal parameter

Actual parameter is the parameter which we passed during a function call. Formal
parameters are parameters which are used in function definitions.

UNIT 3

After the successful completion of the unit, the learner will be able to:

Key Concepts

argc, argv, FILE, fopen

261SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion
4.3.1	 Command-line Arguments

We learned about functions, arguments, and their functionalities in previous units. In
user-defined functions, users can include arguments within the program or through the
console window. Have you ever thought about the possibility of passing arguments
through the command line? Is it possible to control a C program from outside the
program? The answer to the above questions is command-line arguments.

It is possible to pass values to the C program from the command line when the program
is invoked. These values or arguments are called command-line arguments. Command-
line arguments are also a method to control C programs from outside.

We know that the main function begins the execution of the program and it can also take
arguments like other functions. The arguments that pass on to main() at the command
prompt are called command-line arguments. Generally, the main() function has two
arguments- argc and argv.

	♦ argc is the number of arguments passed. ‘argc’ refers to argument count. It
stores the number of arguments including the name of the program. That is,
if a value is passed to a program, the value of argc should be 2.

	♦ argv is an array of pointers to strings and points to each argument passed
to the program. ‘argv’ refers to an argument vector. argv[0] is the name of
the program. From argv[1] to argv[argc-1] represents each command line
argument.

If we want to execute a program to copy the contents of a file PGM1 to another one
PGM2, we can use a command line like

		 > PROGRAM PGM1 PGM2

where PROGRAM is the filename of the executable code where it is stored. Here, argc
is three and argv is the array of three pointers to strings which are given below:

		 argv[0] -> PROGRAM

		 argv[1]-> PRG1

		 argv[2] -> PGM2

To access the command line arguments, we must declare the main function and its
parameters as follows,

	 main(int argc, char *argv[])

		 {

			 ………

		 }

262 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

During execution, the strings on the command-line are passed to main(). To understand
the working of command-line arguments, let us discuss it through a C program.

#include <stdio.h>

int main(int argc, char *argv[])

{

	 int count;

	 printf(“Program name is %s\n”, argv[0]);

 	 if(argc == 2)

		 printf(“The argument is -%s\n”, argv[1]);	

 	 else if(argc> 2)

	 {

 		 printf(“More than two arguments supplied.\n”);

		 for(count=0;count<argc;count++)

		 printf(“argv[%d] - %s” , count, argv[count]);

 	 }

	 else 			 //argc=1

		 printf(“No arguments passed,only program name.\n”);

}

The above program (program name - test) checks arguments which are supplied from
the command line and take steps based on that.

If a single argument is supplied, it produces the following result.

	 >test test1

Program name is test

The argument is test1

When two arguments are supplied, the output will be like the following:

	 >test test1 test2

	 More than two arguments supplied

	 argv[0] - test

263SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 argv[1] - test1

	 argv[2] - test 2

When no argument is supplied, the output will be like following

>test

No arguments passed, only program name.

If no argument is supplied, argc will be one (program name itself). argv[1] points to the
first command line argument and argv[n] points to last argument. argv[argc] is a Null
pointer.

Example : Program to add two numbers using command-line arguments

#include <stdio.h>

#include<stdlib.h>

int main(int argc, char *argv[])

{

		 int num1,num2,sum;

		 num1 = atoi(argv[1]);

		 num2= atoi(argv[2]);

		 sum = num1+num2;

		 printf(“Sum of %d, %d is: %d\n”,num1,num2,sum);

		 return(0);

}

Output

> sum 4 7

Sum of 4, 7 is 11

Command line >sum 	4 7, inputs three arguments - sum(program name), 4, and 7.
The program finds the sum of the second and third arguments and displays it. atoi() is a
library function that converts a string to an integer.

264 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Example : Program to implement file copy programs using command-line
arguments.

#include <stdio.h>

#include <stdlib.h>

void main (int argc, char *argv[])

{

 FILE *fsource, *ftarget ;

 char ch ;

 if (argc != 3)

 {

 puts (“Error in number of arguments\n”) ;

 exit (1) ;

 }

 fsource = fopen(argv[1], “r”) ;

 if (fsource == NULL)

 {

 puts (“Error in source file handling\n”) ;

 exit (2) ;

 }

 ftarget = fopen(argv[2], “w”) ;

 if (ftarget == NULL)

 {

 puts (“Error in target file handling\n”) ;

 fclose(fsource) ;

 exit (3) ;

 }

 while (1)

 {

 ch = fgetc(fsource) ;

265SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

In the above program, argv[0] contains the base address of the test name test (pro-
gram name), argv[1] contains the base address of test1.c and argv[2] contains the base
address of ‘test2.c’. The program opens the file test1.c in read mode, test2.c in write
mode and copies the content from the first file to the second one.

 if(ch == EOF)

 break ;

 else

 fputc (ch,ftarget) ;

 }

 fclose(fsource) ;

 fclose(ftarget) ;

}

Output

> test test1.c test2.c

Recap

	♦ Command line argument approach the parameter supplied through the
command line.

	♦ The strings supplied at the command line are stored in memory

	♦ The address of the program name is stored in argv[0], the address of the
second string is stored in argv[1] and so on

	♦ argc is an argument counter and argv is an argument vector.

	♦ main() can take arguments argc and argv and through this, the information
can be passed on to the program.

266 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Objective Type Questions

1.	 What is the index of the last argument in the command-line argument?
2.	 State True or False. argv is an array of character pointers.
3.	 What will be the output?

		 int main(int argc, char *argv[])

		 {

			 int result;

 result= argv[1]+argv[2];

 printf(“%d”,result);

 return(0);	

		 }
4.	 What do argv[0] and argv[1] represent in command line arguments?
5.	 What is the second argument in the command line argument?

Answers to Objective Type Questions

1.	 argc - 1(Hint: First argument is program name)
2.	 True
3.	 Error 	 // string to number conversion needed.
4.	 filename and pointer to the first command line argument
5.	 A pointer to an array of character strings that contain the arguments

Assignments

1.	 Write a program to find the largest among three numbers using command
line arguments.

2.	 Write a program to concatenate strings entered using command line
arguments.

3.	 Write a C program to calculate the factorial of a number provided as a
command-line argument. Ensure error handling for invalid inputs.

267SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

4.	 Implement a C program that accepts two integers as command-line arguments
and swaps their values. Display the swapped values on the screen.

5.	 Develop a C program to calculate the sum of all integers provided as
command-line arguments. Handle scenarios where non-integer inputs are
provided.

6.	 Create a C program that reads a text file specified as a command-line
argument and counts the number of words, lines, and characters in it. Display
the counts on the screen.

7.	 Write a C program to search for a specific word in a text file provided as a
command-line argument. Display all occurrences of the word along with
their line numbers.

8.	 Implement a C program to copy the contents of one text file to another text-
file. Accept the file names as command-line arguments.

9.	 Develop a C program to perform basic arithmetic operations (addition,
subtraction, multiplication, division) on two numbers provided as command-
line arguments. Display the results.

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

268 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Macros and Preprocessor
Directives

Learning Outcomes

Prerequisites

	♦ understand the concepts of preprocessor directives

	♦ achieve skills to include preprocessor directives in a program efficiently

	♦ understand the implementation of command-line arguments

Preprocessing is an essential step in any productive task. It prepares the data for analysis.
Before we start actual processing, the data has to be preprocessed for clarity and better
processing.

We are familiar with courier service. It allows you to send a parcel or letter from one
location to another. Consider you booked for a product by giving your contact details
and delivery address. The product you booked is the actual content and all others, like
contact details, address, packing cover, etc, are aids to deliver the parcel correctly.
When the product gets delivered, you will remove all unnecessary elements that we
have mentioned above. It is an example of preprocessing an item.

Before the product was delivered, all the elements were necessary for proper manage-
ment and delivery of the product. But after proper delivery, the elements have to be
removed and the product is the ultimate component that you need. Likewise, prepro-
cessing in C is exactly what its name implies. It is a program that processes the source
code before compilation. In this unit, we are discussing how C program contents are
preprocessed, which are the methods, and how it is implemented.

UNIT 4

After the successful completion of the unit, the learner will be able to:

Key Concepts

 Macro, File inclusion, Conditional compilation

269SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Discussion

4.4.1	 Concept of Preprocessor Directives	

Preprocessor directives are one of the productive techniques implemented in the C
language. The preprocessor is a program that processes the source program before it
is passed to the compiler. As the name suggests, preprocessors preprocess the program
before actual compilation, and preprocessor directives control the operation of
preprocessors. Preprocessor directives are placed in the source program before the main
function. The preprocessor examines the source code for any preprocessor directives
before the compilation. If there is any, appropriate actions will be taken and the code is
handed to the compiler.

Fig 4.4.1 Build Process of C program

The combination of different stages of writing a C program is known as the build
process (Fig 4.4.1). Before a C program is compiled, if necessary, it is passed through
another program called a preprocessor. The preprocessor converts the source code to
expanded source code.

Preprocessor directives follow some syntax rules that are different from normal syntax.
It begins with the symbol # and does not require a semicolon at the end. For example,
#include and #define are some directives we have already discussed. Remember,
preprocessor directives can be placed anywhere in a program, but are generally placed
at the beginning of a program. Let us look at some commonly used directives.

4.4.1.1 Macros

Macros are pieces of code and have a specific name. Macro substitution is a process
of replacing an identifier in a program with a predefined string composed of one or

270 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

more tokens. When the compiler encounters the identifier or macro name, the compiler
replaces the name with the actual code.

‘#define’ is the directive that defines a macro. This statement is usually known as macro
definition and is defined as follows:

		 Syntax	: #define identifier value

		 e.g.:	 #define NUM 20

			 #define PI 3.1415

			 #define CAPITAL	 “TVM”

The statement replaces every occurrence of the identifier NUM in the source code by
20. It is a convention to write macros in capital letters to easily identify as symbolic
constants. The following code demonstrates macro definition, substitution, and execu-
tion.

#include<stdio.h>

#define COUNT 5		 //macro definition

void main()

{

 int i;

 for(i=0;i<COUNT;i++)

 printf(“%d\n”,i);

}

Output

0

1

2

3

4

In the above program, the variable count is defined before main(). That statement is
called the macro or macro definition. The variable count is called the macro template
and 5 is the corresponding macro expansion. In the preprocessing stage, the preprocessor
substitutes every occurrence of count with 5.

271SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Macros that we discussed above are called object-like macros. The identifier is replaced
by a value. The following are some more examples of a macro being written.

#define directive can be used to define operators

	 ex: #define OR ||

#define directive can be used to replace a condition

		 #define con(a>20 OR a<50)

			 ……

		 if(con)

		 {

		 }

#define directive can be used to replace an entire C statement.

	 #define print printf(“The result is unknown”)

	 ….

	 if(con)

		 print

Another type of macros is function-like macros and it looks like a function call. A
macro with arguments is known as a macro call. When a macro is called, the preproces-
sor substitutes the string by replacing the formal parameters with actual ones. Consider
the following code segment to understand the working of function-like macro.

#include<stdio.h>

//macro definition

#define max(num1,num2) ((num1>num2)?num1:num2)			

void main()

{

 	 int a,b,m;

 	 printf(“\nEnter two numbers “);

 	 scanf(“%d %d”,&a,&b);

 	 m=max(a,b);	 //control goes to macro definition

 	 printf(“Maximum value is %d”,m);

}

272 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

In the above program, whenever the preprocessor finds the function call max(num1,
num2), in main method and it expands to ((num1>num2)?num1:num2). When a macro
call occurs, the preprocessor replaces the macro template with its macro expansion.

Output

Enter two numbers 5	 2

Maximum value is 5

Other special kind of macros are pre-defined macros. C compiler predefines some
preprocessor macros. Let us discuss predefined macros with examples,

DATE represents current date

TIME represents current time

FILE represents current file name

printf(“%s”,_DATE_);		

printf(“%s”,_TIME_);

printf(“%s”,_FILE_);

A macro can be undefined, using #undef.

Syntax: #undef identifier

e.g.: #undef NUM

Macros Vs Functions

Macros and functions look similar, but they are different in many aspects. Table 4.4.1
shows the differences between macros and functions.

 		

Macros Functions

 The preprocessor replaces the macro
template with the macro definition

Control passes to the function
along with arguments, and after
execution of function it returns the
control to the position where it was
called from

Runs faster Slower compared to macros

Increases the program size Smaller and more compact
programs

Memory utilization is high Less memory space requirements

Table 4.4.1 Macros vs Functions

273SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

4.4.2 File Inclusion

File inclusion directive causes an external file to be included as part of a program. It
directs the compiler to include a file in the source program. Two types of files can be
included – Header files and User-defined files.

Header Files – Different functions are defined in different files. For example, printf()
and scanf() are included in the header file stdio.h. Similarly, sqrt() is defined in math.h.
To include these functions in a program, corresponding header files should be added in
the program.

Syntax : #include(filename.h>

e.g.: #include<stdio.h>

In this case, the specified file is searched only in the standard directories.

User-defined files – Larger programs can be divided into smaller ones and can be added
to the program.

Syntax: #include “filename”

 e.g.: #include”prgm1.c”

The preprocessor inserts the entire contents of the file specified into the source code
of the program. The above statement would look for the file program.c in the current
directory and the specified list of directories, and insert it.

4.4.3 Conditional Compilation Directives

As the name suggests, conditional compilation compiles a specific portion of a program
or it can skip the compilation of a specific portion of a program, depending on the
condition specified. It is also known as compiler control directives because it directs the
compiler to skip certain parts of source code when they are not needed.

#if, #else, #ifdef, #elif and #endif are examples for conditional compilation preprocessing
directives.

1. #ifdef preprocessor directive ensures a macro is defined in the header. If it is
defined, the code between #ifdef and #endif executes in the program. The C processor
also supports a more general form of #if directive.

Syntax:	
#ifdef expression
	 {
		 statements;
}
#endif

Consider the following example,

274 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

#include<stdio.h>

#define COUNT 0

	 void main()

	 {

	 printf(“Count is %d”,COUNT);

		 #ifdef COUNT

		 {

		 #undef COUNT

		 int COUNT;

		 printf(“\nEnter value for count”);

		 scanf(“%d”,&COUNT);

			 printf(“Count is %d”,COUNT);

		 }

		 #endif

	 }

This ensures that even if COUNT is defined in the program, its definition is
removed by #ifdef.

Output	

Count is 0	

Enter value for count 23	

Count is 23

2. #elif, #else, #endif

#ifdef, #elif, #else, and #endif are similar to the usual if-else control instruction in C.

Syntax:

#ifdef expression

{

275SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 statements;

}

#elif expression

{

	 statements;

}

#else

{

	 statements;

}

#endif

3.#ifndef

#ifndef denotes if not defined. If it is included in the program, all the lines between
the #ifndef and corresponding #endif directive are active in the program. Consider the
following code

#include “DEFINE.H”

#ifndef NUM

#define NUM 1

#endif

Suppose DEFINE.H is the header file that defines NUM macro. The directive #ifndef
NUM searches the definition of NUM in the header file and if not defined, then all
the lines between the #ifndef and #endif directive are left active and define a value
1 to NUM. If NUM has been already defined in the header file, the #ifndef condition
becomes false and #define statement is ignored.

276 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Recap

	♦ Macro is a predefined code that replaces an identifier

	♦ When a #define directive is noted, the preprocessor replaces the macro
template with a macro definition.

	♦ Preprocessor coverts the source code to expanded source code and it passes
to the compiler.

	♦ In object-like macro, simple string replacement is used to define constants.

	♦ In a function-like macro, the preprocessor substitutes the string by replacing
formal parameters with actual parameters.

	♦ To restrict a macro to a particular part of the program #undef is used.

Objective Type Questions

1.	 If a number of instructions are repeated in the main program, how can you
reduce the length of the program?

2.	 Preprocessor in C works on which file?
3.	 Which keyword is used to define macro?
4.	 What does stdio in stdio.h stands for?
5.	 How do you separate multiline macros?
6.	 What will be the output?

 #include<stdio.h>

 #define max 10

 void main()

 {

	 #ifdef (max)

Printf(“Welcome”);

 }
7.	 What will be the output?

 #include<stdio.h>

 void main()

277SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 {

	 #ifndef count

	 printf(“Welcome”);

	 #endif

	 printf(“Enjoy”);

 }
8.	 Which symbol identifies a preprocessor directive in C?
9.	 State True or False. Macros increase program speed compared to functions

Answers to Objective Type Questions

1.	 Using macros	 (Hint: macro replaces the repeating code)
2.	 .c file (Hint: Source file)
3.	 define
4.	 Standard input-output
5.	 using \ operator
6.	 Error	 (Hint:#endif missing)
7.	 Welcome Enjoy (Hint: count not defined, therefore both statements executed)
8.	 # symbol
9.	 True

Assignments

1.	 Discuss the use of areas of all preprocessor directives and give code segments
for each.

2.	 Discuss the role of preprocessor directives in C programming. How do they
control the behavior of the preprocessor?

3.	 Write a C program to demonstrate the use of object-like macros. Define a
macro for the value of pi and use it to calculate the area of a circle.

4.	 Implement a C program that utilizes function-like macros to perform
arithmetic operations (addition, subtraction, multiplication, division) on two
numbers entered by the user.

278 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

5.	 Create a C program that includes a user-defined header file and demonstrates
the usage of macros defined within that header file. Provide a brief explanation
of the header file's purpose.

6.	 Develop a C program that illustrates conditional compilation using #ifdef
and #ifndef directives.

7.	 Include a macro definition and conditionally execute code based on whether
the macro is defined or not.

8.	 Write a C program to read an integer from the user and use a macro to
determine if it is even or odd. Display an appropriate message based on the
result.

9.	 Implement a C program that includes multiple header files using #include
directives. Ensure that each header file contains unique macros and
demonstrate their usage in the main program

Reference

1.	 Balagurusamy, E. Programming in C. Tata McGraw-Hill Education, 2008.
2.	 Forouzan, Behrouz A. "Computer Science, A Structured Programming

Approach Using C, Brooks." Cole. California, 2001.
3.	 Kernighan, Brian W., and Dennis M. Ritchie. The C programming language.

Prentice Hall, Englewood Cliffs, N.J., 1988.
4.	 Gottfried, Byron S. Schaum's Outline of Programming in Structured Basic.

McGraw-Hill Professional, 1992.

PROBLEM SOLVING AND
PROGRAMMING IN C

LAB MANUAL

279SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

1. Introduction
This lab manual has been designed to
accompany your learning journey in the field
of computer programming using C language
which aligns with the academic needs of
SGOU BCA learners. Whether you’re taking
your first steps into the world of coding or
looking to strengthen your programming
skills, this manual is customized to cater to the
requirements of your academic curriculum.

2. Target Audience
Geared towards BCA learners, this
manual is an essential companion
for your coursework. Whether
you are a beginner with minimal
programming experience or a more
advanced learner, the content is
structured to meet the diverse
needs of BCA learners.

3. Objective

The primary objective of this C Programming Lab Manual is to equip Bachelor of
Computer Applications (BCA) learners at Sreenarayanaguru Open University with a
robust foundation in C programming. The manual aims to achieve the following:

1.	 Comprehensive Understanding: Provide learners with a comprehensive
understanding of the fundamental concepts, syntax, and principles of the C
programming language.

2.	 Hands-On Experience: Facilitate hands-on learning through a series of
structured lab exercises, enabling learners to apply theoretical knowledge to
practical coding scenarios.

3.	 Real-World Relevance: Illustrate the real-world relevance of C programming
by integrating examples and exercises that reflect applications in software
development and problem- solving.

4.	 Progressive Skill Development: Foster a gradual progression of skills,
starting from basic programming constructs and advancing to more complex
topics, ensuring learners develop a well-rounded skill set in C programming.

5.	 Preparation for Future Courses: Lay a solid foundation for learners who
may pursue more advanced programming courses, ensuring they are well-
prepared for the challenges of subsequent coursework and professional
endeavors.

By the end of this programming journey, BCA learners should feel confident in their
ability to write, debug, and understand C code, setting the stage for success in both
academic and practical applications within the field of computer science.

280 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

4 Instructions to Academic Counsellors

Each lab may consist of a conducting the experiment, post-test, and writing a report.
The potential goals of labs are to enhance and deepen understanding of programming
concepts, gain experience in working collaboratively in a team setting, develop problem-
solving skills using C programming concepts. The academic counsellor should ensure
that the lab learning outcomes are achieved.

Below are some guidelines and suggestions counsellor should consider:
	♦ Lab time is limited, and most labs will take the entire time. Therefore, be

punctual.
	♦ Convey the learners about the importance of reading the lab manual and

SLM in advance.
	♦ At the beginning and end of the lab the counsellors should capture their

biometric attendance with location and time using the designated app
	♦ The counsellor should upload the attendance of the learners after two-third

of total lab duration
	♦ Lab sessions will be conducted during weekends.
	♦ Duration of a lab session may vary between 3 to 6 hours.
	♦ The counsellor should ensure the availability of systems and required

software/tools prior to each lab session.
	♦ Learners may work individually or in groups (maximum 3 members).
	♦ The counsellor should tell the learners exactly what is expected of them in

the lab.
	♦ The counsellor should monitor student progress throughout the lab period.

5 Instructions to learners

	♦ Learners should be regular and come prepared for the lab practice.
	♦ In case learners miss a class, it is their responsibility to complete the missed

experiment(s).
	♦ learners should bring the lab manual
	♦ They should implement the given program individually or in groups

(maximum of 3).
	♦ Learners should keep at least three copies of the stipulated format with

them.

281SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

6 Hardware Requirements

Desktop/ Laptop computer
	♦ Processor: 1GHz or faster with 2 or more cores on a compatible 64 bit

processor
	♦ RAM: 4GB or larger
	♦ Storage: 64 GB or larger storage device

7 Software Requirements

	♦ Linux Operating System with GCC / TURBO C in WINDOWS OS

8 About lab work

Steps involved in program development:- To develop the program in a high-level
language and translate it into machine level language following steps has to be practiced.

Step 1. Identify or analyze the problem

The first step is to understand the problem or requirement that the program is intended
to solve. This involves gathering information from stakeholders and defining the scope
of the project.

Step 2. Designing

Once the requirements are clear, the next step is to design the program's architecture.
This includes creating a high-level design that outlines the structure of the program and
how different components will interact with each other, including writing algorithms
and drawing flowcharts.

Writing Algorithms: An algorithm is a step-by-step procedure or set of instructions
designed to solve a specific problem or accomplish a particular task. Writing algorithms
involves breaking down the problem into smaller, manageable steps and describing the
logical flow of operations to achieve the desired outcome. Algorithms can be written
in natural language or using pseudocode, which is a simplified programming-like
language.

Algorithm:- It is a method of representing the step by step process for solving a problem.
Each step is called an instruction. Characteristics of algorithm are:

1.	 Finiteness:- It terminates with a finite number of steps.
2.	 Definiteness:- Each step of the algorithm is exactly defined.
3.	 Effectiveness:- All the operations used in the algorithm can be performed 	 	
 exactly in a fixed duration of time.

282 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

4.	 Input:- An algorithm must have an input before the execution of a program.
5.	 Output:- An algorithm has one or more outputs after the execution of the
program.

Example of the algorithm to find the difference of two numbers:
	♦ Step1: Start
	♦ Step2: READ a, b
	♦ Step3: Subtract a and b and store in variable c
	♦ Step4: Print c
	♦ Step5: STOP

Drawing Flowcharts: A flowchart is a graphical representation of an algorithm or
process, showing the sequence of steps and decision points involved. Flowcharts use
different shapes to represent different types of actions or decisions, such as rectangles for
processes, diamonds for decisions, and arrows to indicate the flow of control. Drawing
flowcharts helps visualize the logical flow of the program and understand how different
components interact with each other.

Step 3. Writing the program(Coding): Coding, also known as programming, is the
process of writing instructions for a computer to execute. These instructions, written in
a programming language, tell the computer what tasks to perform and how to perform
them. Coding is what allows developers to create software, applications, websites, and
other digital tools that we use in our everyday lives.

283SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Step 4. Linking the program with the required library modules

Linking a program with required library modules is an essential step in software
development, especially when working with programming languages that support
modularization and external libraries. By effectively linking a program with the required
library modules, developers can leverage existing code and libraries to add functionality
to their applications, speeding up development and improving code maintainability.

Step 5. Compiling the program

Compiling a program is the process of translating the source code written in a high-
level programming language into machine-readable code, typically in the form of
object code or executable files.

Step 6. Executing the program

Executing a program involves running the compiled executable file on a computer or
device to perform the tasks it was designed for. Executing a program involves loading it
into memory, running its main logic, handling errors, producing output, and interacting
with users or other software components as needed to accomplish its tasks.

284 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

PART A
BLOCK 5

285SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Familiarization of Input and
Output Statements

5.1.1 Introduction

5.1.2 Aim

	♦ To study the use of Control Strings in C (\a, \t, \n,..etc.)
	♦ To familiarize the format specifiers in C
	♦ To prompt and input basic details of a person (Name, age, sex)
	♦ To print various message outputs using various format specifiers

EXPERIMENT 5.1

Input statements enable programs to receive data from users or external sources,
while output statements allow programs to communicate results, messages, or
information back to the user. This lab session is designed to provide you with hands-
on experience in working with input and output statements.

5.1.3 Sample Exercises

1.	 Write a C program to demonstrate the use of escape sequences, including \a
(alert), \t (tab), and \n (newline). Print a message that includes these escape
sequences.

2.	 Write a C program to display ”Hello, World!” on the screen.
3.	 Create a program that takes two numbers as input and outputs their sum

using format Strings.
4.	 Develop a C program that requests the learner’s name as input and displays

the entered name on the screen. Ensure the program is capable of handling
complete names, even those containing spaces

5.	 Write a C program that prompts the user to input their birthday (day, month,
and year). The program should then calculate and output the number of days
remaining until their next birthday.

286 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

5.1.4 Problem

Exercise 1: Use of Escape Sequences

Exercise 2: Display ”Hello, World!”

Capture bio-data of a person and display the details using appropriate formatting. Write
a C program that prompts the user to enter their personal information, including their
name, age, and favorite programming language. The program should then display this
information with proper formatting using escape characters. Use the concepts of control
strings, fundamental data types and basic input-output statements.

Write a C program to demonstrate the use of escape sequences, including \a (alert), \t
(tab), and \n (newline). Print a message that includes these escape sequences.

Write a C program to display ”Hello, World!” on the screen using format Specifiers.

Test Case 1:
	♦ 	 Input: None
	♦ 	Expected Output:

This is an example of alert:

This is an example of tab:	 Tabbed Text

This is an example of newline:

New Line

Test Case 2:
	♦ 	 Input: None

	♦ 	Expected Output:

Hello, World!

Exercise 3: Input Two Numbers and Display their Sum

Create a program that takes two numbers as input and outputs their sum using format
Specifiers.

Test Case 3:
	♦ 	 Input:

	 Enter the first number: 10
	 Enter the second number: 20

	♦ 	Expected Output:

The sum is: 30

287SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Exercise 4: Input Learner’s Name and Display

Develop a C program that requests the learner’s name as input and displays the entered
name on the screen. Ensure the program is capable of handling complete names, even
those containing spaces.

Test Case 4:
	♦ Input:

	 Enter your name: John Doe
	 	♦ Expected Output:

Hello, John Doe!

Exercise 5: Calculate Days Until Next Birthday

Write a C program that prompts the user to input their birthday (day, month, and year).
The program should then calculate and output the number of days remaining until their
next birthday.

Test Case 5:
	♦ Input:

	 Enter your birthday (day month year): 15 11 2000 	
	♦ Expected Output (assuming current date is 1st January 2023):

Days until your next birthday: 319

Exercise 6 : Capture Bio-data of a Person and Display Details

Write a C program that prompts the user to enter their personal information, including
their name, age, and favorite programming language. The program should then display
this information with proper formatting using escape characters. Use the concepts of
control strings, fundamental data types, and basic input-output statements.

Test Case 1: Normal Input
	♦ 	 Input:

 Enter your name: Alice
 Enter your age: 25
	 Enter your favorite programming language: C

	♦ 	Expected Output:

Bio-data

Name: Alice Age: 25

Favorite Programming Language: C

288 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Test Case 2: Empty Name
	♦ 	 Input:

 Enter your name: Enter your age: 30
 Enter your favorite programming language: Python	

	♦ 	Expected Output:

Bio-data

Name: (No Name Provided) Age: 30
Favorite Programming Language: Python

Test Case 3: Special Characters in Name

	♦ 	 Input:
 Enter your name: John@Doe Enter your age: 22
 Enter your favorite programming language: Java

	♦ 	Expected Output:

Bio-data

Name: John@Doe Age: 22
Favorite Programming Language: Java

Input Statements Output Statements

1.	scanf():

scanf(format,
&variable);

2.	fgets():
fgets(buffer, size, stdin);

3.	getchar():
char ch = getchar();

4.	getch() (Non-Standard, in some
 environments):
 char ch = getch();

1.	printf():
 printf(format, variables);

2.	puts():
 puts(“This is a string.”);

3.	putchar():
 putchar(‘A’);

4.	fputs():
 fputs(“Hello, world!”,
 stdout);

5.	fprintf():
fprintf(stdout, “Value:
%d\n”, value);

6.	putc():
 putc(‘A’, stdout);

APPENDIX

289SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Variables and Datatypes :
Familiarizing basic conversions

5.2.1 Introduction

5.2.2 Aim

	♦ To familiarize and practice data conversions in C programming
	♦ To prompt and input basic details in one unit and convert it to another unit

of desired choice

EXPERIMENT 5.2

In this lab experiment, we will explore the concept of variables and datatypes in the C
programming language. Variables are containers that store data, and datatypes define
the type of data a variable can hold.

5.2.3 Problem

Create C programs to perform data conversions and unit conversions. Include the
flowing unit conversions:

1.	 Temperature Conversion
2.	 Distance Conversion
3.	 Time Conversion (year to days)
4.	 Time Conversion (seconds to hour) etc.

5.2.4 Exercises : Variables and Datatypes

Exercise 1: Variable Declaration and Initialization

Write a C program that declares and initializes variables of different datatypes (int,
float, char). Print the values of these variables.

290 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Exercise 2: Arithmetic Operations

Exercise 3: Integer to Float Conversion

Write a C program that performs basic arithmetic operations (addition, subtraction,
multiplication, division) using variables. Print the results.

Convert an integer to a floating-point number and display the result.

Test Case 1:
	♦ 	 Input: 10

	♦ 	Expected Output: 10.0

Test Case 2:
	♦ 	 Input: -5

	♦ 	Expected Output: -5.0

Exercise 4: Float to Integer Conversion

Convert a floating-point number to an integer and display the result.

Test Case 3:
	♦ 	 Input: 7.8

	♦ 	Expected Output: 7

Test Case 4:
	♦ 	 Input: -3.5

	♦ 	Expected Output: -3

Exercise 5: Character to Integer Conversion

Convert a character to its corresponding integer value and display the result.

Test Case 5:
	♦ 	 Input: 'A'

	♦ 	Expected Output: 65

Test Case 6:
	♦ 	 Input: '9'

	♦ 	Expected Output: 57

291SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Exercise 6: Integer to Character Conversion

Convert an integer to its corresponding character and display the result.

Test Case 7:
	♦ 	 Input: 97

	♦ 	Expected Output: 'a'

Test Case 8:
	♦ 	 Input: 74

	♦ 	Expected Output: 'J'

Exercise 7: String to Integer Conversion

Convert a string containing an integer to its numeric value and display the result.

Test Case 9:
	♦ 	 Input: "123"

	♦ 	Expected Output: 123

Test Case 10:
	♦ 	 Input: "-45"

	♦ 	Expected Output: 45

Exercise 8: Unit Conversions - Celsius to Fahrenheit

Problem: Write a C program to convert temperature from Celsius to Fahrenheit. The
formula for conversion is F = C + 32, where F is the temperature in Fahrenheit and C
is the temperature in Celsius.

Instructions:
1.	 Declare variables for Celsius and Fahrenheit.
2.	 Read the temperature in Celsius from the user use float or double.
3.	 Perform the conversion using the given formula.
4.	 Print the result.

Test Cases :Exercise 8

Test Case 1:
	♦ 	 Input: 25 (Celsius)

	♦ 	Expected Output: 77.000000 (Fahrenheit)

292 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Test Case 2:
	♦ 	 Input: 0 (Celsius)

	♦ 	Expected Output: 32.000000 (Fahrenheit)

Test Case 3:
	♦ 	 Input: -10 (Celsius)

	♦ 	Expected Output: 14.000000 (Fahrenheit)

Exercise 9 : Unit Conversions

Create C programs to perform the unit conversion tasks outlined below:

Temperature Conversion 1:

Prompt the user to enter the current temperature in Celsius. Display the
converted temperature.

Enter the current temperature in Celsius: [user input]
Do you want to convert it to Fahrenheit (F) or Kelvin (K)?: [user input]
Converted temperature: [result]

Test Case 1: Temperature Conversion

Input:

Enter the current temperature in Celsius: 25
Do you want to convert it to Fahrenheit (F) or Kelvin (K)? F

Expected Output:

Converted temperature: 77°F

Temperature Conversion 2 :

Ask the user to enter a temperature in degrees Celsius. Inquire whether
they would like to convert it to Fahrenheit. Display the converted
temperature.

Enter the temperature in degrees Celsius: [user input]
Do you want to convert it to Fahrenheit (F)? [user input] Converted
temperature: [result]

Test Case 2: Temperature Conversion

Input:

Enter the temperature in degrees Celsius: -10
Do you want to convert it to Fahrenheit (F)? yes

Expected Output:

293SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Converted temperature: 14°F

Distance Conversion 1 :

Ask the user to input a distance in kilometers. Inquire whether they
would like to convert it to miles or meters. Output the converted distance.

Enter the distance in kilometers: [user input]

Converted distance: [result]

Test Case 1: Distance Conversion

Input:

Enter the distance in kilometers: 10

Expected Output:

Converted distance: 6.2137 miles

Weight Conversion 1:

Prompt the user to enter their weight in kilograms. Ask if they prefer the
weight in pounds or grams. Display the converted weight.

Enter your weight in kilograms: [user input]

Converted weight: [result]

Test Case 1: Weight Conversion

Input:

Enter your weight in kilograms: 70

Expected Output:

Converted weight: 154.3236 pounds

Length Conversion 1 :

Prompt the user to enter a length in meters. Ask if they would like to
convert it to feet. Display the converted length.

Enter the length in meters: [user input]

Converted length [result]

Test Case 1 : Length Conversion

Input:

Enter the length in meters: 5
Expected Output: Converted length: 16.4042 feet

294 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Exercise 10: Time Conversion 1

Inquire about the duration in hours. Ask if the user wants to convert it to minutes or
seconds. Output the converted time.

Enter the duration in hours: [user input]

In minutes: [result]

Test Case 1 : Time Conversion 1

Input:

Enter the duration in hours: 24
 

Expected Output:

In minutes: 1440 minutes

Exercise 11: Time Conversion 2

Prompt the user to input a duration in years. Ask if they want to convert it to days.
Display the converted duration.

Enter the duration in years: [user input]
Converted duration: [result]

Test Case 2: Time Conversion 2

Input:

Enter the duration in years: 5

Expected Output:

Converted duration: 1825 days

Exercise 12: Time Conversion 3

Ask the user to input a time in seconds. Inquire whether they would like to convert it to
hours. Display the converted time

Enter the time in seconds: [user input]
In hours: [result]

295SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Test Case 3 : Time Conversion 3

Input:

Enter the time in seconds: 3600

Expected Output:

In hours: 1 hour

296 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Operators and Expressions : Age
Calculator

EXPERIMENT 5.3

5.3.2 Problem

1.	 Write a C program that demonstrates the use of arithmetic operators (+, -, *,
/, etc). Take two integer inputs from the user and perform various arithmetic
operations on them. Print the results.

2.	 Write a C program that uses relational operators and logical operators to
compare two numbers.

3.	 Write a C program that uses bitwise operators to manipulate bits of an
integer. Take an integer input from the user, perform bitwise operations, and
print the results.

4.	 Create an age calculator that displays the age of a person in years, months,
and days. Use the concepts of arithmetic operators

5.3.1 Aim

	♦ To familiarize learners with arithmetic operators and expressions in the C
programming

	♦ To familiarize conditional statements in C

5.3.3 Arithmetic Operators

Objective: Write a C program that demonstrates the use of arithmetic operators (+, -, *,
/, %). Take two integer inputs from the user and perform various arithmetic operations
on them. Print the results.

297SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Test Case :

Input:

Enter the first number: 15
Enter the second number: 7

Expected Output:

Sum: 22

Difference: 8

Product: 105

Quotient: 2.142857

Mode: 1

5.3.4 Relational and Logical Operators

Objective: Write a C program that uses relational operators and logical operators to
compare two numbers.

Test Case :

Input:

Enter the first number: 10 Enter the second number: 20

Expected Output:

10 < 20 is true

10 > 20 is false

10 <= 20 is true

10 >= 20 is false

10 == 20 is false

10 != 20 is true

(10 > 0) && (20 < 30) is true

(10 > 0) || (20 < 5) is true

!(10 == 20) is true

298 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

5.3.5 Bitwise Operators

Objective: Write a C program that uses bitwise operators to manipulate bits of an integer.
Take an integer input from the user, perform bitwise operations, and print the results.

Test Case :

Input:

Enter an integer: 12

Expected Output:

Bitwise AND with 3: 0

Bitwise OR with 5: 13

Bitwise XOR with 9: 5

Bitwise NOT: -13

Left shift by 2: 48

Right shift by 1: 6

5.3.6 Age Calculator

Objective: Create an age calculator that displays the age of a person in years, months,
and days. Use the concepts of arithmetic operators

Test Case :

Input:

Enter the birth year: 1990 Enter the birth month: 5 Enter the birth day: 15

Expected Output:

Age: 32 years, 6 months, 15 days

299SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Control Structures:	
Familiarization of various
Looping Statements

5.4.1 Introduction

5.4.2 Aim

To understand and become familiar with different looping statements in the C
programming language, including for, while, and do-while loops. Also understanding
the use of break and continue statements.

EXPERIMENT 5.4

Loops in C are used to execute a block of code repeatedly. The three main types of
loops in C are for, while, and do-while loops.

5.4.3 Problem

Enter any 10 numbers:
1.	 Find and display even numbers
2.	 Display Amstrong numbers
3.	 Prime numbers
4.	 Numbers included in the Fibonacci series.

5.4.4 Exercise Questions: Looping Statements

Exercise 1: For Loop

Write a C program using the for loop to find positive even numbers below a given
number or from a list of given numbers.

300 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Sample Test Case :

Input:

Given Number: 15

Output:

Positive even numbers below 15: 2, 4, 6, 8, 10, 12, 14

Exercise 2: While Loop

Write a C program using the while loop for finding prime numbers below a threshold
number or from a list of given numbers.

Sample Test Case :

Input:

Threshold Number: 30

Output:

Prime numbers below 30: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Exercise 3: Do-While Loop

Write a C program to to check whether the entered numberings amstrong or not using
do-while loop

Sample Test Case :

Input:

enter a nunber: 153

Output:

153 is an amstrong number

Exercise 4: Using break Statement

Instructions:
1.	 Write a program that uses a for loop to iterate from 1 to n.
2.	 Inside the loop, prompt the user to enter a number at each iteration.
3.	 If the number is prime, terminate the loop using the break statement.
4.	 Display the sum of all numbers entered by the user till then.

301SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Sample Test Case :

Input:

n = 8, User enters: 1, 4, 5 (prime numbers)

Output:

Sum of numbers entered: 10

Exercise 5: Using continue Statement

Instructions:
1.	 Write a program that uses a while loop to iterate from 1 to 5.
2.	 Inside the loop, prompt the user to enter a number at each iteration.
3.	 If the user enters an even number, skip the remaining code in the loop using

the continue statement.
4.	 Display a message indicating whether the entered number is odd or even.

Sample Test Case :

Input:

User enters: 2, 3, 5, 8

Output:

Odd number: 3, Odd number: 5

Skipped even number 2 and 8

Exercise 6: Combining break and continue

Instructions:
1.	 Write a program that uses a do-while loop to repeatedly prompt the user to

enter a positive integer.
2.	 If the user enters a negative number, use break to terminate the loop.
3.	 If the user enters an even number, use continue to skip the rest of the loop

and prompt for the next input.
4.	 Display the sum of all positive, odd numbers entered by the user.

Sample Test Case :

Input:

User enters: 3, -1, 4, 7, -2

302 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Output:

Sum of positive, odd numbers: 10

Exercise 7: Menu-Driven Loop

Instructions:

Apply break and continue in a menu-driven loop.
1.	 Create a menu with options for addition, subtraction, multiplication, division

and exit.
2.	 Implement a switch statement inside a loop to perform the selected operation.
3.	 If the user selects the ”exit” option, use break to terminate the loop.
4.	 Display the result of each operation and continue the loop until the user

chooses to exit.

Sample Test Case :

Input:

Enter two numbers: 5 3

Enter your choice 1. Addition 2. Subtraction 3. Multiplication 4. Division
5. Exit : 3

Output:

Multiplication of 5 and 3 is 15

Exercise 8: Loop with Multiple Conditions

Instructions:

Use break and continue in a loop with multiple conditions.
1.	 Write a program that uses a for loop to iterate from 1 to 20.
2.	 Inside the loop, check if the current number is divisible by 3 or 5.
3.	 If true, use continue to skip the current iteration; otherwise, print the number.
4.	 If the number is greater than 20, use break to terminate the loop.
5.	 Display the numbers that satisfy the conditions.

Sample Test Case :

Input:

No specific input required

Output:

Numbers divisible by 3 or 5: 3, 5, 6, 9, 10, 12, 15, 18, 20

303SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Arrays Pointers and
Recursion

5.5.1 Aim

EXPERIMENT 5.5

The aim of this exercise is to familiarize learners with fundamental concepts of C pro-
gramming and to explore the use of arrays, recursion, and pointers in C programming.

1.	 Explore basic array operations such as declaration, initialization, and
accessing elements. Implement algorithms that involve arrays, such as
searching and sorting.

2.	 Grasp the fundamental principles of recursion and its advantages. Implement
recursive functions to solve problems like factorial calculation, Fibonacci
series, and Tower of Hanoi.

3.	 Master the concept of pointers and their role in C programming. Implement
pointer arith- metic and understand the relationship between pointers and
arrays.

5.5.2 Problem

Design a C program exercises to introduce the concepts of recursion, arrays, pointers,
and string manipulation. Users can progressively build their skills gradually and work
on practical pro- gramming tasks.

5.5.3 Exercises for Familiarizing Arrays, Pointers,
and String Manipulation

5.5.3.1 Arrays

Exercise 1: Find the Largest Element

Write a C program to find the largest element in an array.

Exercise 2: Binary Search

304 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Implement a binary search algorithm for a sorted array.

5.5.3.2 Pointers

Exercise 3: Swap Using Pointers

Create a program to swap two numbers using pointers.

Exercise 4: String Concatenation

Implement a function to concatenate two strings using pointers.

Exercise 5: Dynamic Memory Allocation

Explore dynamic memory allocation by creating a program that dynamically allocates
memory for an array.

5.5.3.3 String Manipulation

Exercise 6: String Concatenation

Write a C program to concatenate two strings without using the standard library
functions.

Exercise 7: String Reversal

Write a C program to reverse a given string.

Test Cases

Arrays

Test Case 1: Largest Element

Test the program to find the largest element with the following array: int
array[] = 5, 2, 8, 12, 3;

Expected Output: 12

Test Case 2: Binary Search

Verify the binary search algorithm with the array: int array[] = 1, 2, 3, 4,
5, 6, 7, 8, 9;

int key = 6;

Expected Output: Element 6 found at index 5

5.5.3.4 Pointers

Test Case 1: Swap Using Pointers

Test the pointer-based swapping program with a = 3 and b = 7.

Expected Output: After swapping,

305SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

a = 7 and b = 3.

Test Case 2: String Concatenation

Verify the string concatenation program with the strings: char str1[] =
”Hello, ”; char str2[] = ”world!”;

Expected Output: ”Hello, world!”

Test Case 3: Dynamic Memory Allocation

Validate the dynamic memory allocation program by allocating memory
for an array of size 5.

Expected Output: Successfully allocate and deallocate memory for
the array.

Test Case 4: String Concatenation-1

Input: "Hello", "World"

Expected Output: "HelloWorld"

Test Case 5: String Concatenation-2

Input: "Programming", " is fun"

Expected Output: "Programming is fun"

Test Case 6: String Reversal-1

Input: "abcdef"

Expected Output: "fedcba"

Test Case 7: String Reversal-2

Input: "hello"

Expected Output: "olleh"

306 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Structures and Unions

5.6.1 Introduction

EXPERIMENT 5.6

Structures and Unions are powerful tools for organizing and manipulating data.
They allow programmers to create custom data types that can hold multiple pieces of
information in a single variable.

5.6.2 Aim

The aim of this experiment is to introduce learners to the concepts of structures and
unions in C programming. Structures and unions allow the grouping of variables under
a single name, enabling the creation of more complex data types.

5.6.3 Problem

Designing a program to manage information about employees in a company. Each
employee has different attributes such as name, employee ID, and salary. Utilize
structures and unions to organize and manipulate this data efficiently.

5.6.4 Exercises for Familiarizing Structures and
Unions

Exercise 1: Employee Information Structure

Define a structure named Employee to store information about an employee, including
the employee_name, employee_ID, and salary.

Exercise 2: Employee Union

Define a union named EmployeeDetail to represent additional details about an employee.
This union should include fields for employee skills, certifications, and department.

307SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Exercise 3: Input and Output Functions

Write functions to input and display information for an employee using the defined
structure and union.

Test Cases

Test Case 1: Structure Initialization Input:

Enter employee details: Name: John Doe

Employee ID: 12345

Salary: 50000

Expected Output:

Employee Information:

Name: John Doe

Employee ID: 12345

Salary: $50000

Test Case 2: Union Initialization Input:

Enter additional employee details: Skills: C, Python

Certifications: Certified Developer Department: Software Development

Expected Output:

Additional Employee Details:

Skills: C, Python

Certifications: Certified Developer Department: Software
Development

Test Case 3: Complete Employee Information Input:

Enter complete employee details: Name: Alice Smith

Employee ID: 67890

Salary: 60000 Skills: Java, SQL

Certifications: Certified Tester Department: Quality Assurance

Expected Output:

Employee Information:

308 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Test Case:

Input: Initialize a Student variable with roll number = 101, name = ”John
Doe”, subject 1 marks = 85, and subject 2 marks = 90.

Output:

Student Details:

Roll Number: 101

Name:	John Doe

Subject 1 Marks: 85

Subject 2 Marks: 90

Question 2: Create a structure named Employee to store employee details. Include
members' emp id, name, position, and salary. Initialize an array of this structure type
with details of employees and display the information of each employee.

Test Case:

Input: Initialize an array of Employee structures with details of three
employees: (1, ”Alice”, ”Manager”, 60000), (2, ”Bob”, ”Developer”,
50000), (3, ”Charlie”, ”Analyst”, 45000).

Output:

Employee Details:

Employee ID: 1, Name: Alice, Position: Manager, Salary: 60000

Employee ID: 2, Name: Bob, Position: Developer, Salary: 50000

Employee ID: 3, Name: Charlie, Position: Analyst, Salary: 45000

5.6.5 Understanding Structures
Question 1: Define a structure named Student to store student details. Include members
roll number, name, subject 1 marks, and subject 2 marks. Initialize a variable of this
structure type with the details of a student and display its information.

Name: Alice Smith

Employee ID: 67890 Salary: $60000

Additional Employee Details:

Skills: Java, SQL

Certifications: Certified Tester Department: Quality Assurance

309SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

5.6.6 Nested Structures
Question: Create a structure Address to store address details with members street,
city, and zip code. Define another structure Person to store personal information with
members name, age, and address (of type Address). Initialize a variable of type Person
and display its details.

Test Case:

Input: Initialize a Person variable with name = ”Eve”, age = 25, and
address with street = ”123 Main St”, city = ”Cityville”, and zip code =
”12345”.

Output:

Person Details:

Name: Eve

Age: 25

Address: 123 Main St, City: Cityville, Zip Code: 12345

5.6.7 Union with Enumeration
Question: Define an enumeration Color with values RED, GREEN, and BLUE. Create
a union named Paint to represent painted items with members color (of type Color) and
quantity. Initialize a variable of this union and display the color and quantity.

Test Case:

Input: Initialize a Paint union variable with color = GREEN and quantity
= 10.

Output:

Paint Details: Color: GREEN Quantity: 10

310 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

PART B
BLOCK 6

311SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Functions : Recursion, Call by
Value and Call by Reference, File
Management

6.1 Aim

Introduction

6.2 Problem

Consider the problem of the age calculator. Implement the solution using functions with
and without arguments. Also implement the concepts of Recursion, Call by value and
Call by reference and File management in following exercises.

EXPERIMENT 6.1

The objective of this experiment is to understand and practice modular programming in
C using functions. This experiment will also introduce the basics of file management,
focusing on reading and writing data to files.

6.3 Exercises on Functions : With and Without
Arguments

6.3.1 Implementing Functions Without Arguments

Create a C program for the age calculator without using function arguments.

Requirements:
1.	 Implement a function to get the birth year from the user.
2.	 Implement a function to get the current year from the user.
3.	 Implement a function to calculate and display the age using the obtained

years.
4.	 In the main function, call the functions in the appropriate sequence.

In this lab experiment, we will explore the concept of functions-recursion, call by value,
call by reference and file management.

312 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Test Case 1: Calculate age in years.

Input:

Birth Year: 1990

Current Year: 2023

Expected Output:

Your age is: 33 years

Test Case 2: Verify the calculation with different years.

Input:

Birth Year: 1985

Current Year: 2023

Expected Output:

Your age is: 38 years 

6.3.2 Implementing Functions With Arguments
Create a C program for the age calculator using function arguments.

Requirements:
1.	 Implement a function that takes birth year and current year as arguments.
2.	 Inside the function, calculate and display the age.
3.	 In the main function, get the birth year and current year from the user, and

then call the function with these values.

Test Case 3: Calculate age in years and months.

Input:

Birth Year: 1995

Current Year: 2023

Birth Month: 6

Current Month: 9

Expected Output:

Your age is: 28 years and 3 months

Test Case 4: Verify the calculation with different months.

Input:

Birth Year: 1988

313SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Current Year: 2023

Birth Month: 3

Current Month: 11

Expected Output:

Your age is: 35 years and 8 months

6.3.3 Enhancing the Age Calculator With Additional
Information

Test Case 5: Calculate age in years, months, and days.

Input:

Birth Year: 1992

Current Year: 2023

Birth Month: 9

Current Month: 1

Birth Day: 15

Current Day: 7

Expected Output:

Your age is: 30 years, 3 months, and 23 days

Test Case 6: Verify the calculation with different days.

Input:

Birth Year: 1980

Current Year: 2023

Birth Month: 2

Extend the age calculator program with more functionalities.

Requirements:
1.	 Modify the functions to not only calculate the age in years but also in months

and days.
2.	 Implement separate functions for getting the birth month and current month.
3.	 Implement separate functions for getting the birth day and current day.
4.	 Display the calculated age in years, months, and days.
5.	 Update the current date, based on that the output need to be printed.

314 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Current Month: 6

Birth Day: 28

Current Day: 15

Expected Output:

Your age is: 43 years, 3 months, and 17 days

6.3.4 Modularizing the Code
Modularize the age calculator program by separating each function into a dedicated file.

Requirements:
1.	 Create separate header files (.h) for each function.
2.	 Implement the functions in corresponding source files (.c).
3.	 Use the modularized functions in the main program to calculate and display

the age.

6.3.5 Error Handling and Validation
Implement error handling and validation for user inputs.

Requirements:
1.	 Ensure that the user inputs are valid integers and handle non-numeric inputs

appropriately.
2.	 Check for logical errors, such as the current year being before the birth year,

and display meaningful error messages.

6.4.1 Recursion
Exercise 1: Recursion

Write a C program that demonstrates the use of recursion. Create a recursive function
to calculate the factorial of a given number.

6.4 Exercises on Functions : Recursion, Call by Value
and Call by Reference, and File Management

Test Case 1: Factorial Calculation

Input: User inputs 5.

Expected Output:

The program displays the factorial of 5, i.e., 120. 

Test Case 2: Factorial Calculation

Input: User inputs 0.

315SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Expected Output:

The program displays the factorial of 0, i.e., 1.

6.4.2 Fibonacci Series
Implement a recursive solution to find the nth term of the Fibonacci series.

Test Case 3: Fibonacci Series Calculation

Input: Verify the recursive Fibonacci series function for n = 8.

Expected Output:

The program displays the 8th term of the Fibonacci series, i.e., 21.

6.4.3 Tower of Hanoi
Solve the Tower of Hanoi problem using recursion.

Test Case 4: Tower of Hanoi

Input: Validate the Tower of Hanoi solution with n = 3 disks.

Expected Output:

Follow the steps to move all disks to the destination.

6.5 Exercise Questions: Functions and File
Management

Write a C program that demonstrates the concepts of call by value and call by reference
in functions. Create functions that swap two numbers using both methods.

Test Case 1: Call by Value Swap
Input: User inputs in two variables, a=10 and b=7.
Expected Output:
The program displays the swapped numbers using call by value.
The value of a and b inside the function are a = 7, b = 10
The value of a and b inside the main function are a = 10, b = 7
Test Case 2: Call by Reference Swap
Input: User inputs in two variables, a=10 and b=7.
Expected Output:
The program displays the swapped numbers using call by reference.
The value of a and b inside the function are a = 7, b = 10
The value of a and b inside the main function are a = 7, b = 10

6.5.1 Call by Value and Call by Reference

316 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Write a C program that includes a function to read the contents of a text file named
”input.txt” and display them on the console. The function should take the filename as a
parameter. Additionally, in the main program, prompt the user to enter the name of the
file to read and call the function to display its contents.

Test Case 1: File Reading and Display

Input: Enter the filename: input.txt

Expected Output:

Contents of input.txt displayed on the console.

6.5.2 File Reading and Display

Create a C program that utilizes functions to perform file operations. Write a function
that accepts a filename and a string as parameters and appends the string to the end of
the file. In the main program, prompt the user to enter a filename and a string. Call the
function to append the string to the specified file. Make sure to handle cases where the
file does not exist, and create the file if needed.

Test Case 1: File Writing with Functions

Input: Enter the filename: output.txt

Enter the string to append: Hello, World!

Expected Output:

String Hello, World! appended to output.txt.

6.5.3 File Writing with Functions

Write a C program that includes a function to copy the contents of one file to another.
The function should take two filenames as parameters: the source file to read from and
the destination file to write to. In the main program, prompt the user to enter the names
of the source and destination files and call the function to copy the contents.

Test Case 1 : File Copy Operation

Input: Enter the source filename: source.txt

Enter the destination filename: destination.txt

Expected Output:

Contents of source.txt copied to destination.txt.

6.5.4 File Copy Operation

317SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Extend the previous program to include file management. Implement functions that
read data from a file, process it, and write the result back to another file.

Test Case 1: File Operation - Sum Calculation

Input: Data stored in ”input.txt” - 15 and 20.

Expected Output:

The program reads the data, calculates the sum (35), and writes the
result to ”output.txt”.

Test Case 2: File Operation - Product Calculation

Input: Data stored in ”input.txt” - 8 and 12.

Expected Output:

The program reads the data, calculates the product (96), and writes
the result to ”output.txt”.

6.5.5 File Operation

318 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

319SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

MODEL QUESTION PAPER SETS

MODEL QUESTION PAPER- SET- I

SREENARAYANAGURU OPEN UNIVERSITY

QP CODE: ……… Reg. No :

 Name : ……............

End Semester Examination 2024
BACHELOR OF COMPUTER APPLICATIONS

B21CA02DC
PROBLEM SOLVING AND PROGRAMMING IN C

Time: 3 Hours Max Marks: 70

Section A

Answer any ten questions. Each carries one mark

1.	 Define an algorithm.

2.	 What is a compiler?

3.	 What are tokens in C?

4.	 What will be the value of ‘a’ in the statement int a = 10 + 4.867; ?

5.	 What is the purpose of a loader?

6.	 Which header file includes scanf() and printf() functions?

7.	 Give an example of an exit-controlled loop.

8.	 What is an array?

9.	 What is a pointer?

10.	What will happen if an exit condition is absent in a recursive function?

11.	What is the default return type of function definition?

12.	What is the output of the following C program?

	 #include<stdio.h>

	 int main() {

	 int a = 20;

	 printf("Good ");

	 return 1;

	 printf("morning");

320 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

 return 1;

 }

13.	What are the formal parameters of a function?

14.	What do you mean by the lifespan of a variable?

15.	What is a file pointer? 	

								 (10 x 1 = 10 Marks)

Section B

Answer any five questions. Each carries two marks

16.	What are the two types of problem-solving approaches?

17.	Draw a flowchart for swapping two numbers

18.	List the rules for creating identifiers in C programs?

19.	What is the output of the given program?

	 #include<stdio.h>

	 int main(int argc, char const *argv[])

	 {

		 int num1 = 46;

		 int num2 = 4;

		 float num3 = 3;	

		 printf("\nResult1 = %d", (num1 / num2));

		 printf("\nResult2 = %f ", (num1 / num3));

		 printf("\nResult3 = %f ", ((float)num1 / num2));

		 return 0;

	 }

20.	Write a program in C to read 10 numbers.

21.	Consider the following program. Suppose the address of variables i, j, and
k be 5000, 6000, and 7000 respectively. Then what will be the output of
the program?

	 # include <stdio.h>

	 int main()

	 {

	 int i = 3, *j, **k ;

	 j = &i ;

321SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

	 k = &j ;

	 printf ("Value of j = %u\n ", j) ;

	 printf ("Value of k = %u\n ", k) ;

	 printf ("Value of i = %d\n ", i) ;

	 return 0 ;

	 }

22.	What is the output of the following code?

	 int main()

	 {

	 int a = 430;

	 char *b = (char *)&a;

	 *++b = 2;

	 printf("%d ",a);

	 return 0;

	 }

23.	What is modular programming?

24.	List any two advantages of recursion.

25.	Write a program to find the largest number in an array by using a function?

(5 x 2 = 10 Marks)

Section C

Answer any five questions. Each carries four marks

26.	Compare machine language, assembly language and high-level language.

27.	Briefly explain various symbols and their function in a flowchart.

28.	Briefly explain the precedence and associativity of operators in C with an
example.

29.	Write a program in C to check whether a given string is a palindrome or
not.

30.	Write a C program to read ‘n’ strings and find the string lengths using
pointers.

31.	Illustrate with an example, the usage of the following string functions in
C.

a.	 strlen()

322 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

b.	 strcpy()

c.	 strcat()

d.	 strcmp()

32.	Compare built-in functions with user-defined functions.

33.	What are the different types of recursion?

34.	List the differences between structure and union.

35.	How can we create a new file in C? Illustrate with an example.

(4 x 5 = 20 Marks)

Section D

Answer any two questions. Each carries fifteen marks

36.	Describe the basic structure of a C program with an example.

37.	Explain different loops in C? Describe each with syntax and examples.

38.	What are functions? How do we declare, define and call a function in C?
Illustrate the usage of functions in C with an example.

39.	What are storage classes? What are the different storage classes available
in C? Illustrate the working of different storage classes in C with exam-
ples.

(2 x 15 = 30 Marks)

323SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

MODEL QUESTION PAPER- SET- II

SREENARAYANAGURU OPEN UNIVERSITY

QP CODE: ……… Reg. No :

 Name : ……............

End Semester Examination 2024
BACHELOR OF COMPUTER APPLICATIONS

B21CA02DC
PROBLEM SOLVING AND PROGRAMMING IN C

Time: 3 Hours Max Marks: 70

Section A

Answer any ten questions. Each carries one mark

1.	 Define a flowchart.

2.	 What will happen when you remove the semicolon from the end of a state-
ment?

3.	 Write the syntax of the conditional operator.

4.	 What is the purpose of the linker?

5.	 Which command is used to exit a loop in C?

6.	 Give an example of an entry-controlled loop.

7.	 What are strings?

8.	 What is the maximum number of arguments that can be passed in a single
function?

9.	 Which keyword is used to send output obtained in a function to a called
function?

10.	What are the actual parameters of a function?

11.	What is an enumerated data type in C?

12.	What do argv[0] and argv[1] represent in command line arguments?

13.	What is the use of an #undef preprocessor directive?

14.	List any four built-in functions in C.

15.	What do you mean by the lifespan of a variable?

(10 x 1 = 10 Marks)

324 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

Section B

Answer any five questions. Each carries two marks

16.	What are the various steps involved in problem-solving?

17.	What is the output of the given code snippet?

	 int main()

	 {

	 int a=0;

	 a = 10 + 5 * 2 * 8 / 2 + 4;

 	 printf("%d", a);

 	 return 0;

	 }

18.	Illustrate the usage of getchar() and gets() functions with an example.

19.	Write a program in C to check whether a given number is even or odd.

20.	What is recursion?

21.	List any two disadvantages of recursion.

22.	What is a preprocessor directive?

23.	What is the purpose of the #ifdef preprocessor directive?

24.	What is the purpose of ftell() function?

25.	Write the syntax for function declaration, definition and function call with
parameters.

(5 x 2 = 10 Marks)

Section C

Answer any five questions. Each carries four marks

26.	Write an algorithm and draw a flowchart to print all the prime numbers
between 1 and 100.

27.	What are C tokens? Explain various tokens in C with examples.

28.	Write a C program to read ‘n’ characters from the user and display the
characters using getchar() and putchar() functions.

29.	Explain any three decision-making statements in C with syntax.

30.	Give an example of nested functions in C.

31.	List the differences between recursion and iteration.

325SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

32.	List the various file opening modes in C and their purpose.

33.	Illustrate the usage of putc() and getc() functions in C with an example.

34.	Write a program to find factorial of a number using functions

35.	How can we create a new file in C? Illustrate with an example.

(4 x 5 = 20 Marks)

Section D

Answer any two questions. Each carries fifteen marks

36.	Explain various operators in C and their uses with examples.

37.	What is dynamic memory allocation in C. Explain the usage of the follow-
ing functions with an example?

a.	 malloc()

b.	 calloc()

c.	 free()

d.	 realloc()

38.	What is a structure? Illustrate the usage of structure in C with an example.
(7 marks)

39.	What are command line arguments? Illustrate the working of command
line arguments in C with examples.

(2 x 15 = 30 Marks)

326 SGOU - SLM - BCA - PROBLEM SOLVING & PROGRAMMING IN C

kÀ-Æ-I-e-m-i-m-e-m-K-o-X-w

þ-þ

h-n-Z-y-b-mÂ k-z-X-{-´-c-m-I-W-w

h-n-i-z-]-u-c-c-m-b-n a-m-d-W-w

{-K-l-{-]-k-m-Z-a-m-b-v-- h-n-f-§-W-w

K-p-c-p-{-]-I-m-i-t-a \-b-n-¡-t-W

I-q-c-n-c-p-«-nÂ \-n-¶-p R-§-s-f

k-q-c-y-h-o-Y-n-b-nÂ s-X-f-n-¡-W-w

k-v-t-\-l-Z-o-]-v-X-n-b-m-b-v---- h-n-f-§-W-w

\-o-X-n-s-s-h-P-b-´-n]-m-d-W-w

i-m-k-v-{-X-h-y-m-]-v-X-n-s-b-¶-p-t-a-I-W-w

P-m-X-n-t-`-Z-a-m-s-I a-m-d-W-w

t-_-m-[-c-i-v-a-n-b-nÂ X-n-f-§-p-h-m³

Ú-m-\-t-I-{-µ-t-a P-z-e-n-¡-t-W

I-p-c-o-¸-p-g- {-i-o-I-p-a-mÀ

SREENARAYANAGURU OPEN UNIVERSITY

